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INTRODUCTION

The purpose of this paper is to develop an integration theory for the case of vector-
valued functions with respect to an operator-valued measure. The idea of this type
of integration has been introduced by several authors in [3], [5] and [11]. In all of
these papers, either the integrands or the integrals or both have their values in normed
spaces (particularly, Banach spaces in some cases). In this paper we consider the
normed space valued integrands and locally convex space valued integrals, as in [3].
However, our idea of integrability is more general than that of [3] and generalizes
[5] and [11] in a locally convex space setting.

In Section 1, we introduce the basic terminology. The concepts of total variation
and semi-variation concerning an operator-valued measure are also presented here.

The theory of integration is developed in Section 2. Our integrability is defined
by means of a linear functional approach in the sense of Pettis, as followed in [11]
and [12]. The extension of the well-known Lebesgue dominated convergence theorem
is also valid under an additional assumption.

In Section 3, the relationship between integrability with respect to a given measure
and that with respect to its total variation is investigated.
The last section is concerned with the generalization of some results of [12],[11],

[1], [6] and [2] on the representation of a weakly compact operator and the mapping
properties of its representing measure in our setting.

1. NOTATIONS AND PRELIMINARIES

Throughout this paper, unless otherwise stated, 7 is a d-ring of subsets of a non-
empty set T, that is, 7 is a collection of subsets of T closed under relative complement,
finite union and countable intersection. C(t) is the o-algebra of sets locally in r.
Let X be a normed linear space (n.ls.) and Y a locally convex Hausdorff linear
topological space (l.c.s.) generated by the family {g;},., of continuous semi-norms.
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The scalar field of X and Y may be either the real or the complex numbers and is
denoted by C. Let X’ and Y’ be the topological duals of X and Y, respectively, and
L'X, Y) the space of all continuous linear operators from X to Y, equipped with the
topology of bounded convergence. The family of semi-norms

u — [|ufy = Sup {g,(u(x)): ”x” =1

generates the topology of bounded convergence on L(X, Y) and under this topology
L’X, Y) becomes a L.c.s. [14].

Definition 1.1. An operator-valued measure p:t — L/X,Y) is an additive set
function with

N

WU E) = Y uE)

o0
for all mutually disjoint sequences {E,} < t with |J E, € 7, the series being uncon-

n=1

ditionally convergent with respect to the topology of simple convergence.

Theorem 1.2. If p:t — L{X,Y) is an operator-valued measure, then for each
x€ X, the set function p.:t — Y, defined by p(E) = p(E) x is a vector measure
and conversely, if for each x € X, p(+) x is a vector measure, then p:t — L(X,Y)
is countably additive with respect to the topology of simple convergence in L(X, Y).

With the help of the above theorem, it can be easily proved that for each y' € Y’,
the set function y’u:7 — X’ defined by (y'n)(E)x = y'(u(E) x) for each Eet
is an X'-valued measure.

Definition 1.3. For each f € J, we define the f-variation of p, which is a non-
negative, not necessarily finite, countably additive set function on C(), as

vp(u, E) = Sup ZJ!#(E NE)s, EeC(r)

where the supremum is taken over all finite pairwise disjoint collections {E;} < .
For each y' e Y’, we write v{y’p, +), the variation of y'u, as

o' E) = Sup ¥ |'ulE )]

Definition 1.4. We define the f-semi-variation of u as

fp(E) = Supo(y'n, E), EeC(1),
y'Z4p

which is non-negative and not necessarily finite.
Note that fi,(E) < oo whenever v(y’u, E) < oo for each y’eY’ (cf. Lemma 1 of [6]).

199



2. INTEGRATION WITH RESPECT TO AN OPERATOR-VALUED MEASURE

In the remainder of this paper, p is a fixed L’X, Y)-valued measure defined on ©
with o(y'u, E)< oo for each Eet and y’ € Y'. Also the integrands are assumed to
be measurable.

