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INTRODUCTION

Recently, much attention has been paid to the problem of global or periodic
solvability of nonlinear hyperbolic equations. Existence results have been obtained
by means of different modifications of Nash’s “hard implicit function theorem™
technique, provided the data (i.e. the right hand side, initial conditions, if any, etc.)
are sufficiently smooth and sufficiently small. From a more or less general point of
view, iterative methods in situations when a “loss of derivatives” occurs have been
developed in [1], [3], [4], [7], [8], [10], [13], [15], [16], [17], [19]. [20], [22].
[23], [24], [25], [26] and many others.

In this paper we deal with the existence of classical time-periodic solutions to
Maxwell equations in nonlinear media using the ideas of Klainerman [8] and Shibata
[25] (let us remark that the local existence of solutions to Maxwell equations in
materials of ferromagnetic type has been proved by Milani [14]). As is expected,
we assume the right hand side to be sufficiently small. On the other hand, we impose
no restrictions concerning the smallness of the nonlinearities and we try to minimize
the requirements on the smoothness of data.

The present paper is an elaboration of the author’s thesis [9] on small periodic
solutions to Maxwell equations in ferromagnetic media. The author is very indebted
to Prof. O. Vejvoda for useful suggestions and encouragement.

1. MAXWELL EQUATIONS

Let N = 5 be a given integer and let Q = R* be an open bounded domain homeo-
morphic to a ball in R* whose boundary 0@ is of class C¥+2 M — 2N + 1. We
consider the Maxwell equations in the usual form
(t1) (i) o,D—rotH + J = Q,

(ii) ,B + rotE = 0,
(iii) div D = ¢,
(iv) divB = 0,
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where Q(t, x) is a given vector function defined in B! x Q which is w-periodic with
respect to f, w > 0 is a given number, the other quantities in (1.1) are to be found.
For the physical meaning of these quantities and equations we refer the reader e.g.
to [5], [21], [27].
The domain Q represents a conductive medium which is characterized by the
material relations
(1.2) (i) D = ¢(E),
(i) J = o(E),
(iii) H = u(B),
where ¢, 6, u are given vector functions of class CM*2 jn a neighbourhood of 0.
The material is assumed to be “almost isotropic™ (details are given in Section 3).
On the boundary of Q we impose the conditions
(13) () (B.v) = 0,
(i) EAv =0,
where v is a normal vector to dQ and (-, +) denotes the scalar product, A the vector
product in R>.
(1.4) Remark. The relation between B and H is usually considered in the form
B = ji(H). For the sake of simplicity we suppose (1.2) (iii) instead of the invertibility
of fi in a neighbourhood of 0.

2. NOTATION, FUNCTION SPACES AND REGULARIZATION

Throughout the paper, we denote all constants (with several exceptions) whose
values depend essentially only on quantities a, b, ... by ¢, .. Especially, ¢, denotes
any constant depending essentiaily only on L.

For a Banach space V endowed with a norm |- |, we denote by I’(w, V) the space
of w-periodic measurable functions u: R' — V with the norm

1/p
|t]opr = (J |u(e)]? df) <w, lSsp<w,

where |, denotes the integration over any interval [to> to + o]
Let W"’L(Q), 1 £ p < o0, L= 0 be the usual Sobolev space of functions u: Q —
— R'. For L = 1 we denote

WrkQ) = {ue WPHQ) | u = 0 on 09} .

For simplicity, we consider only Linteger.
We denote by

G" = {ue(W>HQ))* |u = grad ¢, € W2L+1Q)1 |

St = {u e(W*HQ))* | Yoe GE, J (1, v) dx — 0}

Q
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the complementary closed subspaces of (W?%(Q))® of potential and divergence-free
vector functions, respectively.
Further, for L = 1 put
={ueS"|unv=0on0dQ},
St ={ueS"|(u,v) =0 on 0Q}
and for L = 2,
Gi = {ueG"|divu =0 on 0Q}.
Following Bykhovsky [2] we define equivalent norms in S7, G by
|u,sr[4 = |1‘Ot u|(Wz,L—l(Q))3 s
lu'GoL = lgrad div ul(Wz,L—z(ﬂ))g .

For time-dependent w-periodic functions we introduce the Banach spaces
Z" = o, WX(Q)), L= 0, with a norm |-|; . The norm of an element u =

= (uy, up, u3) € (ZF) = B0, (W>HQ))*) is \”\23 L= (Z \“ \Z '
For L= 1 we put
= {® e P{w, W*(Q)) | 0,® € I}, W*H(Q))}
with the norm
|2lye = @z + 02,z -

Further,
St ={uel¥w,S")|0=K < L= fuel}o, s %}, L20,
0 _ L2(w’ GO) ,

= {ue X(w, G*)| du e X w, G°)},
9" ={ueXw,G" |1 S K S L-1= 0fue (o, G-"KY),
due Xw, G}, L=2,
Fr={ueS"|0SK<L-1=0uel*w, S5}, L1,
Yy =9'nXw,Gp),
={ued"nX0,G5) |1 =K £ L—1=duel’(o,G5 5"}, L=2.

The norms in &~, 94 are chosen, respectively, to be

o = obulbno + 3 rot s gy, L2 1, and

[u]gor = [0su]Z2,0 + |grad div u|Zs , ,

el = [0Ful2so + [grad div ufls +Z§1|grad divoulZs, .y, Lz 2.
In fact, the following well-known assertior_ls hold (cf. [2]).

