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INTRODUCTION

In this paper we consider the nonlinear differential system with deviating ar-
guments:

(S) yi(t) =p)yiat), i=12,..,n-2,
a-1(8) = Pacs() =2 (0 i(1)))
1) —pu(1) 1 (1i(1))) -

The following conditions are always assumed to be fulfilled:

Il

(1) (a) pi:[0, 0) > [0, 00), i=1,2,...,n, are continuous functions and not
identically zero on any subinterval of [a, ©) < [0, 0); [* p(f) dt = oo,
i=12,..,n—1

(b) h;: [0, ©) = R, i = 1, n, are continuous and lim h{f) = oo;
t—
() fuR—>R,i=n—1,n, f{(u).u >0 fos u #+ 0, f(u) are nondecreasing
in u.

Definition 1. System (S) is called (a,_ , o) superlinear if there are positive numbers
o,—1, &, such that o, .o, , > 1 and

f'(l:)l > \fif—)l for |u| > 1], u.v>0, i=n—1n.
fule ol
Denote by W the set of all solutions y(t) = (y,(t), ..., y,(t)) of the system (S)

which exist on some ray [T, o) < [0, o) and satisfy sup { ¥ |yi(t)|: ¢ = T} > 0
for T=T,. i=1

Definition 2. A solution y € Wis called oscillatory if each of its components has
arbitrarily large zeros. A solution y e W is called nonoscillatory (weakly nonoscil-
latory) if each of its components (at least one component, respectively) is eventually
of a constant sign.
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By Lemma 1 [4] it follows that every solution of (S) is either oscillatory or non-
oscilatory.

Definition 3. We shall say that the system (S) has the property A, if every solution
y € W is oscillatory for n even, while for n odd it is iether oscillatory or y; (i =
=12,..., n) tend monotonically to zero as t — oo.

The oscillation properties of two-dimensional nonlinear differential systems with
deviating arguments were studied for example by Kitamura and Kusano [2, 3],
Sevelo and Varech [5, 6, 7]. The oscillation results for n-dimensional systems were
obtained by Foltynska and Werbowski, and by the present author [4].

In this paper we extend some results established in [7] to the system (S).

OSCILLATION THEOREMS

In what follows we shall use the following notations:
Bf(t) = min {h(), t}, i=1,n,
y{t) =sup{s = 0; t > hi(s)} for t=0, i=1,n,
3(1) = max {7,(1), 7.(0)} -

Let iye{1,2,...,n}, ke{l,2,..,n - 1}, t,s € [a, ). We define: I, = 1,

t
(2 L(t, 85 pis --s Piy) = J Pi(X) L a(x, 85 Py s - Py ) dx

s

It is not difficult to verify that the following identities hold:
(3) Ik(ta S Piys ++ s Pi,) = (— 1)k Ik(sa L Digs - os Pik) =
= (——1)"J’ pi(¥) L= i(x, 5 Piyy - Pi) dx, ke {1,2,..,n — 1}.
t
In the sequel we shall need the following lemmas [4; Lemma 2, Lemma 4].

Lemma 1. Let (1a)—(Ic) hold. Let y = (yy,...,v,)€ W be a nonoscillatory
solution of (S) on the interval [a, ). Then there exist an integer € {1,2, ..., n},
n = [(mod2), and a t, 2 a such that

4 yi®) yi(f) >0 on [ty, ) for i=1,2,..,1,
©) (=1y*iy () yy(t) >0 on [to,0) for i=1+1,..,n.

Lemma 2. Let (1a)—(1c) hold. Let y = (yy, ..., y,) € W be a solution on the in-
terval [a, o). Then the following relations hold:

© 50 = T (1Y ecf 16 6 s o ) +

s
+ (_ 1)m+1j Vitm+ l(x) pi+m(x) I,"(X, t; PH,,,_I, ey p,) dx

t
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for 0sm=n—-i-2, 12i<n-2, t,sela, 0);

n—i—1

(7) yi(s) = Z, (_1)j yi+j(t) Ij(t, S3Pitj—15--s Pi) +
j=o

(=1 J Pa () fo N Lot (% 5 P s )

s

fer i=1,2,...,n—1, tsela, ).
The proofs of Lemma 1 and Lemma 2 are found in the paper [4].

