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PRIMARY FACTORIZATION IN SEMIGROUPS 

E. W. JOHNSON, Iowa City 

(Received February 6, 1984) 

Throughout, S will denote a commutative, multiplicative semigroup with 0 and 1. 
Factorization theory, in one form or another, has been a topic of ongoing interest 

in algebra since the beginnings of the subject. In this paper, we consider the implica­
tions of factorizations, of various types, of ideals as products of primary ideals. 

By a prime ideal, we shall mean an ideal P (ф5) which has the property that if 
it contains the product of two elements then it must contain one of them. The set M 
of all nonunits of S is a prime ideal, in fact the unique maximal ideal of S. By a pri­
mary ideal, we shall mean an ideal Q (ф5) which has the property that if it contains 
the product xy of two elements and fails to contain x, then it must contain a power 
of y. Any power of the maximal ideal M is easily seen to be primary. The radical 
of an ideal / , denoted rad(/), is the set of elements having a power in / . It is easy to 
see that an ideal P is prime iff whenever P contains the product of two ideals, it must 
contain one of them. Similarly, an ideal Q is primary iff whenever Q contains the 
product AB of two ideals and fails to contain A, rad(ô) must contain B, The radical 
of a primary ideal is prime, and any ideal having radical M is primary, as is easily 
seen. If Q is a primary ideal and rad(g) = P, then we will say that Q is P-primary 
or that Q is primary with associated prime P. We shall say that a semigroup has 
a primary decomposition theory if every ideal has a representation as a finite inter­
section of primary ideals (i.e., a primary decomposition). If S is Noetherian (i.e., 
satisfies A.C.C. on ideals) then every ideal has a primary decomposition. Any primary 
decomposition can be refined to a normal decomposition (i.e., one which is as short 
as possible and in which distinct primary terms have distinct radicals). If S is 
Noetherian then every primary ideal contains a power of its associated prime. We 
shall say thsit S has a strong primary decomposition theory if S has a primary decom­
position theory and every primary contains a power of its radical. 

By an irreducible ideal, we shall mean a nonzero ideal which cannot be properly 
factored (i.e., A = ВС impUes В = S or С = S).If A and В are subsets of S then we 
shall use A : В to denote the set of all elements x such that xB a A. If A is an ideal 
of S, then Л : P is an ideal of S. If x is any element of S and A is an ideal of S, then 
A n (x) = (A: (x)) (x), as is easily seen. Hence a principal ideal is a factor of any 
ideal which it contains. By a principally reduced semigroup we shall mean a semi-
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group s in which no principal ideal (x) Ф 0 is a proper factor of itself. By a factor 
reduced semigroup we shall mean a semigroup in which no ideal Л Ф 0 is a proper 
factor of itself. 

N o t e 1. A semigroup S is principally reduced if, and only if, M(x) = (x) imphes 
X = 0. *S is factor reduced if, and only if, МЛ = Л imphes Ä = 0. 

We begin by considering what is easily the simplest possible setting for factoring 
as products of primaries, namely that in which every ideal is already primary. 
We note that semigroups in which every ideal is primary were considered by 
Satyananarayana [2], but under diiferent cancellative assumptions. 

Theorem 1. Let S be a principally reduced semigroup in which every ideal is 
primary. If P is a prime different from M, then P = 0. Conversely, if S is a semi­
group in which M is the only nonzero prime, then every ideal of S is primary. 

Proof. Assume P is a prime ideal different from M. Choose x in P. Then M(x) 
is primary. If x ф 0, then x ф M(x), so M с rad (M(x)) ci rad ((x)) c= P, a contra­
diction. Hence X = 0, and M is the only nonzero prime ideal of S. 

It was shown in [2] that the radical of an ideal is the intersection of the primes 
containing it. Hence, if M is the only nonzero prime ideal of -S, and if Л is any non-
prime ideal of S, then M = rad (A), and therefore A is primary. 