(2.1) Lemma. There exist constants x, o, $ such that for 0 < L < M and
(i) for each ® € L¥(w, W* *%(Q)) we have

I(D|Z,L+2 = %|A¢IZ,L;
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(i) for each ue [Xw, S-*') or ueI*(w, St™') we have
Iu|Z3,L+1 =< erOt u|Z3,L 5

(iii) for each u e I*(w, SE*' @ G**') we have

[u|zs 1 < g (|div u|z,L + [rotu|zs ), where = < max(x,0).

N

For1 < p < o and L = 0 we denote
WiHQ) = {ue (w0, WWH(Q)) |0 < K = L= 5fu e (0, W XQ))}
with the norm L
|to,p.r = (Kzowf“m‘p‘wm-K(m)”",
and
wh=(WoHQ)*, Lz0,
Xt=950 9", Lx1

with the norms, respectively,
L
2 K, |2
ulie = Y [0Fulze -k Lz0,
K=0

[ulf. = |0Fulw.o + |grad divulzs o, +

L-1 L-1

+ Y |erad div ofuls pox—1 + Y. |rotdfulZs g1, LZ2,
K=1 K=0

and
[u]3.. = |0wmli o + |grad divuly o + [rotulfy o .

Obviously, X* is continuously embedded into W* for L > 1.
Further, let C5(@) be the space of all functions u: R! x @ — R* continuously dif-
ferentiable in B! x @ up to the order L, w-periodic with respect to t, with the norm

|t]ar.00. = sup {]0%u(t, x), teR', xe @, &= (A, A1, 22, 23), |4 £ L},
where 0% = 9/° 0} 0l2 02 .
Let M denote the space of all (3 x 3) matrices
At x) = {4, )} =1, Ay = 456 Ci(Q),
with the norm 3
41 = 5 Aufr

For 6, > 0 put 3
U(d) = {ze R |z] = (T |24»)"* < do} »
i=1

and let Ck = CHU(S,)) be the space of all functions &: U(S,) — R' continuously
differentiable in U(d,) up to the order L with the norm

|€|s0,. = sup {|0*¢(2)|, z€ U(Sy), 4 = (Ay, Az, A3)>

A sL}.
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Now, we state without proof two lemmas. The first is an easy consequence of the
Nirenberg inequality (cf. [18]), the second is a slight modification of Moser’s lemma
the proof of which can be found e.g. in [16] or [25].

(2.2) Lemma (Nirenberg).
(i) There exist constants cprs 1 £ p £ 0, L= 0such that the inequality

[tlopxc < cpalulilpr [ulopo"

holds for every sufficiently smooth function u and 0 < K < L.
(ii) Let 0= J<K<I=<L,1=p, q=o0. Then there exist constants c,,
such that the inequality
Iulw,p,h’ Iulco,q,L—K é cp,q,L(lulw,p,J Ivlw.q,L—J’ + |u|m,p,l Ivlw,q,L~I)
holds for every sufficiently smooth functions u, v.

(2.3) Remark. The assertion of Lemma (2.2) remains valid if any of the norms
|*lo.p.2s ||oq.z i replaced bY |“|wo.ay [*|zes ||z, [*w oo of |+ ]l

(2.4) Lemma (Moser). For 6, > 0 and L = 0 there exists a constant cs, ;. such
that for every &€ Cj, and u e (C5(Q))%, |u|c 0@y < 0o we have &(u) e C5(Q) and
&), = céo,Lléléo.L(l + [ulec,e@)-

(2.5) Corollary. For & = (&, &,, &3) €(Cy,)? let D ¢(z) denote the Jacobi matrix
of & at the point z € U(8,), i.e. (D &(z));; = 0,,£(z), and let D* &(z)(r, s) denote
the second Gdteaux derivative of ¢ at the point z € U(S,) in the directions r,s,

3

3
ie. D*&(2)(r,s) = ), 0;,0,8(2) ryse. Put |||E]|L =Y |&lso,. Then for all ue
Jik=1 i=1
€ (CHQ)), [ulicoomr < dos v, we (WH(Q))* we have
(i) D) = ea,elié HIL+1(1 + [ulcaz@s)
(ii) IDZ &(u) (v, W)lW,L = Cao,LIHfH'Hz .

',1:(11212 13)(1 + [l curi@y®) (o]t @ Wlowas -
1A=L

Next, for M = 2N + 1, N = 5 we introduce the smoothening operators following
[71, [8], [17], [25]. Let P, u: (W2H(RQ))® — (WEH(R?))® be the continuous linear
prolongation operators, 1 £ p< o, 0<L<M + 1 (a simple construction
employing the partition of unity in a neighbourhood of 0Q is presented in [9] fol-
lowing the idea of Hestenes [6]; here, it is omitted). Further, let ¢, € C*(R") be
a function with its support in J—1, 1[ such that (cf. [25])

(26) () [Z0puls) ds = 1,
(i) 2,5 op(s)ds =0, k =1,2,..., M.

Let r > 1 be a fixed real number. For u € W* and n = 0 we put

(2.7) (Su)(t,x) = J.IR"* r*"op(r(t — s)) Zi:lq)M(r"(xj — ;) (Poptt) (s, y) dy ds.
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Using (2.2), (2.3), (2.6), (2.7) we can directly check that the following proposition
holds.