Lemma 3. Let (la)—(1c) hold. Let y = (yy,...,y,)€ W be a nonoscillatory
solution of (S) on the interval [a, ) with y,(f) > 0 for t = a.

Then there exist an integer 1€ {1.2,...,n}, | = n(mod 2), and a t, = a such
that (4), (5) hold,

() e j " Hoo (5. 16) Pae1($) foe () s

fo
for 1e{2,3,..,n}, i=12..,1-1
where

(9) Hi,1—1(5’ to) = J. Il—i~1(t: X5 Pis +e e Pl—z) P1—1(x) X

to

XIn—l—l(s’x;pn—z,'--rpl)dx’ 16{29 3,-“’" - 1}9 Sg tO’
(10) Hi,n—l(s’ tO) = In—-i— l(ta S5 Pis +-s Pn—z) ’ l =n, tO
Proof. Weputm = [ — i — 1, s = t, in (6) and use (3), (4). Then we have

I—i—1

(11) yi(t) = ZO Vis () It o3 Pis s Pivj-1) +
=

IIA

N

IIA

t.

t
+ J‘ )’t/\u) P1—1(”) Il—-i—l(t’ U; Diy oos Pz—z) du =

to

14
gj vi) proy(u) I - y(t, us piy ooy Pr=a)du for i=1,2,..,1 =1, t=t,.

fo

On the other hand, we put i = [, s = u in (7) and using (5) for t = u we then have

(12) yi(u) =";§)l(-—1)j Vir () 11, us p,»+‘,_1, o p)+
(1 j Det() S s Lo 1o (5 5 Doy oo ) i 2

gJ‘ pn—l(x)fn—l(.))n(hn(x))) I"—-I— l(x: u; Pn—25--+5 pl) dx .
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Substituting (12) into (11), we get

v{t) = Jl (pr—s(u) I i—s(t, w5 Piy s Pi=s) jl Pu1(%) fum1(ya(hal(x))) %
° x I, o(X, 5 Ppesy ...y py) dx) du =
= [ i1 5010 P 01,0 5.
t0
Let I = n. Put t = t5, s = t in (7) and use (3) and (4). We get

y:(t);'r Pu-1(X) Lmi=1(t, X5 P>+ o5 Puz2) fuo1(¥a(h(x))) dx for ¢ = t,.

to

The proof of the lemma is complete.

Let us denote

b.(1) = Jf‘” Pi(s) ds,

t
']k,n(t’ tO) = In- 1(t5 t(); DPrs -+ o> pn—l) s
t
Jia(t, o) =f Hyi-4(s, 10) pu—ys(s)ds for I=1,2,..,n—1.
to

Theorem 1. Let there exist a continuous nondecreasing function g on [a, oo)
such that

(13) m) < o). o(h() < 1.

Let
(14) i) f(u.v) 2 K f,(u) f,(v) (0 < K = const.);
ii) J-a 4 0 T dx <o
o Slfu-a(®) T Jom Slfua(x))
for every constant o > 0;
(15) Jw p0) [l J14(hy(2), T))dt = 00 for 1=2,3,..,n.
»T)

If nis odd, suppose in addition that for every constant L > 0,
(16) J Paes(D) Iy o(0) Foe oL o) dt = 0.
T

Then the system (S) has the property A.

Proof. Let y = (yy, ..., ¥,) € W be a nonoscillatory solution of (S). Without loss
of generality we may suppose that y,(f) > 0, y,(hy(f)) > O for t = t; = a. Then the
n-th equation of (S) implies that y/(¢) < 0 for ¢ > ¢, and it is not identically zero
on any subinterval of [t,, ). Because y,(f) > 0, y,(t) <0 for t > t,, then by
Lemma 3, for t > t, 2 t, (4), (5) and (8) hold.
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I Let 1€{2,3,...,n}. For i = 1, t, = t,, using the monotonicity of Yu fu-1s
(13) and (3), we obtain from (8) that

