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INTEGRATION OF VECTOR-VALUED FUNCTIONS WITH RESPECT 
TO AN OPERATOR-VALUED MEASURE 

S. K. ROY and N. D. CHAKRABORTY, Burdwan 

(Received April 18, 1984) 

INTRODUCTION 

The purpose of this paper is to develop an integration theory for the case of vector-
valued functions with respect to an operator-valued measure. The idea of this type 
of integration has been introduced by several authors in [3], [5] and [M]. In all of 
these papers, either the integrands or the integrals or both have their values in normed 
spaces (particularly, Banach spaces in some cases). In this paper we consider the 
normed space valued integrands and locally convex space valued integrals, as in [3]. 
However, our idea of integrabihty is more general than that of [3] and generahzes 
[5] and [11] in a locally convex space setting. 

In Section 1, we introduce the basic terminology. The concepts of total variation 
and semi-variation concerning an operator-valued measure are also presented here. 

The theory of integration is developed in Section 2. Our integrabihty is defined 
by means of a linear functional approach in the sense of Pettis, as followed in [11] 
and [12]. The extension of the well-known Lebesgue dominated convergence theorem 
is also vahd under an additional assumption. 

In Section 3, the relationship between integrabihty with respect to a given measure 
and that with respect to its total variation is investigated. 

The last section is concerned with the generahzation of some results of [12],[11], 
[1], [6] and [2] on the representation of a weakly compact operator and the mapping 
properties of its representing measure in our setting. 

1. NOTATIONS AND PRELIMINARIES 

Throughout this paper, unless otherwise stated, т is a ^-ring of subsets of a non­
empty set T, that is, т is a collection of subsets of Tclosed under relative complement, 
finite union and countable intersection. С(т) is the (x-algebra of sets locally in т. 
Let X be a normed Hnear space (n.l.s.) and Y a locally convex Hausdorff linear 
topological space (l.c.s.) generated by the family {qß}ßej of continuous semi-norms. 
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The scalar field of X and Y may be either the real or the complex numbers and is 
denoted by С Let X' and Y' be the topological duals of X and Y, respectively, and 
LX, Y) the space of all continuous hnear operators from X to Y, equipped with the 
topology of bounded convergence. The family of semi-norms 

и -^ ||w|j^ = Sup {qf,{u{x)): \x\ S 1} 

generates the topology of bounded convergence on L[X, Y) and under this topology 
L{X, Y) becomes a Les. [14]. 

Definition 1.1. An operator-valued measure ^:x-^ L[X, Y) is an additive set 
function with 00 00 

OO 

for all mutually disjoint sequences {£,,} c: т with \j E^ex, the series being uncon-

ditionally convergent with respect to the topology of simple convergence. 

Theorem 1.2. If fi: т -^ L[X, Y) is an operator-valued measure, then for each 
xeX, the set function /i^: т -^ У, defined by ixj<ß) = ii{É)x is a vector measure 
and conversely, if for each x eX, fi(') x is a vector measure, then jn:x -^ L[X, Y) 
is countably additive with respect to the topology of simple convergence in L(X, Y). 

With the help of the above theorem, it can be easily proved that for each y' e Y\ 
the set function у'ц: т -> X' defined by (у'ц) (E) x = j ' (M^) ^) ^^^ ^^^^ £ e т 
is an X'-valued measure. 

Definition 1.3. For each ß e J, we define the ß-variation of /i, which is a non-
negative, not necessarily finite, countably additive set function on С(т), as 

Vß{fi, E) = Sup X \W n E,)\\ß , E E C(T) 

where the supremum is taken over all finite pairwise disjoint collections { £ j a т. 
For each y' e Y', we write v[y'[i, •), the variation of y'ii, as 

< j > , E ) = S u p f | | / / i ( E n £ , ) | | . 

i 1 = 1 

Definition 1.4. We define the ß-semi-variation of ILL as 

fiß{E) = Sup v{/fi, E), ЕЕ C(T) , 
which is non-negative and not necessarily finite. 