(2.8) Proposition. For each L= 0, K 2 0, ue WX we have S,ue W" and there

exist constants ¢y, such that

(i) |Syulwr < e r " P"uly k., L2 K, n 20,

(i) [ = S)ulwe < et fulyx, LSKSM+ 1,020,
where I is the identity mapping.

3. MAIN THEOREM

(3.1) Theorem. Let N > 5, 6, > O be given and put M = 2N + 1. Let ¢, p,0 €
€ (CY*2)3 be such that the matrices De, Du, Do are symmetric and that there

exist functions &gy, lo, 0 € C(’,‘z“ satisfying
(i) inf {eo(z), z€ U(do)} = otg > O,

inf {po(2), z€ U(S0)} = Bo > 0,

inf {oo(z), z€ U(d,)} = ¢, > 0,

(i1) sup {[[ D e(2) — e0(2) - 1], = € U(Go)} < min {2— : ‘E} ,

1A%

2
sup {[|D 4'z) — tol2) - Ilor 2 € U(B)} < min {’380 59}
sup {[|D a(z) — 0o(2) - 1o, z € U(dy)} < min {%, %, %, %‘},

where x, 9, $ are defined in (2.1) and I is the 3 x 3 identity matrix.

Then there exists 3y > 0 such that for each Q € W™, |Q|y s < Oy, there exists
at least one solution u € XN+ to the equation
(3-2) d/e(—ou + grad div u)) — rot (u(rot u)) +

+ o{—0u + graddivu) = Q.
(3.3) Remarks.

(i) By embedding theorems we have u € (C}(Q))® (even u € (C4(2))?), hence we
are concerned with a classical solution to (3.2).

(ii) The assertion of Theorem (3.1) implies the existence of a classical solution to
the system (1.1), (1.2), (1.3). Indeed, if we put B = rotu, E = —d,u + grad div u,
g = dive(—0du + grad div u), then using (1.2) as definitions of D, H, J we check
easily that the relations (1.1), (1.3) are satisfied.

Conversely, we can transform (1.1), (1.2), (1.3) into (3.2). By (1.1) (iv) and (1.3) (i)
(cf. [2]) there exists a vector function v, B = rot v, v A v = 0 on 6. From (1.1) (ii)
and (1.3) (ii) it follows that there exists a function ¥ such that v + E = —grad /,
Y = const. on dQ. We can choose const. = 0. The functions v, i are not uniquely
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determined. More precisely, the same relations are fulfilled with u = v + grad 117,
@ = — 8,f, where  is an arbitrary smooth function, = 0 on Q. Thus we
may require u, ¢ to be subject to the ‘“Lorentz — type’ condition ¢ + divu =0
which leads paradoxically to the heat equation for ¥: 0/ — A = ¢ + divo.
Thus, (1.1), (1.2), (1.3) imply (3.2) together with the boundary conditions u A v = 0,
divu = 0 on 09Q.

(iii) The assumptions of Theorem (3.1) contain the “isotropic case”, i.e., the case
when there exist functions &, fi, 6 € CY*%([—dg,55]) such that &(z) = &(|z]?). z,
u(z) = ﬁ(lzlz) .z, 0(z) = &(|z|2) .z, §0) > 0, 3(0) > 0, 6(0) > 0. By taking 6, > 0
sufficiently small we obtain the conditions (3.1) (i), (ii).

The proof of Theorem (3.1) is based on Nash’s iteration scheme following [7],
[8]. [25]. In fact, we evoke the situation of [10] wiht N, = N, =3, N, = 2,
Ny=N;=N_=1.

Put
(3.4) F(u) = 0(e(—0u + grad div u)) — rot (u(rot u)) +

+ o(—0u + grad div u)) .

The mapping F: D,(F) = (C5"*(Q))* > (C5(Q))*, where D,(F) =
= {ue(C53(Q))* n W*| |u|y.s < 6.}, is continuous for 0 < L< M + 1 and
twice Fréchet differentiable in D, (F) for 0 < L< M — 1. We put
(3.5) 5, = Sofc

where ¢ is the constant of the embedding W3 Q (C3(2))>.
Using (2.5) (ii) and the embedding theorems for Sobolev spaces we get for 0 <
SLEM— 1, uj,uy;,ve Wre, [o|y s < 8, the inequality

(3:6) [F"(0) (u, us)|wo < CLWZLH(l + [olw i es) [talw.aaes [Ualwayes -

(F', F” denote the first and the second Fréchet derivative of F, respectively).
The equation F(u) = Q is substituted by the infinite system:

(3.7) F'(0) u, =0,
(3-8)0 F’(So"o) Wo = ho,
(3'.8)n+1 F’(Sn+lu'1+l) Wptt = hu+1 B
where {S,}7°_, is the sequence of smoothening operators (2.7), ug, wo, wy, ... are
unknown functions and
(3'9) (1) Uypq = Ug + z Wi s
k=0

1
(ii) ho = Speq, eq = FI(O) U — F(”o) = J' (1-2 F”(Xuo) (“0’ uo) dy
0

*
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("1) hn+1 = Sn+len+1 + ( n+1 S)z € >
€t = fn+1 t Gn+1s
fn+1 = F/(u") W, — F(un+ 1) + F(u") =

= - jl (L= %) F'(u, + xw,) (War w,) d2
Guci = (F(S) = Flu) w, =
-j F'(uy — 21 = S) ) (I = S,) ty wy) d7 -

