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EIGENVALUES OF INEQUALITIES OF REACTION-DIFFUSION 

TYPE AND DESTABILIZING EFFECT OF UNILATERAL CONDITIONS 

PAVEL DRABEK, Plzen, MILAN KUCERA, Praha 

(Received November 6, 1984) 

0. INTRODUCTION 

Let us consider a reaction-diffusion system of the type 

(RD) ^ = dAu + f{u, v), 
dt 

— = Av + giu, v) 
dt 

in a domain Q c= [R'\ where / , g are real functions on R^", d is a real parameter (dif­
fusion coefficient). Suppose that w, t; is a stationary and spatially homogeneous 
(constant) solution of (RD) with the Neumann boundary conditions, i.e. w, v are 
constants such that /(i / , v) = g(ü, v) = 0. We shall study the hnearized stability 
of w, Ï? as a solution of (RD) with the boundary conditions 

(ВС) — = — = 0 on Гдг, и = Ü , V = V on Fj), 
dn dn 

and as a solution of (RD) with some unilateral conditions, e.g. 

(UC) и = и , V = V on Г]) , — = О on r^Y, 
dn 

— = 0 on Г^\Г^, v^v, — ^ 0 , {v-v) — 
dn dn dn 

(We suppose that Fj^, Г̂ у are subsets of the boundary dQ of ß , FjyyjF^ = dQ, f jy с Г,у.) 
We shall consider the situation when there is dç^e R such that w, i; is a stable 

solution of (RD), (ВС) for any d > dg and ü, v is an unstable solution of (RD), (ВС) 
for any d < dQ. Such a situation occurs in applications and problems of this kind 
are studied e.g. in [13], [14]. In [11], it shown by simple examples that w, v can be 
an unstable solution of (RD) with unilateral conditions also for the parameters 
d > do, i.e. that unilateral conditions can have a destabilizing effect. The aim of the 
present paper is to prove a general result of this type. 
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Under certain assumptions the stabihty of w, i; as a solution of (RD), (ВС) is 
equivalent to the stability of the trivial solution of the corresponding linearized system 
(see e.g. [6]). In this case for the investigation of the stability of w, v as a solution 
of (RD), (ВС) it is sufficient to study the eigenvalues of the corresponding hnearized 
problem 
(RD;^) d Au + ЬцМ + bi2^ — ÀU , 

AV + b2iU + b22^ = ^'^ ? 

(BCo) — = — = 0 on r ^ , I/ = t; = 0 on Г )̂ . 
dn dn 

(The solution ü, v is automatically transformed to zero, i.e. we write u, v instead 
of и — il, Î; — ï̂  in the linearized problem.) 

In the case of unilateral problems we shall deal with the linearized stabihty only, 
i.e. with the stability of the trivial solution of the hnearized system 

oil ôv 
(RDL) — = d Au + ЬцМ + b^2^ 5 — = Av + b2iU + b22^ ? 

dt dt 
with 

of . _4 , ^ / / - -\ , ^9/- -\ T % / - -\ 
^11 = - - (̂ -̂ Ю ' ^12 = — (W, l̂ ) , ^21 = - - (W, V) , b22 = ~ [U, V) 

OU OV OU OV 

and with the corresponding unilateral conditions, i.e. 

(UCo) и = V = 0 on Tj), — = 0 on Гд^, 
dn 

— - 0 on Г^v\f^v, v^O, - ^ ^ 0 , v-^ = on f̂  
dn dn dn 

in our model example. We shall show that under certain assumptions the problem 
(RD;,), (UCo) (in an abstract setting) has a positive eigenvalue for some dj > d^, 
i.e. for some parameter d^ lying in the domain of stability of ( R D L ) , (BCQ). The 
instabihty of the trivial solution of ( R D L ) , (UCQ) for such dj will be an easy con­
sequence. 

Let us remark that under certain assumptions it is possible to prove the instabihty 
for any d G (̂ 05 ào + t]) with some ^ > 0 (see [5]). These results are in a closed rela­
tion to [4] where it is proved that under certain assumptions there exists a bifurca­
tion point dßi > do of the corresponding stationary (nonhnear) system with unilateral 
conditions, i.e. there are spatially nonhomogeneous stationary solutions of the 
unilateral problem for the parameters d lying in the domain of stability of the classical 
problem. Notice that on the other hand under certain other assumptions the greatest 
bifurcation point of a stationary unilateral problem is less than that of the classical 
problem (see [10]). 