Note that ßß{E) < oo whenever v{y'ii, É) < со for each y'EY' (cf. Lemma 1 of [6]). 
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2. INTEGRATION WITH RESPECT TO AN OPERATOR-VALUED MEASURE 

In the remainder of this paper, /i is a fixed L[X, y)-valued measure defined on т 
with v[y'ix, E)< CO for each BET and y' e Y'. Also the integrands are assumed to 
be measurable. 

Definition 2.1. If £ с Г, then XE will always denote its characteristic function 
on T. By a t-simple function/ on T with values in X, we mean a function of the form 

n 

i=l 

where x^eX, EIET and E^ n Ej = 0 for i ф j , i, 7 = 1,2,..., n. 

Definition 2.2. A function/: Г-> X is said to be jx-integrahle if 
(i) / i s y'//-integrable (in the sense of [4]), and 

(ii) for each E e С(т), there is an element j ; ^ e 7 such that 

УЬЕ) = [ f{t) y'li{àt) for each y'eY', 

I f / i s /i-integrable, we denote y^ by j£/(^)/^(d^). It follows from Definition 2.2 
that every simple function defined as in 2.1 is /i-integrable and the integral of such 
a function is given by 

I f{t)li{ét)=^Y^li[EnE)x, 

Lemma 2.3. / / / : T-^ X is у'ц-ШедгаЫе, then | |/ | | is v(^y'fi, •)4пХедгаЫе. 
Proof. S ince / i s j'/^-integrable in the sense of [4], there is a sequence {/„} of 

simple functions which converges to f v[y'fi, •)-a.e.. Then ||/„|| converges v[y'in, •)-
a.e. to | |/ | | , which imphes the result. 

Lemma 2.4. / / / : T-^ X is y'ju-integrable, then 

\l fit)y'ti{dt)\^ f \\f{t)\\viy'^,dt) 
\J E I JE 

for each Ее С(т). 
Proof. I f / i s y'fi-'mtQgrablQ then by Lemma 2.3, | |/ | | is v[y'jii, •)-integrable. So, 

if {/„} is a defining sequence of simple functions for j'/i-integrabiUty of/, then ||/,|| 
is a defining sequence corresponding to the function | |/ | | and 

I f /„(0 y'ß{dt)\ й f WmW v{y'fi, dt), Ее С(т) 
IJE \ JE 

which yields the required inequality. 

Theorem 2.5. / / / : T-^X is a bounded fi-integrable function, then for each 
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ß e J and E e С(т), 

q,( j* fyt) ^i[dt)\ й l|/||r ßß{E) , ^here \\f\\r = Sup ||/(/)|| . 

Proof. The theorem follows from the above lemma. 

Theorem 2.6. / / / : T-^ X is ji-integrable, then the set function defined by 

m f{t)n[àt) 

is a measure on С(т). 

Theorem 2.7. Let g\ T-^ X be a fi-integrable function with hm Ĵ ^ 110̂ (̂ )11. 
n 

. v[y'ii, dt) = 0 uniformly for y' ^ qp for each ß e J and E„ ^ 0. Let {/„} be 
a sequence of }i-integrable functions which converges pointwise to f on T and 
\\fn{t)\\ ^ 11б̂(011 /̂ *̂ ^^^^ -̂ ^^^^ / ^^ fi-integrable whenever Y is sequentially 
complete. 

In this case 
[ f{t)fi{dt) = lim[ fjj)ß{dt), 

JE « J E 

uniformly for each E e С(т). 
Proof. By applying the dominated convergence theorem [4], we see that / is 

ĵ 'jU-integrable and 

{ f{t)/fi{dt) = lim \ fit) Уii{dt) 
JE " JE 

for each E e С(т). ^ 
For fixed s > 0, let F„ = {tET: \\f{t)-f^{t)\\ > 8\\g{t)\\} and £,. = U F,, Then 