N o t e 2. If S satisfies a strong primary decomposition theory, then S is principally 
reduced if, and only if, f]M" = 0. If DM" = 0, then S is factor reduced. 

n n 

Proof. Assume S is principally reduced and y e ПМ". If Q is any term from a pri-
n 

тагу decomposition of M{y) and у ф Q, then M c= rad(ß) , so y e M" cz Q, for 
some n. Hence M[y) = y. Since S is principally reduced, it follows that j^ = 0, 
and hence that f ) ^ " = 0. Since {y) = (j) M implies [y) = (y) M" for all n, the con-

n 

verse is clear. Since A = AB implies A = AB" a M" for all n, the last statement 
follows. 

We now consider the case in which every ideal is a product of primaries. Noetherian 
rings satisfying this condition have also attracted some interest as generalizations 
of Dedekind domains [1]. 

Theorem 2. Let S be a semigroup satisfying f)M" = 0 in which every ideal is 
n 

a product of primaries. Then S has at most three primes different from M, each 
of which is principal. If Pi is a principal prime and PQ is a prime properly con-
tained in P^, then PQ = 0. / / P^ and P2 are noncomparable primes, then M = 
= Pi u P2. 

Proof. Let P be any prime different from 0 and M. Then the quotient PJMP is 
one-dimensional. To see this, note that if / is any ideal strictly between MP and P, 
then one of the primary factors of/, say Q, is contained in P. Since/ is not contained 
in MP, P is not a factor of Q, so Q is properly contained in P. But then from MP cz Q 
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we get M cz rad (ß) c: P, a contradiction. On the other hand, MP is properly con­
tained in P by Note 2. Hence PJMP has dimension 1. It now follows that if x is any 
element of P \ MP, then necessarily P = (x) и MP. But then P = П[(^) ^ i'M"] = 

= (^) '-̂  n ^ ^ " = (^)- Hence, every prime different from M is principal. 
If PQ and Pi are distinct principal primes with PQ contained in P j , then PQ = 

= Po n Pj = (Po : Pi) Pi = PQPI, from which it follows (Note 2) that PQ = 0. 
Now assume that Pi and P2 are noncomparable principal primes. It is easily seen 

that (Pi u P2) = P is another prime, and since Pi is nonzero, it follows that P = M. 
If Po is a third principal prime, then since PQ is principal and contained in M = 
= Pi u P2, it follows that PQ is contained in either Pi or P2. But then PQ = 0. 
Hence S has at most three primes different from M and they are all principal. 

In the special case of Theorem 2 where S has exactly three primes different from M, 
there is more to be said. 

Theorem 3. Let S be a semigroup satisfying П ^ " == Ö in which every ideal is 
n 

a product of primaries. If S has exactly three princes different from M, then S 
is Noetherian of {Krulî) dimension 2. 

Proof. Assume that S has three primes, PQ, P I and P2, different from M. By 
Theorem 2, we may assume that PQ = 0 and that M = P^u Pi- It is clear that S 
has (Krull) dimension 2, since 0 < P^ < M and 0 < P2 < M are the only maximal 
prime chains. 

There are a variety of ways to see that S is Noetherian. We choose one which is 
fairly unique to this situation: 

Let P be a maximal nonfinitely generated ideal. Since the product of finitely 
generated ideals is finitely generated, and since F is the product of primary ideals, 
it must be that F is itself primary. Hence F is primary for one of Pi , P2 and M. 
If P is primary for, say, P i , then we can choose n so that F is contained in P" but not 
in Pl'-K Then F = F nPl = {F :Pl) PJ, with F : P^ not contained in Pi . Since F 
is primary, it follows that PJ is contained in F, and hence that Pj = F. But then F 
is principal, a contradiction. Hence F must be primary for M = Pi u P2. But then 
F = F n M = {F nP^)u[F n P2) = (F : Pi) Pi u (F : P2) P2, and both of F : Pi 
and F : P2 must be greater than F, and hence finitely generated, since F has radical M. 
But then F is again finitely generated. Therefore every ideal of S is finitely generated 
and S is Noetherian. 

N o t e 3. In the final paragraph of the proof of Theorem 3 it is shown that if F 
is a primary ideal with a principal associated prime, then F is a power of its associated 
prime, and hence principal. It is easy to see that if Ä = Q n Q^ n ... n g,, is a normal 
decomposition in which the Qi are principal and have noncomparable associated 
primes, then Ä = [ ( ß : Q„) n Qi n . . . n ß„_ i ] Q„. It follows that if S is a prin­
cipally reduced semigroup satisfying a strong primary decomposition theory in 
which every prime ideal P ф M is principal, then every ideal is a product of primaries. 
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We now proceed to consider situations in which we have some sort of uniqueness 
of factorization. 