(1) e j CHyi (5 12) Paea(5) o () 5 2

12

Z fu- 1(}’"(9([))) Jl,l(t’ t), t2t,.
Putting (17) into the n-th equation of (S) and then using (13), (14i), we get
(18) yut) = =pu1) fuy1(hs(2))) =
= Pu() Sl Fu= 1 (7l 9(1(1)))) T 1, i(h1(2), 12)) =
=P ) Sl a1 (9a(0) T (a(8), 12)) <
=K pu(t) Sul Fam A D) ST 1,11 (0), 12)

fort=t3=9(t)),1=2,3,..,n
Dividing (18) by f,(f,-1(.(?))) and then integrating from t5 to u(=t;), we get

IAIA A

i

u

(19) j}ﬁm dt £ —KJ Pu(t) ful T 1.1(y(2), 15)) dt .

From (19) for u — oo we obtain

K j ") (0, ) 1 = fﬁfd—(’» =

13

13
which contradicts (15).
Let [ =1 (n is odd). Then y,(f) | k as t1 oo, where k = 0. We suppose that
k> 0.If weputi = 1,s = t, in(7) and use (5), we have

t
(20) yl(tZ) gf pn—-l(x)fn—l yn(hn(x)) I,,._2(X, tZ; Pn—25--2» Pl) dx for ¢ g t2 .

t2
Integrating the n-th equation of (S) from  to co and using y(t) 2 k for t > t,,
we get

y(f) 2 f,,(k)j p(s)ds = Lo,(t), where L=f,(k)+0.
t
Then in view of the monotonicity of y,, f,-; and (13), the inequaity (20) yields

yi(tz) 2 ft Pa—1(%) L= 5(X, 25 Pu—25 -5 P1)fn—1(L¢n{hn(x))) dx,

which contradicts (16) for ¢ — co.
Therefore lim y,(t) = 0 fori = 1,2, ..., n.

t— 0
Remark. Theorem 1 extends the results of the author [4; Theorem 3], Kitamura
and Kusano [3; Theorem 6], Sevelo and Varech [7; Theorem 1].
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Theorem 2. Suppose that (14), (16) hold and

(21) h(ty<t, h(t)yzt on [a, o).
If
(22) F P fAds 6 T dt = 0 for 1=2,3,..n,

then the system (S) has the property A.

Proof. Let y = (yy,...,y,)€ W be a nonoscillatory solution of (S) such that
yi(hy(t)) > 0 for t = t;. Proceeding in the same way as in the proof of Theorem 1
we get (4), (5), (7) and (8) for t = 1, > t,.

I Let le{2,3,...,n}. For i = 1, t, = t,, using (21) and the monotonicity of
V> fu- 1, We obtain from (8) that

JH(I) = fnvx(yn(t)) Jot,t), t21,.

If we put the last inequality into the n-th equation, we get
(23) nt) £ =p() £ 0:(1) =
= =K p0) [l Fu= 1) ful(J14(t, 15)) for 1=2,3,..,n, t=t,.

Dividing (23) by f,(f,-1(».(t))) and then integrating from t, to T — co we get
a contradiction to (22).

II. If I = 1 (n is odd) we proceed in the same way as in the case II of the proof
of Theorem 1.

Theorem 3. Let the system (S) be (a,-1, @,) superlinear. Let

(24) g4(t) £ min {hy(1), 1}, hft)<t on [a,0),
where g, is an increasing function on [a, o) and lim g,(f) = co.
t—
Let
(29) J pli)dt < oo,
(26) f J2,(91(1), @) p1(91)(1)) 91(1) fu-1(K ¢,(1)) dt = o0

for any constant K >0, [=3,4,..,n.