{£„} is a decreasing sequence of sets with E„\ 0. ^~" 
Now for each ß e J, 

qß(^{fM{^t)-^J^{t)^{dt)^u 

й Sup + Sup 
y'a4ß 

+ Sup 
y'^4ß 

f {f-f„){t)y'n{dt) 
J ЕпЕп 

{f-f,n){t)y'^^{dti 

{ {f-f„)it)y'Kàt) 
J Е'^Еп 

+ Sup If ( / - / . ) ( 0 / K d O 

g e Sup I \\g{t)\\ v{/fi, dt) + 2 Sup Г \\g{t)\\ v{yii, dt) • 
y'U4ß jE^En y'^'lß jEnEn 

{t)\\viy'ß,dt) + 2Sup f \\g{t)\\v{yii,dt) 
y'^^ßjEnE^ 

< 

+ ß Sup I 11̂  

for all n, m and E e С(т). 
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So {1Е/П{^) K^^)] ^^ Cauchy uniformly with respect to £ G C(T). Since У is sequen­
tially complete, there is an element y^ in Y such that 

УХУЕ) = у' Aim Г f„{t) Kdt)\ = f f{t) y'ix{dt). 

Hence / i s ^a-integrable and [Е/{^) ß{^^) = ^^^^ JE/^CO K ^ O -
n 

Theorem 2.8. / / Y is sequentially complete and fip{') is continuous at 0 on С(т) 
for each ß e J, then every bounded measurable function f: T-^ X is ix-integrable. 

Proof. Since / is a bounded measurable function, there is a sequence {/„} of 
simple functions such that {/„} converges pointwise to / on T and l|/„||r Û | | /l |r 
for « = 1,2,.. . . 

Let £ > 0 be fixed, F„ = {teT: \f{t) - / „ ( 0 | | > e} and £„ = U F,. So for 
k = n 

each j / 6 Y' there exists a positive integer «o such that v[y'^x, £„) < г for all n ^ HQ. 
Then (we write Ц/Ц .̂ = M) 

НЛО -Д0| |< / /^ '^0^ 

11/(0 " т\\ <>">. ^0 + f 1/(0 - /«(Oil (//̂ ^ ^0 ̂  
й £<};>, £ - - £ „ ) + 2М<>^>, £ n £„) ^ 

^ Ê(f(j'/z, Е ^ Е„) + 2М) for W ^ /1о . 

So / is j'ju-integrable and 1^/(0 j ' K ^ O "= ̂ ™ J£/n(0 3 '̂KO ^^^ ̂ ^ch j ' G 7' . 
n 

Since /t^(*) is continuous at 0 on С(т), there is a positive integer iV such that 
fiß{E^ < г for и ^ iV and therefore 

< 

fJj)lÄ{dt))S fn{t)ßdt) 

й 8{ßß{E ^ £„) + 2M) + г(Дд(£ ^ £^) + 2M) 

for all n,m^N and £ G C(T). 

This inequaUty establishes that / is /z-integrable. 

Corollary 2.9. Let f: T-^ X be a ß-integrable function such that lim J^ l|/(Oll • 
n 

. t^(j'/i, d^) = 0 uniformly for y' ^ qp, £„ ̂  Ç). If Y is sequentially complete, 
then Ф .f is ji-integrable for every bounded scalar measurable function ф. 

Proof. Without loss of generality we may suppose that |ф(0| S. 1 for each teT 
Since Ф is scalar measurable, we can choose a sequence of scalar т-simple functions 
{Ф,,} which converges to ф on T, for which |ф„(0| = ^ ̂ ^^ ̂ 11 teT. 

For each n, let E„ = {̂  G Г: ||/(^)|| ^ n}. If/„ = /x^^ then {/„} is a sequence of 

202 



bounded integrable functions converging pointwise t o / . So {ф„ ./„} is a sequence of 
integrable functions which converges pointwise to ф .f. 

Moreover, 

||(Ф„.Л)(01 = Ы0111Я01и|/(01-
Hence by applying Theorem 2.7 we see that ф .fis /i-integrable. 

Theorem 2.10. Let Y be sequentially complete and let f: T -^ X be y'f.i-integrahle 
and such that lim Ĵ ^ j|/(OII ^(j^V' ^0 ^ ^ uniformly for each y' ^ qß and E^ ^ 0. 

n 

Then the following statements are equivalent: 

(i) / is fi'integrable. 