Definition 2.1. If E = T, then y; will always denote its characteristic function
on T. By a t-simple function f on T with values in X, we mean a function of the form

S =.leiXE,» P
where x;€ X, E;etand E,nE; =Qfori=+j,i,j=1,2,...,n
Definition 2.2. A function f: T — X is said to be u-integrable if

(i) fis y'p-integrable (in the sense of [4]), and
(i) for each E € C(z), there is an element y, € Y such that

V' (ve) = J‘ f(t) y'u(dt) foreach y eY’.
E

If f is p-integrable, we denote y; by [, f(¢) u(d?). It follows from Definition 2.2
that every simple function defined as in 2.1 is p-integrable and the integral of such
a function is given by

f F(0) ity = Y WE A E) x;.
E i=1

Lemma 2.3. If f: T — X is y'p-integrable, then | f| is v(y'n, *)-integrable.

Proof. Since f is y'p-integrable in the sense of [4], there is a sequence {f,} of
simple functions which converges to f v(y’y, -)-a.e.. Then [f,| converges v(y'p, *)-
a.e. to | f|, which implies the result.

Lemma 2.4. If f: T — X is y'u-integrable, then

Lf(t) y'u(de)| < L 1£(1)] 3", di)

for each E e C(z).

Proof. If f is y'p-integrable then by Lemma 2.3, |f| is v(y’u, - )-integrable. So,
if {f,} is a defining sequence of simple functions for y’u-integrability of f, then | £,
is a defining sequence corresponding to the function |f| and

EOZE [ 1o an, pec)

which yields the required inequality.

Theorem 2.5. If f: T— X is a bounded u-integrable function, then for each
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peJ and Ee C(1),

ar([ 70 0) % e, where 1] = Sup O
Proof. The theorem follows from the above lemma.

Theorem 2.6. If f: T — X is u-integrable, then the set function defined by

ey = | 70 i)

is a measure on C(t).

Theorem 2.7. Let g: T— X be a p-integrable function with lim [ [lg(?)] -

n
.0(y'u, df) = 0 uniformly for y' < q, for each BeJ and E, 0. Let {f,} be
a sequence of u-integrable functions which converges pointwise to f on T and

I£D] = |g(t)|| for each n. Then f is p-integrable whenever Y is sequentially
complete.

In this case

f 1(6) () = Tim J 140) uldr),

uniformly for each E € C(v). -

Proof. By applying the dominated convergence theorem [4], we see that f is
y'p-integrable and

E

J(2) y'u(dr) = lirnnj 11 y'u(dr)

for each E e C(7).

For fixed ¢ > 0, let F, = {te T: |f(z) — f,(t)]| > ¢|g(?)|} and E, = U F,. Then
{E,} is a decreasing sequence of sets with E, ™ 0.

Now for each f e J,
4 (Lf,,(t) (an) - j S0 19 =

= Sup J =)0y + Sup j -0 ua)] +

Y'S4p

+ Sup

y'Z4p

+ Sup

Y S4p

j =0y

.[ EnEy (f = f) (1) y’u(dt)l <

= eSup _[ lo@)] o(y'n. i) + 2 Sup f a0 oly'm. de) +
E~E, EnE,

V' =4p y'=4ap

+ 2 Sup L~5 lg(®)]| v(y'n, dr) + 2ySup J‘ lg(0)] v(y'n, df)

y'S4p EnEn

for all n, m and E € C().
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So { [ f,(f) u(dr)} is Cauchy uniformly with respect to E € C(t). Since Y is sequen-
tially complete, there is an element y; in Y such that

y(ve) =y <limJ. fi(t) u(dt)) = j f(2) y'u(de).
n E E
Hence f is p-integrable and [, f(¢) p(d) = lim [ f,(£) p(d?).

Theorem 2.8. If Y is sequentially complete and fi,{*) is continuous at @ on C(t)
for each B € J, then every bounded measurable function f: T — X is p-integrable.
Proof. Since f is a bounded measurable function, there is a sequence {f,} of

simple functions such that {f,} converges pointwise to f on T and |f,||z < |f|+
forn=1,2,....