The case in which every nonzero ideal of S has a unique factorization as a product 
of primaries is trivial: M^ automatically has two different factorizations, since it is 
itself primary, so it follows that M^ = 0. Hence, it is clear that the most we should 
ask for is that every nonzero ideal be a unique product of irreducible primaries. 
On the other hand, it is easily seen that every ideal A of such a semigroup satisfies 
the cancellative property AB = AC = 0 imphes В = C. Semigroups satisfying this 
condition are Noetherian with OM" = 0 [3]. We obtain a characterization under 
weaker hypotheses. " 

Theorem 4. Let S be a semigroup satisfying f)M" = 0 in which every M-primary 
n 

ideal contains a power of its radical. Assume that the prime ideals P of S satisfy 
the property PA = PB Ф 0 implies A = Б, for all ideals A and B. Then either 
M^ = 0, or S is Noetherian, every ideal of S is principal and every nonzero ideal 
of S is a power of M. 

Proof. We observe that if P is prime and PA a PB ^ 0, then PB = Р(Л u Б) Ф 
Ф О, so JB = Л u Б and hence A cz В. 

First consider the case in which S has dimension 0 and M^ ф 0. Choose x e M \ M^ 
such that M{x) ф 0 (this is clearly possible since M is generated by the elements 
of M \ M^). Since the radical of (x) is the intersection of the primes containing it, 
(x) has radical M, and hence is M-primary. Choose n least such that M" is contained 
in (x). Then M" = M" n (x) = {M" : (x)) (x) and M" is not contained in M(x), 
so M" : (x) = S. It follows that M" = (x). By the choice of x e M \ M ^ we get that 
n = 0 and that M = (x). 

Now assume S has dimension greater than 0. Let F be the family of all subsets В 
of M \ M^ such that x, y e В and (x) = (y) imply x = y. Let G be a maximal 
element of F. If z is any element of M \ M^, then z фС implies (z) = (g), for some 
element g e G. Since M = M \ M^ u M^ and П ^ " = 0. it follows that the ideal 
generated by G is M. " 

Fix g EG and let H = H^ = G\{g}. Let J g be the ideal generated by Я. If f̂ e 
^ Jg = (J {h), then g e (h) for some he H. But then (g) = (h) or (̂ f) с M(/i), both 

heG 
of which contradict the choice of G. Hence Jg is properly contained in M. 

Let P be a prime ideal minimal over Jg. Since M = JgKj {g), we have P = 
= J^ u (P n {g)) = Jgu{P : (g)) (g). Hence either P = J^ or P = M. If P = M, 
choose n least such that M" c: J^. Since M" = M" n ( (J (/i)) = (J (M" n (/i)) = 

heH beH 
= (J (M" : (h)) (h), and since M« is not contained in MJg, it follows that M" : (h) = 

heH 

= S, for some heH. But then heM\M^ implies n = 1, a contradiction. Hence 

From M = J^ u (of) = P u (of), we get M^ = (P u (̂ f))̂  = M{P^ u {g^)) Ф 0, 
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whence P{g) a {{g^) u P^) n P = {P n (g^)) и P^ = P{g^) и P^ = P{{g^) u P). 
Since g ф (g^) u P, it follows that P^{g^) u P) = 0. But then P^ = J^ = 0. 

Fix he G\ {g}. Since g is an arbitrary element of G, it follows that J,, is also prime 
and that Jl = 0. But then g e Jj^ c: J^, a contradiction. It is now clear that G has 
only one element g, and M = [g). 

Hence M is principal in either case. 
Let A be any nonzero ideal of S. Choose n least such that A is not contained 

in M"^K Then A = AnM" = (A: M") M\ so A : M" = S sind A = M". Hence 
every ideal of S is principal and every nonzero ideal is a power of M. 

N o t e 4. It is clear that a principally reduced semigroup S in which every nonzero 
ideal is a power of M has the property that every nonzero ideal is a unique product 
of primaries. It is also clear that any semigroup S in which M^ = 0 has this property. 
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