0

I

4. LINEAR EQUATIONS

In this section we deal with the linear equation
(4.1) 0A(t, x) (0u — grad div u)) + rot (B(t, x) rot u) +
+ S(t, x) (0u — grad divu) = h,
where A, B, S € MM+1 are given matrices satisfying
(4.2) Assumptions. There exist functions o, f, { € Cif "'(Q) such that:
info =2ay>0,
inff = >0,
inf{ =z >0,

~ . fog g
|4, < min {2, %21,
5 Bo Bo
1B < min {fo. 01

IIA

IA

. . (o Lo Bo Go
110 = m‘“{: 2% 4’ 4;4}
Bo

0 < 70
I3l < (8M + 4)a’
: o Go
0 < 20
[3:A4]l0 < min {8M + 4’ 4%}’

zwsm_mm¥°“}

3 89
where A=A —al, B=B—pI, §=S—I, a=4bll, b= 4] + |B]: +
+ |S]o» 9o = 0, and a0, Bos Lo, %, 0, 9 are the constants from (2.1), (3.1).

(4.3) Theorem. Let the assumptions (4.2) be satisfied. Then for each he W™
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there exists a unique solution ue X™** to (4.1). Moreover, this solution satisfies
the inequality

(4.4) ulx,con < copl[Blwr + ([AlLer + [Bloso + [S]0) [hlw.o) s
0<L<M.

Before proving the theorem we need two lemmas.

(4.5) Lemma. Let (4.2) be satisfied. Then for every L, 0 < L< M — 1 and for
every H e Z" there exists a unique solution ® € Y-*2 to the equation
(4.6) 0,divAgrad ® + divSgrad ® = H
and this solution satisfies the inequality
47 1Plyees S c{|Hlzp + [Aleei [0@20 + [4]1 [0.8]2000 +

b Ao+ 1500) 91+ (1AL + 1510 20 r)

(4.8) Remark. Here, the expression “® is a solution to (4.6)” means that (4.6)
is satisfied a.e. in B! x Q.

Proof of Lemma (4.5). For 0 € [0, I] put
T,® = 0,div (04 + (1 — 0) ooI) grad & + div(0S + (1 — 0) {ol) grad @ .

The proof consists in verifying that T,: Y**2 - ZL is an isomorphism for every
0e[0,1] and 0 < L< M — 1. For 0 = 0 this follows from the well-known results
on the regularity of solutions to the Poisson equation, cf. [12]. For 6 > 0 we derive
the inequality

(4.9) HTo®|zL S |To®,n + Oci{|A] 141 |0P2,0 +
+ Al 0@z 1 + ([A]e2 + [S]esr) [ @]z +
b (AL + IS @), 2, 0SS M1,
For this purpose we choose some A = (4, 45, 43), [4| = L. Then we have

(410)  FTy® = (0o + (1 — 0) ag) 0* 0, AD + (6 + (1 — 0) o) 0> AD +

3
+60Y {4,000, 0,9 +85,;0"0,,0,, P+

ij=1

+ (0,4;) 0 0., 0, P} + OR, P,

ot = ok otz ol

X3 2

~and

. L+1
(41 Rz = chz_l(”A][K |0:8|2,L-k+2 + Al k1 |Plzi-ks2 +

+ Sk [®lz.-x+2) -

o Ak
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By the assumption (4.2) we have

3
| ¥ 54000, 0,,@l20 < % |A®,., ,

i,j=1

:Mu

A4,;0%0,0,,0.,9|70 < %0 |0, Ad|,, ,

1

<
1]

Mo

13

<
I

(0,45) 0* 0, 0., ®|7.0 < %0. |AD|, .
1

By using the interpolation inequalities (2.2), (2,3) we obtain (4.9) directly from
(4.10).

It follows from (22), (23) that for an arbitrarily small & > 0 we can find a constant
¢; such that

(4.12) |¢|Y,L+1 = 5]¢|E,L+z + cél(blY,l

IA

e8| To®|, + ¢5|Ply.y -

We see immediately that

.H Tyo. @ dxdt 2 c|of2,, ,
wJd R

J J T,® .0, dxdt 2 c|0, @]}, — |02, ,
wJ R

so that we have
(4.13) [Py, < ¢|T®|2,,

where the constant ¢ is independent of 0. Combining the inequalities (4.9),(4.12),
(4.13) we obtain

(4-14) l(p]Y,L+2 = "L,A,slTe‘plz,L , Oe [0: 1] , 0SEL=M-—-1.

For proving that T,: Y**? — Z" is an isomorphism we proceed by induction (the
analogous method was used by Ladyzhenskaya and Uraltseva [12] for proving
the regularity of general elliptic equations). Let us assume this assertion to be proved
for some 0 € [0, 1]. Then

Ty 5P = T,®@ + 8(0, div (A4 — opl) grad @ + div (S — {ol) grad @) .
The equation Ty, ;@ = H is equivalent to
(4.15) @ = 5T, (0, div (A — aol) grad & + div (S — (o) grad @) + T, 'H .

If we choose & > 0 sufficiently small, the solvability of the equation (4.15) is
ensured e.g. by the Banach contraction principle. From (4.14) it follows that Tp. ;
is an isomorphism Y**? - ZE 0 S L< M — 1.