Let ¢ > 0 be fixed, F, = {te T: |f{t) — f,(1)

| > ¢} and E,=UF,. So for
k=n

each ¥’ e Y’ there exists a positive integer ng such that v{y'u, E,) < ¢ for all n = n,,.
Then (we write ||f||z = M)

J 17(2) = £()]| 00/ p, de) <
< L~E 17(t) = £ o(y'n, dt) +j 1£(6) = £u(O)] (s do) <

EnE,

< ey, E~E,)+ 2Moy'u, ENE,) <

AN

< e(w(y'n,E~E,) +2M) for n=n,.
So fis y'p-integrable and [ f(¢) y'u(dr) = lim [ £,() y'u(z) for each y' € Y'.
n

Since fiy(+) is continuous at ® on C(7), there is a positive integer N such that
A4(E,) < e for n 2 N and therefore

s < L ft) wdt) — Lfm(t) u(dt)) <

< e(f4(E ~ E,) + 2M) + &(24(E ~ E,;) + 2M)
for all n, m = N and E € C(7).
This inequality establishes that f is p-integrable.

Corollary 2.9. Let f: T— X be a p-integrable function such that lim [, | f(7)] .
.vo(y'n, dt) = 0 uniformly for y' < qz, E, 0. If Y is sequentially complete,
then ¢ . f is p-integrable for every bounded scalar measurable function ¢.

Proof. Without loss of generality we may suppose that |¢(z)| < 1 for each re T
Since ¢ is scalar measurable, we can choose a sequence of scalar t-simple functions
{4,} which converges to ¢ on T, for which |¢,(t)] < 1 forall e T.

For each n, let E, = {te T: | f(1)| < n}. If f, = fxg, then {f,} is a sequence of
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bounded integrable functions converging pointwise to f. So {@, . /,} is a sequence of
integrable functions which converges pointwise to ¢ . f.

Moreover,
I(a-£) O] = O] L] = 171 -

Hence by applying Theorem 2.7 we see that ¢ . f is u-integrable.

Theorem 2.10. Let Y be sequentially complete and let f: T — X be y'u-integrable
and such that lim [, | /()| o(y', dt) = O uniformly for each y' < q, and E, ™ 0.

Then the following statements are equivalent:

(i) f is p-integrable.

(ii) There is a sequence {f,} of bounded measurable functions which converges
pointwise to f and for which {[;f,(t) u(dt)} is Cauchy uniformly with respect
to E e C(1).

(ili) There is a sequence {f,} of simple functions which converges pointwise to f
and for which the integrals { [ f,(t) uldt)} form a Cauchy sequence uniformly
with respect to E e C(7).

(iv) There is a sequence {f,} of simple functions which converges pointwise
1o f and for which the mtegrals [ef,{)yu(dt), n = 1,2, ... are uniformly countably
additive on C(v).

Proof. (i) = (ii). If f is p-inregrable then the sequence {f,} considered in Corollary
2.9 is a sequence of bounded measurable functions which satisfies the conditions
given in Theorem 2.7 and (ii) follows.

It is easy to see that (ii) implies (iii).

(iif) = (iv). Let {f,} be a sequence of simple functions which converges pointwise
to f and for which { [ f,(f) u/df)} is Cauchy uniformly with respect to E e C(t). If
4(E) = [¢f,(t) u(df) then {1,} is a sequence of Y-valued measures for which lim 1,(E)

exists for each E e C(t) and which are p-continuous. So by the Vitali-Hahn-Saks
theorem [9], {/1 } is uniformly u-continuous.

Let E = UE,,EnE =0 for i +j If F; ~UE then {F;} is an increasing

i=1
sequence of sets with lim (E ~ F;) = 0. So a5(4, (E F;)) - 0 uniformly (over n)
J
as j — oc. This shows that g5'2,/E) — ZA,,(E,.)) — 0 as j — oc uniformly on C()
i=1
for n = 1,2,... and (iii) = (iv) is proved.

(iv) = (i). If 4, are uniformly countably additive then by Theorem 3.9 of [9],
A, are uniformly g-continuous.