(ii) There is a sequence {/„} of bounded measurable functions which converges 
pointwise to f and for which {^Efjj)/Â[dt)} is Cauchy uniformly with respect 
to Ее C(T). 

(iii) There is a sequence {/„} of simple functions which converges pointwise to f 
and for which the integrals {^Efn{^)K^^)} f^^^ ^ Cauchy sequence uniformly 
with respect to E e С(т). 

(iv) There is a sequence {/„} of simple functions which converges pointwise 
to f and for which the integrals JE/„(^) At(d?), n = 1, 2, ... are uniformly countably 
additive on С(т). 

Proof, (i) => (ii). I f / i s /i-inregrable then the sequence {/„} considered in Corollary 
2.9 is a sequence of bounded measurable functions which satisfies the conditions 
given in Theorem 2.7 and (ii) follows. 

It is easy to see that (ii) implies (iii). 
(iii) => (iv). Let {/„} be a sequence of simple functions which converges pointwise 

to / and for which {J^/^f^) li[dt)} is Cauchy uniformly with respect to E e С(т). If 
A„(£) == ^ßfJj) ß{^t) then {A„} is a sequence of У-valued measures for which lim Я„(Е) 

n 

exists for each E e С(т) and which are //-continuous. So by the Vitali-Hahn-Saks 
theorem [9], {Я„} is uniformly //-continuous. 

00 j 

Let £ = и Ei, Ei nEj = 0 for i Ф / If Fj = (J E^ then {Fj} is an increasing 
i = l i = l 

sequence of sets with lim {E ^ Fj) = 0. So qß{Xj^E ^ F^) -^ 0 uniformly (over n) 
J J 

as j -^ ОС. This shows that qßXjE) — Yj^n{^ii) -> 0 as j -^ oc uniformly on C{x) 
1 = 1 

for n = 1,2,. . . and (iii) => (iv) is proved. 
(iv) => (i). If /l„ are uniformly countably additive then by Theorem 3.9 of [9], 

Я„ are uniformly //-continuous. 
Let £„ be defined as in Theorem 2.8. For each s > 0 and ße J, 

qß([ fn{t)ßat)~^ \ f^{t)ß[dt)\^ 
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+ ^4 Щß{et)\ + Sup f 11/(0 -ащ<y'n.at) + 

+ Sup f 11/(011 .(//., dO + ^ /1 fm{t)fi{dt) 

which shows that {J^/^/) /n{dt)} is Cauchy for each E e С(т) and since 7is sequentially 
complete, / is //-integrable. 

R e m a r k . For (i) => (ii) and (ii) => (iii), the sequential completeness is superfluous. 
The imphcation (iii) => (i) shows that i f / is integrable in the sense of Debieve [3] 
then it is also integrable in our sense. We give an example below to show that the 
converse is not true. Also we have established a relationship between our integra­
bihty and Dobrakov integrabihty [5]. This type of relationship has been studied 
by Swartz [15]. He has shown that the class of all integrable functions in the sense 
of [15] coincides with that of Dobrakov [5]. Our class of integrable functions forms 
a subclass of [15]. This is due to the fact that Swartz assumed the integrabihty of/ 
with respect to у']и in the sense of [5], whereas we assume the integrabihty o f / 
with respect to y'jii in the sense of [4], which is a weaker condition. However, in 
[15], the domain of y'fi is a cr-algebra whereas in our case this is a ^-ring. 

The following example enables us to get more integrable functions than Debieve. 