The relation (4.14) implies that the norm || T, | zz_yc+» is independent of 0. Hence,
the choice of 4 can be made independently of 0, thus after a finite number of steps
we verify that, in particular, T;: Y**? — Z* is an isomorphism. The inequality
(4.7) follows directly from (4.9) for 6 = 1. The lemma is proved. [
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(4.16) Lemma. Let (4.2) be satisfied. For every L, 0 = L < ) _. 1, and for
every f € I¥(w, S*) there exists a unique solution w e I, S*2) 5 the equation

(4.17) rot (Brotw) = f

and this solution satisfies the inequality

(4.18) 2o < erllflzon + [Bluss Wl + [Blla |,y y).
Proof. The proof is analogous to that of Lemma (4.5). For 0 ¢ [0, 1] we put
Afw) = rot (0B + (1 — 0) o) rot w.

By [2] and Theorem 7.1 of [11] the mapping A,: [¥w, Sf”) - (w, S*) is an

isomorphism for 0 £ L £ M — 1. The inequality corresponding to (4.9) takes the
form

(4.19) 3 Aow)|zo. = | AWl + Oerl[Blos [wloa,s + (Bl wlzs )

and the proof follows as above. []

Proof of Theorem (4.3). In X™** we choose an orthogonal basis in the fol-

lowing way: let {g,}i-, and {s;}i>; be the bases of G5’ *' and SM*!, respectively,

where we put g, = grad ¢,, Ap, = 404, fg @}dx =1, k=1,2,.... The basis
of X** 1 is formed by all functions sin (2jnt/w) gi(x), cos (2jnt/w) g,(x), sin (2jnt/w) .
- s(x), cos (2jmtfw) si(x), j = 0,1,2,..., k=1,2,.... We arrange these functions
into a sequence {w,};=°_, in order to obtain, for any integer k,

(4.20) (i) owi(t, x) = ¢, w_i(t, X),
(i1) grad div w(t, x) = d, wi(t, x).

We use the standard Galerkin procedure. Put

(421) At x) =Y vewlt,x), m=1.

k=-m

The constant vector (v,);— _,, is required to satisfy

(4.22) j f (= (A(t, x) (0, wt — grad div ), damy(t, X)) +
+ (S(t, x) (0, wu — grad div ,u), wi(t, x)) + (B(t, x) rot ,u, rot w(t, x))} dx dt =
=J' J (h(t, x), wi(t, ) dx dt, k= —m, ..om,

which is a linear algebraic system of the type Ev = f, where E is the square matrix
{Ep} T —mo '

Ej = J. J {—(4(@w; — grad div w;), 0,w,) +
0J2
+ (S(6,w; — grad div w;), w;) + (B rotw;, rot w,)} dx dr.
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First, let us derive a priori estimates for ,u. We multiply the k-th equation in
(4.22) by v, and sum over k = —m, ..., m. We get

(423) J‘ J\ {_—(A(at mi — grad le mu)a al‘ mu) - ((% atS) mis mu) +
©J 2

+ div S ,u div ,u + (Brot ,u, rot,u)} dx df = J-

(0]

J (hy wu) dx dt.
P

Analogously, we multiply the k-th equation in (4.22) by a(c_,v_, — d,v) and
sum again over k = —m, ..., m, where a is defined in (4.2) and ¢,, d, are from (4.20).
Now, we get

(4.24) “ J‘ a{((S + 30,4) (0, yu — grad div ,u), 0, ,u — grad div ,u) —
voJ 2

— ((40,B) rot ,u, rot ,u)} dx dt = J- J a(h, 9, ,;u — grad div ,,u) dx dt .
0Jd R
We check immediately that

J‘ j (A(0, yu — grad div ,u), 0, ,u) dx drj <
0d 2

(4.25)

=

14

o (|0 m“lfy,o + Igrad div mu\%V,O)

and

(4.26) j J div S ,u div ,u dx dt = Co-[ j (div ,u)? dx dt —
»J R wd 2

—SWMLLﬁmWP+@nMMMM—iMAMJL&MMWWMMM

where 9 is from (2.1) (iii). .
After adding (4.23) to (4.24) and employing (4.25), (4.26) we obtain (notice that
9=1)

MN)G%—aﬁ%—%@ﬂ%~Hﬂgﬂawmﬁ+wwmwwmﬁ+
+ {ﬁo - ”5“0 - g ]]@,B"o - 9(”(§“0 +i§0”5n51|0)} Irot mu‘fv,o +
(6o = 3(ISlo + 3, 10510} [div o =

gJ J |h| (a]d, wtt — grad div nu| + |,u]) dx dt .
wJ 2

The inequality (4.27) and the assumptions (4.2) yield
(4.28) |n.u|,\,] = Cblhlw,o :
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We obtain estimates of higher order in a similar way. By induction over L we
derive the relations

(4.29) (|or*" uli,o + |grad div oy ,uly o + |rot oF ,uly o)'/2 <
< copl|blwe + (| Allcss + |Bllss + [|S]) |

Indeed, for L = 0, (4.29) is nothing else than (4.28). Let us assume now that
(4.29) is proved for all K = 0, 1, ..., L — 1. We multiply the k-th equation in (4.22)

wo), 0SLEM.

successively by cpc®,v, and by a(cgc™}'v_, — dicic®v,) and we sum over k =
= —m, ..., m. We find, respectively,
(4.30) f j (= (H(A(3, e — grad div ), 51 ) +

wdQ

+ (0F(S(0, wu — grad div ,u)), 0 nu) + (07(B rot ,u), rot oy ,u)} dx dt =
=f J (6%h, o7 ,u) dx dt
wJ Q2
and