Let E, be defined as in Theorem 2.8. For each ¢ > 0 and f € J,

( j £0) wdr) - [E (0189) =
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< Sup

y'§qﬁ.[ E~, 7 = 7o) oiym, @) + Sup L ] lr@l o(y'r.de) +

n

+ g qu £41) ,u(dt)) + Sup L~Em [£(2) = FulD)] oy, dt) +

y'=4p

+ Sup J - (£ v(y'u, de) + g, (LnEmfm(t) u(dt)> )

Y's4p )

which shows that { [ £,(¢) u(dz)} is Cauchy for each E e C(x) and since Y is sequentially
complete, f is p-integrable.

Remark. For (i) = (ii) and (ii) = (iii), the sequential completeness is superfluous.
The implication (iii) = (i) shows that if f is integrable in the sense of Debieve [3]
then it is also integrable in our sense. We give an example below to show that the
converse is not true. Also we have established a relationship between our integra-
bility and Dobrakov integrability [5]. This type of relationship has been studied
by Swartz [15]. He has shown that the class of all integrable functions in the sense
of [15] coincides with that of Dobrakov [5]. Our class of integrable functions forms
a subclass of [15]. This is due to the fact that Swartz assumed the integrability of f
with respect to y’p in the sense of [5], whereas we assume the integrability of f
with respect to y’p in the sense of [4], which is a weaker condition. However, in
[15], the domain of yu is a o-algebra whereas in our case this is a d-ring.

The following example enables us to get more integrable functions than Debieve.

Example. Let T be the set of all natural numbers, t the o-algebra of all subsets

of Tand X = R, the space of all real numbers, and Y = ¢,. Let the set function p

be defined on t with values in L‘X, Y) by u({k}) x = xe,, where xe R, ke T and

e, =1(0,0,...,0,1,0,...)€ ¢, and let p(E) =Y p({k}) for Eet. Then p is an
keE

operator-valued measure countably additive in the topology of simple convergence.

Let us define the function f: T — X by f(k) = 1/k and the functions f, by f,(k) =
= (1/k) xg,(k), where E, = {1,2,...,n}, for all ke T. Then {f,} is a sequence
of y'p-integrable functions converging pointwise to f. So by Theorem 3 of [4]
(p- 136), f is y'p-integrable and [y f(7) y'u(df) = lim [, f,(¢) y'u(de) for each E e .

Since lim (7 f,() p(df) exists, it is clear that f is p-integrable. But f is not p-integrable

in the sense of Debieve, since fi(+) is not continuous at 0, as A(E) = 1 for all Ee <
(cf. Proposition 6 [3]).

3. RELATION BETWEEN p-INTEGRABILITY AND vy(4, *)-INTEGRABILITY

Definition 3.1. A function f: T — X is said to be integrable with respect to a non-
negative measure v if there is a sequence of r-simple functions { f,,} converging
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to f v-a.e. such that

im [ 1100 = 0] e = 0
for each E e C(7).

Theorem 3.2. If f is vy(u, *)-integrable for each Pe J, then f is p-integrable
whenever Y is sequentially complete.

Moreover,
vqpmmagéwammm

for each E € C(t) (vy(+) denotes the total variation of the integral on the left hand
side).

Proof. We shall first show that f is y’u-integrable for each y’ e Y’. For each
y' €Y’ there exists M > 0 such that v.y'u, E) < Muy(u, E) for all E e C(x). So it is
clear that f is v{y’u, +)-integrable for each y’ € Y’ and therefore, there exists a Cauchy
sequence {f,} of vy’p, +)-integrable simple functions converging to f v(y'p, *)-a.c.
for which

i f 106) = £ule)] 003/, dr) = 0.

Thus f is )’p-integrable and [, f() y'u(dr) = lim [z f,(r) y'u(d?).

Since for each fe J and )’ < q, we have v(y'n, E) < vy{u, E), and since
lim [ [|£,(2) = fu(?)|| vp(pe, d) = 0, it is clear that { [ £,(f) u(d)} is Cauchy for each

E € C(v). Hence f is p-integrable.
If E) = [pf(¢) u(de) then y'A(E) = (g f(¢) y'n(dt) and
4,/ ME)) < J‘ [£(0)] vs(p, dt) foreach peJ.

So

i i=1

B S [ Yol ne ) = [ O] ol 0.