In addition we suppose that a) for n even,

(27)

j p(94(2)) gll(t)J' Pu—1(%) fum (K (X)) I, 3(X, g4(); Py=2s ---» P2) dx dt = 0
t

a

forany K > 0;
b) for n odd, (16) holds.
Then the system (S) has the property A.
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Proof. Let y = (y,, ..., y,) € W be a nonoscillatory solution of (S). Proceeding
in the same way as in the proof of Theorem 1, we get (4), (5), (7) and (8). We suppose
that y,(t) > 0, y,(h,(t)) > 0 for t = T,. Integrating the n-th equation of (S) from
(2T, to 7, we get

5e) = wli) = — j pals) Fulya(a(s) ds

and then for T — oo we have
(28) O J Pals) Fun(ha(s))) ds, 12 Ty
t

I. Let I = 2. Then y, is nondecreasing and therefore y,(h,(f)) = ¢ forsome ¢ > 0
and t 2 T, = T,. Using the fact that the system (S) is superlinear, we obtain

(9) i) 2 (0 (0) = e ) () for 12 Ty 2 T,

Combining (29) with (28) we get

(30) )’n(t) 2 C_u"fn(c) ) Pn(s) (YI(hl(S)))an ds, t=2T;.

t

Because y,(hy(t)) = ¢ for t = T, (28) implies

(1) i) 2 7o) r pa(s) ds = M 9(gi(1), where M = £,(c).
g1(t)

In view of (30), (24) and the monotonicity of y, we have

(2) Has0) 2 1) 2 M [ 0s) (o) ds.

t

Using the superlinearity of f,_, and (31), we get

(33) fuesden(0) 2 S G

a) Let ] = 3. We put i = 2, Ty = 1, in (8) and using the monotonicity of f,_,, y,
and (24), we obtain

(34) yall) = j Hy (5, T5) Pacs() Faa((5)) 2

T3

Z fua(0(0) T2, Ts) (1=3,4,...n = 1),
and

(4) )z j Luos(t,5: Pas s Pa-2) Pae(5) Faca(0a(5) ds 2
2 fu-1((1) J24(t; T5) -
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Substituting (33) and (32) in (34), we get
,Vz(g1(t)) Z fu- 1(J’n(gl(t))) JZ,I(gl(t)’ T3) =

> SuaAMM SO \p e [ Meds) g >
2 ¢"(,))an-,<M Jl Puls) (v1(94(5))) d) T2/g:(1), Ts) 2

Z fu-1(M (1) c™*(yo(9:(1))* J2.//94(1), T5)
where a=oa0,  >1, [=3,4,...,n.
Multiplying the last inequality by p,(g,(¢)) (y,(9,(r))) * gi(r) and using the first
equation of (S), we get

(35) %g(—;‘lzt;’T(‘) > ¢ (M $:(8) J2.i(01(0), T5) pr(ga(1) 940

Integrating (35) from T, = y(T;) to 7, we obtain
GTC—;—I [y1(91(T3))]1 =z j Jz,z(g1(t)’ Ts) Pl(g1(t)) g;(t) Su- 1(M ¢n(t)) dt,

T4
which contradicts (26) as T — oo.
Let ] = 2. We put i = 2in (7) and use (5), obtaining

(36)  ya(9) gfpn_l(x)fn_l(y,,(hn(x))) I_3(X, t; py—zs ..., py)dx for =t

Using the superlinearity of f,_;, (24) and (30), we obtain

[ M)
o z[  p@E ) o

Ty s3(x,94(1); Pu—zs - p2)dx, 12 Ty
Multiplying the last inequality by p,(g,(f)) gi(r) and using the first equation
of (S), (32) and (24), we get

(7 ¥ilox(0) 91(9) 2 p(g:(1) 9500 J pae 1) Fa (M () e (ra(g (X))
5, gx(t); Pu-2 - P2)dx 2
= (32O 2rg:(1) 93(9) j Pas(3) fuo(M (%) -

dyos(x, 94(0); Pu-zs - P2)dx, 2 Ty

Let g4(t) 2 T; for t = T,. Multiplying (37) by ¢*(y4(g,(1)))* and then integrating
from T, to u, we get

LS 0@z [ (0610 [ 219109101 6409

. In—3(x5 gl(t): Prn=25 -+ Pz) dx) dt >
which contradicts (27) as u — oo, T —> oo.
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II. Let I = 1 (n is odd). Then we proceed in the same way as in the proof of
Theorem 1.
This completes the proof of the theorem.
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