This paper is organized as follows. The aim of Section 1 is to explain the main 
results. It begins with the formulation of our problem in terms of abstract inequalities 
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in a Hubert space (analogous to those from [4]). The main results in their abstract 
form are formulated in Theorems 1.1, 1.2 and Remark 1.3. Remark 1.4 explains 
what they mean for the reaction-diffusion systems with unilateral conditions. Section 
2 contains an elementary investigation of the corresponding abstract eigenvalue 
problems. Lemma 2.1 together with Remark 2.1 justify and further explain the sense 
of the results of Section 1, Lemmas 2.2, 2.3 are necessary for the proof of Theorem 
1.1. A formal proof of the main results based on Theorem 2.1 from [4] is the subject 
of Section 3. Section 4 briefly explains some main ideas of the proof of Theorem 
1.1. It is shown how the positive eigenvalues of the corresponding inequality can be 
obtained by a certain homotopy from the eigenvalues of the equation. This is a modi­
fication of the method developed in [7], [8], [9]. In sections 1 — 4 the assumption 
meas Г^ > 0 is considered, i.e., the purely Neumann boundary conditions are 
excluded for the original classical problem. The case of Neumann conditions is more 
complicated and is briefly discussed in Section 5. 

1. NOTATION, BASIC ASSUMPTIONS, FORMULATION 
OF THE MAIN RESULTS 

We shall denote by V and И two Hilbert spaces such that 
(V, H) ^ Q G ^ (completely continuous imbedding) , 
which are equipped with the inner product <•, •> and (•, •), respectively. Let us 
denote the corresponding norms by ||мР = <w, w> and \v\^ = (v,v). Let К cz V 
be a closed convex cone in ¥ with its vertex at the origin. We shall denote by l/~ 
and IHI'^ the Hilbert spaces ¥ x¥ and И x И, respectively, with the inner products 
given by 

<t/, Pf>. = <ii, w> + <ü, z> , (I/, W)^ = {u, w) + (ü, z) , 

where U = \u, v], W = [w, z], and with the corresponding norms \\U\\t = iU, l/>^, 
\V\i = (F, V)^. The identity mapping in ¥ (H) and li/~(M~) will be denoted by/ 
and J~, respectively. We shall suppose that К ф ¥, K^ Ф 0 (the interior and the 
boundary of the set M are denoted by M^ and ôM, respectively). The symbols -> 
and -^ will denote the strong and the weak convergence in the corresponding spaces, 
Й and R'^ will be the set of аИ reals and of all positive reals, respectively. 

In what follows we shall suppose that 
(A) Ä is a linear completely continuous symmetric positive^) operator in ¥. 
Particularly, this is fulfilled for the operator defined by 

(1.1) (Au, (py = (M, (p) , for all u, (pe¥ y 

by the assumption (F, Я). 
Let bij e ^ (b J = 1, 2) be given and suppose 

(B) foii>0, b,2<0, b 2 i > 0 , b22<0, feu-bb22<0. 

^) We mean <^«, w> > 0 for any 11"11 4= 0. 
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We shall denote 

Then we have 
ÄU = {Au, Av\ , for all U = [u, Ü] e 1/'̂  . 

BAU = ipi^Au + bi2Av, b2iAu + b22Av\ , 

D{d) и = {du, v] for all U = {щ V']GV^ , 

Further, introduce a cone ^ in И/~ by 

К = {UeV^; и = {и, v], veK}. 

We shall investigate the stability of the trivial solution of the abstract inequahty 

u{t) E ¥, v{t) E К , 

(AI) i [у (О' ^] + <^ <̂0 - ^11^ "(0 " ^12^ 40' 9> = 0, 

f~ (0, ф - v{t)\ + {v{t) - Ь2гА u{t) - b22Ä v{t), xjf - v{t)y ^ 0, 

for all (pE¥, ФЕК and a.a. t ^ 0 

and of the corresponding equation 

Г /du 

(AE) 
I — (t), (p\ + id u{t) - ЬцЛ u{t) - bi2A v{t), (p) = 0, 

( ^ (*)' A + < (̂') ~ *2И «(f) - ЬггА v{t), фУ = 0, 

(АГ) 

for all (p,il/ EV and a.a. f ^ 0 . 
More precisely see Remark 1.1 below. 