4. APPLICATION TO WEAKLY COMPACT OPERATORS

In this section we assume that T is a compact Hausdorff topological space and
C(#)is the smallest g-algebra containing %, where # denotes the §-ring of all compact
subsets of T. Let us recall that X is a normed linear space and Y is a locally convex
Hausdorff linear topological space generated by the family of semi-norms {q,,} el
Let X” and Y” denote the biduals of X and Y, respectively.
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Let C(T, X) be the space of all continuous functions from Tto X endowed with the
topology # of the usual supremum norm. We shall write C(T) in place of C(T, X)
when X = C.

Definition 4.1. A measure u: C(%) —» L(X, Y) is said to be regular if for each
¢ > 0 and E € C(%) there exists a compact set 4 and an open set B such that 4 <
< E < Band (B~ A) <cforall fel.

We recall that a linear operator is weakly compact if it maps bounded subsets
into weakly relatively compact subsets.

Theorem 4.2. Let a continuous linear operator U: C(T, X) — Y be weakly compact.
Then there is a unique measure p: C(%) - L(X, Y) such that
(i) uis X'-regular, that is, y'p is regular for each y' € Y’,
(ii) the set Q = { Y. w(E;) x;, I finite, E;e C(%) disjoint, x;€ X, |x,[ < 1} is
it

weakly relatively compact,

(iii) every bounded Borel function defined on T is p-integrable,

(iv) Uf = [ f(1) u(dt) for fe C(T, X),

and

(v) Uy = y'u for y'eY'.

Conversely, if p is an L(X, Y)-valued measure which satisfies (i), (ii) and (iii),
then (iv) defines a weakly compact operator which satisfies (v).

Proof. Since the dual of C(T, X) is isometrically isomorphic to rcab v(C(%), X'),
the space of all regular X’-valued measures of finite variations on C(%), the equation

g(m) = j g/t midr)
T

defines an element of C(T, X)" for each bounded Borel function g.
Now, if U: T, X) - Y is weakly compact then U”, the second adjoint of U,
maps C(T, X)" into Y. Let us define

W(E) x = U"(xyg)" foreach EeC(%).

It is clear that u(E): X — Y is linear for each E e C(#). Also for each y'eY’,

U'y’ = p, is a measure in rcab v(C(%), X'). If y’ € Y' and x € X then
V' WE)x = y'(U"(xx)") = (U'Y) (xx)" = u,(E)x foreach EeC(%).
Thus y'u € rcab v(C(4), X') for each y' e Y.

For each E€ C(#) and fe J, q,/u(E) x) < fy(E) | x| shows that u(E): X —» Y
is continuous. It is also clear that p is countably additive and U’y" = p,. = y'p,
which implies that p is X’'-regular.

Let V= {f: fe C(T, X) and ||f||z < 1}. Then Vis a #-bounded subset of C(T, X)

and V° is a neighbourhood of zero in C(T, X)' with respect to the strong topology.
Let G = {( Y x;zg,)": 1 finite, E;n E; =0, i * j, E;e C(#), |x;]| < 1}. We shall
iel
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show that G = V°° Let (Y x,%:)" € G. For each f' e VO, let f' <> m where m e
iel
e rcab v(C(#), X'). Then we have |(Y xz:) (f)| < 1. So (Y xixz) € V°® and
iel iel
consequently, G = ¥°°. Hence G is equicontinuous (Prop. 6, [10], p. 200 and there-
fore by (2a) of Theorem 9.3.1 of [8], Q is weakly relatively compact.
k

Let g = ) X;xg, be any X-valued simple function defined on T. Then U"g” =
i=1

= [rg(r)u(dr). Thus y(U"f") = [ f(¢) y'u(dr) holds for every bounded Borel
function f and for each y’ € Y’ and therefore it is p-integrable.

Since U” is the extension of U, Uf = U"f = [ f(¢) u(d¢) for all fe C(T, X).

As concerns the uniqueness of y, suppose that g, is another L(X, Y)-valued measure
such that [7f(¢) u, (d¢) = Uf for all fe C(T, X). Then for each y' € Y’ we have

J f(@) y'u(dt) = [ 1) V', (d1)

for all fe C\T, X) and consequently, y'u = y'u;. Hence u = p; since Yis a Lcs..
Conversely, if u satisfies (i), (ii) and (iii), then U: C(T, X) — Y defined by (iv) is
a continuous linear operator, since for each € J,

a,'Uf) = g, (ij(t) u’,dt)> < |/l 24(T).