(4.31) f J a{(6F* 1 (A(9, yu — grad div ,u)), o' ,u — grad div o ,u) +
J 2

+(04(S(0, yu — grad div ,u)), 0¥ ,u — grad div o ,u) —
— (0F* (B rot ,u), rot 6F ,u)} dx dt =

= j J a(@Fh, 0" u — grad div oy ,u) dx dt.
wJ 2
After an elementary computation, (4.30) and (4.31) yield, respectively,
(4.32) ‘[ [— (A(QF*" u — grad div 0F ,u), 07" Lu) + (Brot df ,u, rot of ,u) +
odJ Q2

L
+3 <§> {—(aXA(3F~ %+ u — grad div o7 =% ,u), ortt u) +
K=1

+ (0¥B rot 0¥ K, rot oF ,u)} +

L
+ 3 L (9KS(oF~X+1 u — grad div oy ™% ,u), of mu)] dxdt =
k=0 \K
=J J (6Fh, 0% ,u) dx dt
wJ 2
and
(4.33) J- J‘ a [((S + (L+3)a,A) (6" u — grad div o ,u),
wJd 2

oL u — grad div 0} ,u) — (L + ) (9,B rot o ,u, rot d; ,u) +
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+
ng K

+ (9KA(@F~X+2 wu — grad div orTkrt u), oF ! u — grad div oy ,u)} +

L+1
<L + 1> {(\af‘B(rot or X+t Lu), rot oF ,u) +

L
+Y (;) (af‘s(af’K” o — grad divor ™% u), of "' u — grad div of ,,,u)} dx dt =
K=1

= j .[ a(o%h, att i — grad div or ,u) dx dt.
0Jd Q2

We add again (4,32) to (4.33) and by using (4.25), (4.2), (2.1) (iii) we obtain

Iaf“ m“lfv,o + |grad div oF muify,o + |rot of mu|fv,0 <
L
= cL,b[KZI{("A”KH + HS”K) (laf_KH rn"‘W,O + [grad divo;* mu[W,O) .

oY ulw.o + |erad div oy o) +

+ ”B”x+1 ]rot oK mulW,O ]rot ok muIW,O} +

+ |orhlw.o (|6f‘)rl mit|w,0 + |grad div o7 ,ulw.o + |rot oF ,ulw o)]
and hence

(|oF*" uly.o + |erad div oy ,ulj o + |rot of m”m,ﬁ)“ <
L

< cuaflblwe + X (141 + [Blier + 8]0 (07" walivo +
=1

+ }grad div ok ¥ mulfy,o + Irot oK mulvlv,o)”2 .

We transform the right hand side of the last inequality by using the induction
assumption and the interpolation inequalities (2.2), (2.3) and we obtain just (4.29).

The a priori estimates (4.29) imply that the matrix E on the left hand side of (4.22)
is nonsingular, hence the solutions ,u of (4.22) exist for all m = 1, 2, ... and satisfy
(4.29). Especially, the sequences {oF*" ,u}e_,, {grad div o ,u}pm_y, {rot of ,ulm-,,
0 < L< M, are I?-bounded and therefore there exists u € X! such that 0~ 'u,
rot 8Fu, grad divéFu are square integrable for 0 < L < M, and a subsequence
{,u} of {,u} such that 8F*"' ,u — 0F*'u, grad div 8F ,u — grad div dFu, rot 8 ,u —
—~rotdfu as n — o, 0 £ L < M, where the symbol — denotes the weak con-
vergence in W° = [} w, I*(Q)). Passing to the weak limit in (4.22) we conclude
that for arbitrary v € X! the function u satisfies the relation

(4.34) f j {(3(A(0u — grad div u)) + S0,u — grad div u), v) +
wJd 2 .

[

+ (B rotu, rotv)} dx dr = J

J‘ (h,v)dx dz.
Q

Now, put
f=h—0(4(0u — grad div u)) — S(0u — grad divu).
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Then f e I*(w, S°). By Lemma (4.16) we find the unique w e I*(w, S?) such that
rot Brot w = f. From (4.34) it follows that w = u, hence u € X? and the equation
(4.1) is satisfied a.e. in R' x Q. Moreover,

(4.35) lulx.2 < eo{|hlw. + (4] + [Ba]2 + [[S]1) [rlw.o} »
so that (4.4) holds for L < 1.

Thus, it remains to prove the regularity of u and the estimates (4.4) for L > 2
For this purpose we proceed again by induction with respect to L using Lemmas
(4.5) and (4.16). Let us assume
(4.36) (i) ue X" for some L = 2 and (4.4) holds for 0 < K < L — 1;

(ii) for all K" < K, 1 < K < L — 1 we have

aL‘K

|grad div 0!