We shall write them usually in the vector form 

U{t) E К, 

f— (t), Ф - U{t)\ + iD{d) U{t) ~ BAU{t), Ф ~ U(t)}^ ^ 0 

for all ФЕК, a.a. t ^0, 

(AE )^ V̂ ^ Д 
for all Фе!/'^, a.a. f^O, 

The key role will be played by the following eigenvalue problem for the inequality 
(ЕГ) UEK, 

iD{d) и - BAU + XÄU, Ф -Uy^^O for all ФЕК, 
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d̂  

and the corresponding eigenvalue problem for the equation 

(EE~) D{d) и - BAU + XÄU - О . 

R e m a r k 1.1. We shall not discuss the existence and the smoothness of the solu­
tions to (AI~). Our aim will be to show the existence of a solution of the type U{i) — 
~ exp i^Xt) WQ of (AI'") with Я > 0 for a suitable parameter di only, which has the 
derivative {dU\dt) {t) e H'^ for any t e R^ and ( А Г ) is fulfilled for all Г e i?̂ +. If we 
wanted to give a general correct definition of the solution on <0, T) we could consider 
for instance 

u,ve £2(0; T; y) such that dujot, dvjdt e L2(0, T; 1/*) and (AI) (or (AE)) 

is fulfilled for a.a. t e (0, T). 

(The derivative dujdt of и e L2(0, T; V) exists as a distribution with values in H/, i.e. 
also in IH by [V, H); by dujdt e L2(0, T; 1/*) we mean that this distribution can be 
represented by an integrable function with values in H and 

/du 
sup — , Ф 
(pelV \Ct 

•lI<Pll = l 
is finite; cf. e.g. [2].) 

R e m a r k 1.2. Consider the linearized reaction-diff'usion system ( R D L ) , (BCQ) from 
Introduction. Let ß be a bounded domain in iR" with the hpschitzian boundary dQ. 
Suppose that Г^, Г̂ у are disjoint open sets in dQ such that meas [dQ \ (Г^ u r^J\ = 
= 0 and 

(1.2) meas Г^ > 0 . 

Introduce the space 

V = {ue Wl{Q); w = 0 on Г^, in the sense of traces} 

with the inner product 
/* n 

<M, < )̂ = Y, ^xi^xi ^^ 5 ^^^ 1̂1 u, (p e V . 
J Q ^=^ 

The corresponding norm || • || is equivalent on V to the usual norm of the Sobolev 
space Wl{Q) (see e.g. [12]). Further, denote by IH the Lebesgue space L2{Q) with the 
usual inner product (% •) and introduce the operator Л by (1.1), i.e. 

<^Au, cp} = (w, ф) = мф dx , for all u, cp e И . 

Hence, the conditions (V, H), (A) are fulfilled. 
In this case ( AE) is an abstract formulation of ( R D L ) , (BCQ) ^). A couple of func-

^) Cf.e.g. [2], [3]; (AE) and (AI) is obtained from ( R D L ) by muUiplying by a test function, 
integrating by parts and using the boundary conditions (BCQ) and (UQ) , respectively. 
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tions и = [w, v] is a classical solution of (RD^), (BCQ) if and only if U satisfies (AE") 
(for instance in the sense of Remark 1.1). 

If we set 
(1.3) К = [ф e V; ф ^ 0 on Fj^ in the sense of traces} (where r^rdFj^) 

then ( А Г ) is an abstract formulation of ( R D L ) , (UCQ) ^) (cf. [4]). 
Further, if К is an arbitrary closed convex cone in 1/ with its vertex at the origin 

then we can introduce the solution of ( R D L ) with unilateral conditions given by V, 
К 3.8 a couple U = [u, г;] satisfying (AI"'). Of course, in the general case the connec­
tion with some classical formulation need not be clear. 

Analogously, (ЕЕ") is a weak formulation of (RD^), (BCo) and (EI") for К from 
(1.3) is a weak formulation of (RD^,), (UCQ) (cf. [3], [4]). For a general cone К in V 
with its vertex at the origin we can define a weak solution of (RDj^) with unilateral 
conditions given by V, К as U e 1/" satisfying (EI"). 