Also U'y" = y'u for each y’ € Y’, since p is X'-regular.

To prove that U is weakly compact, let V be the closed convex balanced hull of Q.
Then V° is a neighbourhood of zero in Y’ with respect to the Mackey topology
F(Y,Y). If W= {feC(T,X):|f|r = 1}, then W° is a neighbourhood of zero
in C(T, X’) with respect to the ¢-topology, where % is the collection of all bounded
subsets of C(T, X).

We shall show that U’ is continuous with respect to the 7(Y’, Y)-topology and
the @-topology. Let y' € V°. Then [X)', Y. W(E;) x;> < 1 for all Y u(E;) x;€ Q.
iel iel

Therefore, for each fe W,

|<U,y”f>l = I<yl7 Uf>] =

=1

j £(6) v ()

which shows that U’y’ e W°. So U’'(V°) = W° and consequently, U’ is continuous
with respect to the 7 (Y, Y)-topology and the %-topology. Hence by Theorem 9.3.1
of [8], U is weakly compact.

Theorem 4.3. Let U: C(T, X) —» Y be a continuous linear operator with pu its
representing measure. If U is weakly compact then ,u(E):X — Yis weakly compact
for each E e C(%).

Conversely, if X' and X" have the Radon-Nikodym property, ﬁ,,(-) is continuous
at O and p(E): X —» Y is a weakly compact operator for each E e C(.@), then U
is a weakly compact operator whenever Y is quasi-complete.
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Proof. For the “necessary” part, we recall that u(E)x = U"(xyz)", where y
denotes the characteristic function of E. To complete the proof it is enough to show
that for each E e C(%), the set Py = {u(E) x: ||x|| < 1} is weakly relatively compact
in Y.

If V = {m: m e rcab v(C(#), X'), |m| (T) < 1} then V is a neighbourhood of zero
in rcab v(C(#), X’), where |m|(+) denotes the total variation of m. Let G, =
= {(xx)": |x]| £ 1, xe X}, Ee C(#). Then G is a set of continuous linear
functionals defined on rcab v(C(%), X").

Now, for E e C(#) and x € X with |x| < 1 we have

[K(xxg)"s mY| = |m(E)x| £1 whenever meV.

This shows that G, = V° and consequently, G is equicontinuous. Hence by
Theorem 9.3.1 of [8], {U"(xxz)": | x| < 1} is weakly relatively compact, and there-
fore Py is weakly relatively compact.

Conversely, suppose that X’ and X” have the Radon-Nikodym property and
u(E): X - Yis a weakly compact operator for each E € C(%). Here U: C(T, X) —» Y
is defined by Uf = [ f(¢) u(dt) for all f € C(T, X). Since C(T, X)' = rcab v(C(%), X')
we have U’y’ < pu,. for each )’ e Y’, where p, ercabv(C(#),X’). Let M be any
equicontinuous subset of Y’. By Prop. 6 of [ 10], p. 200 there exists a neighbourhood V
of zero in Y such that M < V°. Let us consider the set K = {U’y": y" € V'°}. Since
U'(M) = U’ (V°), it is enough to show that K is weakly relatively compact.

Now K is bounded since Sup |u,|(T) < co. Since fi,(+) is continuous at ¢ for

y'evo

each fe J, Lemma 3.1 and Prop. 3.1 of [2] imply that {|u,|: y" € V°} is uniformly
countably additive. Also, since u(E): X — Yis weakly compact, {u(E) y': y' e V°} =
= {u,(E): y' € V°} is weakly relatively compact in X’. So by Prop. 3.1 of [2], K is
weakly relatively compact in ca(C(#), X'). Thus, by Theorem 9.3.2 of [8], U is
weakly compact.

Remark. This theorem generalizes Theorem 4.1 of [2] when Yis a L.css..
The authors would like to thank the reviewer for his comments and helpful sug-
gestions on this paper.
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