< coptlhlwe + ([A]Le s + [Blluss + [S]L) [Blw .o} -

From (4.35) we see that (4.36) (i) is satisfied for L = 2 and (4.29) yields (4.36) (ii)
forevery L,0 < L< M and K = 1.
Further, put

L-K-1 /] _ g _
(4.37) H= Y < ; 1)(—0,d1VCJA grad divor %777y —

— divoyS grad div ol = /" u) + div A or ¥ u +

6L—K’

U|zs ko + |rot o <

u|z3,1c' =

+L§ (L ; K> divalAdor 7y + oF XN divS ou — oF K divh.
Then He ZX™1! and

Hlo-r 5 el (A1 forad div oy +

# (Al + 513 lerad v alyar-2) + 3 Al o g+

+,i<||An, B I P T

= cLb nA”[+1 + ”S”I) ,“lx L-1+1 Tt IaL KHulz k + lthL 1}

The mequahty

L—K+1
Iat ﬂL K+1

ulzs k < cxf|grad div o Ulzs k-1 + rot OF K Ml o))

and the assumption (4.36) (ii) imply
(438)  [Hlzk-1 = coollhlwe + ([A]Ler + 1B]esr + [S]2) [hlw,o +

5 (Allss + 151 s +

+ ([All-re s + [Bl-rsr + [S]e=0) [lw.o}] =
< copflhlwn + (|4 ees + [Blovs + [S]) |Alw.o} -
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Now, let @ € YX+1 be the solution of (4.6) with the right hand side (4.37). Putting
v =grad oy ¥ "' in (4.34), where ¢ € W2E"X"1(Q) is arbitrarily chosen, we see
that @ = le oF~K-1y, and consequently

|¢]z,K = CL[“L\',L s
|‘3rd’lz,1< = CL|”|X,L s
|d>lz,1 =< cLlulX,L—Ka
[6,<I>|Z’1 = CL|u|X,L—K+I .
On the other hand, @ satisfies (4.7) for L = K — 1, hence (4.36) yields
(4.39) 9y rey < callblwn + ([A]s + [Blues + [S]2) [hlwo +
Al ity ok + (JAle-ker + 1Bleoges + [S[i-i) [hlw.o} +
+ (I4]z + 1810 {lrlw.e-1 + (4] + [Ble + [S]e-1) [hlw.o} +
+ ([ 4] csr + 8]0 { {|hlw.o-x-1 +
+ 4]k + [Blo-x + [S]e-k-1) [hilw o}] -
In (4 38) we use tacitly (2.2), (2.3). Similarly, from (4.39) we obtain
(4.40) |lgrad div 0F *u|,s « + |grad div 6 7 ul, ¢ <
< el + ([A]esr + [Bleer + [S10) [Blwo} -
Analogously, put

_ sk, e (L-K N L-K—-J\ _
(4.41) f=0"% <Y ; rot (0; B rot 0; u)
1

J=
— 07 M Y(A(0u — grad div u)) — 3F7X(S(0,u — grad div u)) .
By the induction assumption (4.36) we have f € I*(w, S*') and

L
(4.42) |flzﬂ,x—1 < of Z(“AHI + ”S”l—l) ,u|X~L—I+2 +
+ |grad div oF~ K+1ul23 k-1 + 075 Ul koy + |hlwop-1 +
5 1Bl s} =

= cualltlw + (14]r + [Bloes + IS]0) [0} -

By Lemma (4.16) we find the solution we I}, SK*') to the equation (4.17).
We check again that w = 8-~¥u. From (4.18) it follows. that

(4.43) |rot 8£~ Kulzs ke < cop{||Bllx rot aF Fulzs o +
+ Bl [rot 0 ulps ks + |l + (|Aleas + [Blees + [S]2) Blw.o} <
= eupllhlwr + (|A)eer + |Bloes + ISI2) [lw.o} -
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By the same argument, putting
L-K-1 _ _
(444) f=o0r"%"1h - le (L Ij 1) rot (/B rot OL=K=J=1y) _

— 07 X(A(0,u — grad divu)) — oF X1 (S(0u — grad div u))

and using (4.40) we see that the solution w to the equation rot (Brotw) = fis an
element of I*(w, SY*?) and equals to 8 ~*~'u. Applying (4.18) we get

(4.45)  Jrot 07 Mula e < ewnlhlwe + (4lees + [Blosy + [S]2) [Blwo} -

Hence, by the induction argument using (4.29), (4.36), (4.40), (4.43), (4.45) we
conclude that u € X™*! and (4.4) holds. Thus, Theorem (4.3) is proved. []

5. PROOF OF THEOREM (3.1)

As a consequence of Theorem (4.3) we have

(5.1) Proposition. Let the assumptions of Theorem (3.1) be satisfied and let F
be the mapping (3.4). Then there exists 6_ > O such that for every he W™ and

ve WM*S, |o|ys < 8_, there exists a unique solution ue X™*' to the equation
(5.2) F(v)u=h

and this solution satisfies

(53) ulx,ee1 < er{|hlw.. + [olw,+6 |Blwo}, OSL=M.

Proof. The equation (5.2) is of the type (4.1), where
A = De(—0,0 + grad div ),
B = Dylrotv),
S = Do(—0d,v + grad divv).
Remember that these expressions are defined for
(54 IUIW,S <0y,
where J, is introduced in (3.5). We have
localo = [llelllz [olw.s »
o2l s b
gollﬁx.-sllo < [llellz [olws -
By (2.5) (i) we have
b= Al + Bl + ISlo = ez + [Julla + [Jof}) (1 * obr.o)-

Further, put o = go( —0,0 + grad div v), B = p(rot v), { = go(— 0w + grad div o).
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Taking
(5.5) [UIW,6 <d_
we obtain b independent of v and for §_ > 0 sufficiently small we see that the as-
sumptions (4.2) are verified. Moreover, (2.5) (i) yields
lAlLey + [Bless + 8] =
< ullleflesz + ez + lollle) (0 + Jolw.ivo) 5

hence the inequality (5.3) is a consequence of (4.4) and the proof of (5.1) follows
easily. [