E x a m p l e . Let Tbe the set of all natural numbers, т the cr-algebra of aU subsets 
of T and X = R, the space of all real numbers, and Y = CQ. Let the set function ji 
be defined on т with values in ÛX, Y) by l^{{k}) x = xej,, where xe R, ke T and 
ej^ = (0, 0, . . . , 0 , 1,0, . . . )eco , and let /г(£) = Z K I ^ } ) ^^^ Ее т. Then /л is an 

keE 

operator-valued measure countably additive in the topology of simple convergence. 
Let us define the function/: T-^ X by f{k) = Ijk and the functions/„ by f„{k) = 

"= i^jk) XE,i^)^ where E„ = {1, 2 , . . . , fi}, for all кеТ. Then {/„} is a sequence 
of 3;'/i-integrable functions converging pointwise to / . So by Theorem 3 of [4] 
(p. 136), / is 3;'/i-integrable and 1^/(0 y'fi{àt) = hm {^/„(O У'К^^) for each Eer. 

n 
Since lim 1т1п{^) К^О exists, it is clear t h a t / i s //-integrable. B u t / i s not /i-integrable 

n 

in the sense of Debieve, since ß{')is not continuous at 0, as ß[E) = 1 for all £ e т 
(cf. Proposition 6 [3]). 

3. RELATION BETWEEN //-INTEGRABIUTY AND Vß{ß, -j-INTEGRABILITY 

Definition 3.1. A function/: T-> Z is said to be integrable with respect to a non-
negative measure v if there is a sequence of т-simple functions {/„} converging 
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to/v-a.e. suchthat 

lim Г \\f„{t)-L{t)\\v{dt) = 0 
п,т J E 

for each E e С(т). 

Theorem 3.2. / / / /5 Vß[fi, ')-integrable for each ße J, then f is ji-integrable 

whenever Y is sequentially complete. 

Moreover, 

vJïf{t)n{àt),. E]^ wmw^^dt) 

for each Ее С(т) {Vß{') denotes the total variation of the integral on the left hand 
side). 

Proof. We shall first show that / is j'/z-integrable for each y' e Y\ For each 
y' E У there exists M > 0 such that v[y'fi, E) ^ MVß{j^, E) for all E e С(т). So it is 
clear t h a t / i s v[y'ß, •)-integrable for each y' e Y' and therefore, there exists a Cauchy 
sequence {/„} of vj'ii, •)-integrable simple functions converging to / v[y'[i, •)-a.e. 
for which 

lim I \fli)-fJ^i)\v{yiiAt)-^^. lim f \fli) ~ 
n,m J E 

Thus / is j/'/i-integrable and ^Е/{^) У'К^^) = îm 1Е/П(0 У'К^^)-
n 

Since for each ß e J and y' ^ gß we have v(y'\x, E) ^ Vß{ii, E), and since 
lim JE \\fn{t) - fm{t)\\ Vß{ji, dt) = О, it is clear that {^ЕШ КЩ is Cauchy for each 
n,m 
E e C(T). Hence / is ;U-integrable. 

If X{E) = | H / ( 0 n{dt) then y'X{E) = {^Д/) y'ß{dt) and 

q/Щ) й f 11/(0II f//̂ . d?) for each ßeJ. 

So 

1)ДА, E) g Sup X 
i i = l EnEi 

\\f(t)\\vß{fг,dt)й^Jf{t)\\vß{fг,dt). 

4. APPLICATION TO WEAKLY COMPACT OPERATORS 

In this section we assume that T is a compact Hausdorff topological space and 
C(^) is the smallest cr-algebra containing J^, where J^ denotes the (5-ring of all compact 
subsets of T. Let us recall that X is a normed linear space and У is a locally convex 
Hausdorff linear topological space generated by the family of semi-norms {qß}ßej. 
Let X" and Y" denote the biduals of X and F, respectively. 
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Let С{Т, X) be the space of all continuous functions from Tto X endowed with the 
topology c/ of the usual supremum norm. We shall write C{T) in place of С{Т, X) 
when X = C. 

Definition 4.1. A measure ft: C(J') -> L[X, Y) is said to be regular if for each 
e > 0 and E G C( J*) there exists a compact set Ä and an open set В such that Ä a 
cz E cz В and ßß{B ^ Ä) < s for all ßeJ. 

We recall that a linear operator is weakly compact if it maps bounded subsets 
into weakly relatively compact subsets. 

Theorem 4.2. Let a continuous linear operator U: C{T, X) -^ Y be weakly compact. 
Then there is a unique measure fi: C(J^) -> L[X, Y) such that 
(i) /I is X'-regular, that is, y'fi is regular for each y' e Y\ 

(ii) the set Q = { ̂ /г(£^) x,-, I finite, Е^еСу^) disjoint, x^-eX, ||х^|| ^ 1} is 
iel 

weakly relatively compact, 
(iii) every bounded Bor el function defined on Tis jn-integrable, 
(iv) Uf = Irf(t) Kdt) for fe C{T, X), 
and 
(v) U'y' = y'li for j / G r . 
Conversely, if pi is an L{X, Y)'Valued measure which satisfies (i), (ii) and (iii), 

then (iv) defines a weakly compact operator which satisfies (v). 
Proof. Since the dual of C{T,X) is isometrically isomorphic to rcab v(C(^), X'), 

the space of all regular Z'-valued measures of finite variations on C(J'), the equation 

g\m) = g[t)m{dt) 

defines an element of C[T, Z)" for each bounded Borel function g. 
Now, if U: C[T,X) -> У is weakly compact then U", the second adjoint of U, 

maps С{Т,ХУ' into Y. Let us define 

1л{Е) X = U'XXXEY for each E e C{^) . 

It is clear that fi(E):X -> Y is Hnear for each Ее C(J^). Also for each y' e Y\ 
Vy = \iy, is a measure in rcab v(C(J*), Z ') . If y' e Y' and xeX then 

y' ß{E) X = /{UXXXEY) = {U'/) {XXEY = liy{E) x for each E e Clß). 

Thus у'/л e rcab v(C(J^), X') for each / e Y'. 
For each E e C(J') and ßeJ, qp{fi{E) x) й ßß{E) \\x\\ shows that fi{E): X -^ Y 

is continuous. It is also clear that ß is countably additive and U'y' = ß^, = y'^^ 
which implies that /г is Z'-regular. 

Let V = {f-.fe C{T, X) and Ц/Ц^ S 1}. Then Fis a J^-bounded subset of C{T, X) 
and V^ is a neighbourhood of zero in C[T, X)' with respect to the strong topology. 
Let G = {{Т.^1ХЕУ-1 finite, EinEj = 0, i Ф j , Е^еС(т), ||x^|| й 1}. We shall 
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show that G с 1/°°. Let ( ^ Х,ХЕУ e G. For each / ' e F°, let / ' *-* m where m e 

e rcab v(C(^), X'). Then we have |( ̂  X.-̂ E,)" ( / ' ) | ^ 1 - So ( ^ Х^ЕУ e 1̂ °° and 
ie/ ie/ 

consequently, G с F^°. Hence G is equicontinuous (Prop. 6, [10], p. 200 and there­
fore by (2a) of Theorem 9.3.1 of [8], Q is weakly relatively compact. 

к 
Let g = Y. ^iXEi be any X-valued simple function defined on T. Then Vg" = 

= ^rg{t)ß{^f)- Thus y\UT) = ^Tf{t)/pL(dt) holds for every bounded Bore! 
function/and for each y' e Y' and therefore it is /i-integrable. 

Since V" is the extension of [/, Uf - V"f = \jf{t) ix{dt) for a l l / e С(Г, X). 
As concerns the uniqueness of/i, suppose that ix^ is another L(X, F)-valued measure 

such that IrAi) fi^ (dt) = Uf for all / e С(Г,Х). Then for each / e Г we have 

I f{t)Vfi(dt)= I /(/) v>i,(d^) 
J г JT 

for all / e C[T, X) and consequently, j^V = y'l^i- Hence fi = fii since 7 is a l.c.s.. 
Conversely, if fi satisfies (i), (ii) and (iii), then U: C{T, X) -> У defined by (iv) is 

a continuous linear operator, since for each ß e J, 

g/Uf) = qp ([ fit) jii^dt)] ^ WfWrßßiT) . 

Also U'y' = j//x for each y' E Y\ since ii is Z'-regular. 
To prove that U is weakly compact, let F be the closed convex balanced hull of Q. 