Finally, we use (5.1) for the construction of the approximating sequence {u,, n =
=0, 1,...} by solving consecutively the equations (3.7), (3.8),, n = 0,1, ....
The solution u, € XM** of (3.7) satisfies

(5-6) I”olx,M+1 = CMIQIW.M .
The sufficient conditions for the solvability of (3.8),,
(5.7) [Souto|w.s < 64,

I”olw,s <é,,
lSouolw,s <d_,
are fulfilled provided Q is taken small enough, say |Q|, » < &;. On the other hand,
by (2.8) (i) and (3.6) we have
1
(5-8) IhOIW,L = |Soeolw.1. =< CLJ' IF"(Z“o) (o, uo)lw,o dx =
0

= cLluOIEVA(l + l”olw,e)'
The unique solution wy e X™** of (3.8), satisfies
(5.9 |Wolx.L+1 < CL(|ho|w,L + I“olw,o ‘h0|W,0) , 0SEL=EM.

For the present, let 7 > 0 be arbitrarily chosen. From (5.6), (5.8), (5.9) it follows
that we can find §,, 0 < 6, < 7, such that if

(5.10) |Qlw.ar < 6,
then
(5.11), lWolx,LH =n, 0SL=M.
Put
(5.12) y=N+1%. '
Our next goal is to choose # in (5.11), in such a way that the inequalities
(5-11); |Wk|X,L+1 < prcrebk

hold for arbitrary integers k = 0 and 0 < L £ M. The constant » > 1 is introduced
in (2.7).
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We proceed by induction over k. We adopt the following assumption.

5.13) For some 1 > 0 and n > O there exists a sequence {w,}j-, < X"*' of
solutions of {(3.8),}i-, satisfying (5.11),, k =0,1,...,n, 0 < L< M.

Assuming (5.13) we derive (for technical details, see [10], cf. also [8], [25])
(5.14) Estimates.

(i) ‘un+1|X,L+1 e, 0 S LEN,
(i) Jturilxpes S cpprCrFDOEEDIN < L < M,
(iii) |unlxLe1 S e, 0 S LN,

<
(iv) \”an,L+1 SepprTvHDe+ D N ] < M,

IIA A

() [T = Sus1) thhsslwopey S e ™7 DOFD 0 < L < M,
(Vi) |'T = S) tlwpey S eprT7+00D 0 < L< M,
(Vi) [furtlwe S ep?rC2FLE90+0 0 < [ < M — 5,

(viii) \gn+1|W,L SePrCBFLESHeED 0 < L< M - S,

. 2 -
(IX) len+1\W,L SeprCWHLAmD 0 < L< M -5,
n

(X |XealwrSen’, 0 L<M-=35,
k=0
(xi) | T edwo—s < epprnt 013,
k=0
(xi) I(I -S,)Y ele,L S e BFLEOMED g < [, < M — 5,
k=0

n
(Xlll) I(I _ S"+1)kzoele,L < CL112r(—2‘/+L+5)(n+1)’ 0SXLZM-— 5,
(XiV) \hn+1\W,L = CL"ZV(_27+L+SK"+1)’ 0= L.

By (5.1) and (3.9), sufficient conditions for the solvability of (3.8),., are

(5.15) Sus1ttns1ws < 0-

.”nlw,s <d,,
lun+1‘W,5 < 5+ s
|Suttlw,s < 05 .

Since N 2 5, we see by (2.8), (5.14) (i) and (iii) that (5.15) is satisfied provided 5

is taken sufficiently small. Following (5.1), (5.3) the solution w,, ; € X™** to (3.8),+,
fulfils the inequality

lwn+11x,L+1 =< CL(lhn+1lW,L + lSn+ 1un+1iW,L+6 lhn+ 1‘w,0) =

= CL(lhn-i-llW,L + TL("HJ‘“nHlW,e lhu+1‘W,O) , 0OSEL=M.
Using (5.14) (i), (xiv) we obtain the estimate

2 (—2y+L+ Syt
(5.16) lwn+1\X,L+1 < enrT¥ Yt 1)
ePrTYThth g < L < M.
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The constants ¢, in (5.16) are independent of n. Hence the choice
(5.17) n < (max{c,, 0 < L< M})™!
yields (5.11),4 4.

By induction over n we conclude that we can construct the infinite sequence
{w,, n=0,1,...} = XM*! of solutions to {(3.8),, n =0, 1,...} provided J, = Jy
is taken sufficiently small (so that (5.7), (5.11),, (5.15), (5.17) are fulfilled) and
each w, satisfies the corresponding inequality (5.11),. Since the series

o0 o0
Z ,wnl){,h+1 =1 Z ron3
n=0 n=0

is convergent, we see that {u,};>, is a fundamental sequence in XV*! and hence

u, - u in X"*1. By the embedding theorem, u, — u in (C}(Q))>. By continuity,
F(u,) > F(u) in (C2(2))*. On the other hand, (3.7), (3.8), (3.9) yield

(5.18) Flu,s ) =Q —e,eq — (I — S,,)kzoek .

Using (5.14) (ix), (xii) and (5.18) we obtain

|F(“n+1) - Q!(c,,,ﬂ(ﬁ))3 = ch(un+l) - Qlw,3 =

W.S) g c”zr—s(n+1) ,

< clewsi|ws + T - Sn)k;fk

hence F(u) = Q, and the proof of Theorem (3.1) is complete.
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