Then y^ is a neighbourhood of zero in Y' with respect to the Mackey topology 
, r ( r , 7). If Ж = {feC{T,X)\ | |/ |lr ^ 1}, then Ж^ is a neighbourhood of zero 
in C(T, Z') with respect to the ^-topology, where ^ is the collection of all bounded 
subsets of C(T,Z). 

We shall show that U' is continuous with respect to the ^(Y\ y)-topology and 
the ^-topology. Let y' e F°. Then \(/, Y K^O ^/> ^ 1 for all J! K^i) ^i ^ Q-

Therefore, for each / e W, 

|<^y,/>l = i</,^/>!= /(O/M^O < 1 

which shows that U'y' e W^. So U'(V^) a W^ and consequently, U' is continuous 
with respect to the e^( У, 7)-topology and the ^-topology. Hence by Theorem 9.3.1 
of [8], и is weakly compact. 

Theorem 4.3. Let U: C{T, X) -^ Y be a continuous linear operator with ß its 
representing measure. If U is weakly compact then ii{É)\X -> Y is weakly compact 
for each E e C(^). 

Conversely, if X' and X" have the Radon-Nikodym property, ßß{') is continuous 
at 0 and jLt{E): X -> Y is a weakly compact operator for each Ее C(J*), then U 
is a weakly compact operator whenever Y is quasi-complete. 
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Proof. For the "necessary" part, we recall that jj,(E) x = U"(XXE)'\ where XE 
denotes the characteristic function of E. To complete the proof it is enough to show 
that for each E e C(ß), the set P^ = {^{Щ x: ||x|| ^ 1} is weakly relatively compact 
in 7. 

If ]/ = |m: m e rcab v(C(J*), X'), \m\ (T) ^ 1} then F is a neighbourhood of zero 
in rcab v(C(J'), Z') , where |m| (•) denotes the total variation of m. Let G^ = 
= {{XXEY- ||X[| S 1J xeX}, E e C[^). Then GE is a set of continuous hnear 
functionals defined on rcab v{C(^), X'). 

Now, for Ee C(^) and XGX with ||x|| ^ I we have 

\{(ХХЕУ, ^y\ = \m(É)x\ S 1 whenever meV, 

This shows that GE <= F° and consequently, GE is equicontinuous. Hence by 
Theorem 9.3.1 of [8], {U'^XXEY- li-̂ i = ^} ^^ weakly relatively compact, and there­
fore PE is weakly relatively compact. 

Conversely, suppose that X' and X" have the Radon-Nikodym property and 
lii{E): X -> У is a weakly compact operator for each E e C(J^). Here U: C{Z X) -^ Y 
is defined by Uf = J r / ( 0 K^^) for a l l / G C{T, X). Since C{T, X)' ^ rcab v(C(J*), X') 
we have U'y' -^ jHy' for each y' e У, where jHy' e rcab v(C(J^), X'). Let M be any 
equicontinuous subset of У. By Prop. 6 of [10], p. 200 there exists a neighbourhood F 
of zero in У such that M с: F^. Let us consider the set К = {U'y': y' e F^}. Since 
U\M) a U' (F°), it is enough to show that К is weakly relatively compact. 

Now К is bounded since Sup \ßy\ (T) < oo. Since ßß[') is continuous at 0 for 
y'eF» 

each /? e J, Lemma 3.1 and Prop. 3.1 of [2] imply that {|A^ '̂|: y' G F ^ } is uniformly 
countably additive. Also, since ii{É): X -> У is weakly compact, {i^[Ey /: y' e V^] = 
= {lXy'{E): y' e V^} is weakly relatively compact in X'. So by Prop. 3.1 of [2], К is 
weakly relatively compact in ca(C(J'), X'). Thus, by Theorem 9.3.2 of [8], U is 
weakly compact. 

Remark . This theorem generahzes Theorem 4.1 of [2] when yis a l.c.s.. 
The authors would Hke to thank the reviewer for his comments and helpful sug­

gestions on this paper. 
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