Definition 1.1. Let J > 0 be given. If Я is such that there is a nontrivial solution U 
of (EI") or of (ЕЕ") then Я and U is called an eigenvalue and the eigenvector ö/(EI") 
or of (ЕЕ"), respectively, with the parameter d. The set of all solutions of (EI") 
and (ЕЕ") will be denoted by Ej{d, Я) and Eß{d, Я), respectively. We shall say that 
an eigenvalue X of (ЕЕ") is simple if dim Eß[d, Я) = 1. 

Definition 1.2. A point ^ > 0 is called a critical point o / (EI") or (ЕЕ") if Я = 0 
is an eigenvalue of (EI") or (ЕЕ"), respectively. A critical point d of (ЕЕ") is simple 
if Я = 0 is a simple eigenvalue of (ЕЕ"). 

(Hence, we consider the geometrical simpHcity, but it will be shown later that 
under our assumptions it is equivalent to the algebraic simplicity — see Remarks 
2.2, 2.3.) 

Theorem 1.1. Let the assumptions (A), (B) be fulfilled and let dg be the greatest 
critical point of (ЕЕ") ^). Suppose that d^ is simple and Eß{dQ, 0) n X^ ф 0. 
Then there is dj > dg such that (EI") (with d = dj) has a positive eigenvalue Я 
and Ej [dj, Я) c: дК. 

Theorem 1.2. Let the assumptions (1.1), (B), (V, H) be fulfilled. Suppose that the 
greatest critical point JQ^) Ö / ( E E " ) is simple and Eß{dQ, 0) n X^ ф 0. Then there 
are dj[ > do, Я > 0 and WJE дК\ {0} such that the abstract function U[t) — 
= ехр(Яг) Wi satisfies (AI"). 

P r o o f follows directly from Theorem 1.1 (more precisely see [11]). 

R e m a r k 1.3. We can say that the trivial solution of (AI") (or of (AE")) is stable 
with respect to the norm || • || ̂  if for any r^ > 0 there exists TQ > 0 such that any 
solution и of (AI") (or of AE"), respectively) in the sense of Remark 1.1 satisfying 
1/(0) 6 JB(0, ГО) (the open ball in V" with the radius TQ centered at the origin) has the 

) The existence of ^o ^^^ be proved in Section 2 (Lemma 2.1). 
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property U{t) E B(0, ri) for all te{0, + oo). The trivial solution is said to be unstable 
if it is not stable. 

We have t/(0) = Wj and \\U{t)\\^ -> +00, for Г -> +оэ if U{t) is the solution 
from Theorem 1.2. This means, in particular, that the trivial silution of (AI~) for 
d = dj is unstable (because the solutions tending to infinity start in an arbitrary 
small initial condition TWI). Moreover, it is clear that it implies the unstabihty in an 
arbitrary reasonable sense (with respect to an arbitrary norm). On the other hand it 
will be seen in Section 2 (see Remark 2.1) that under our assumptions the trivial 
solution of (AE"') is stable for any d > d^. Hence unilateral conditions of the type 
considered have a destabihzing effect. 

R e m a r k 1.4. Consider the linearization ( R D L ) of the reaction-diffusion system 
from Introduction under the same assumptions as in Remark 1.2. Particularly, 
let meas Г^ > 0. Consider the corresponding space У from Remark 1.2. It follows 
that Theorems 1.1, 1.2 and Remark 1.3 give the following assertion in this special 
case: 

Let (B) be fulfilled and let the greatest critical point do of ( R D L ) , (BCQ)"^) be simple, 
i.e. (RD;^), (BCo) with Я = 0, d = d^ has a one-dimensional space of solutions. 
Suppose that X is a closed convex cone in У and let Eß[dQ, 0) n X^ Ф 0. Then there 
exists dj > dg such that (RD;^) with d = dj and with the unilateral conditions given 
by y.Khas SL positive eigenvalue Aj. For an arbitrary eigenvector [wj, v^] correspond­
ing to Ài we have Vj e дК and u{t) = exp [Xt) щ, v{t) = exp (It) Vj is a solution 
of ( R D L ) with the unilateral conditions given by У, K. Particularly, it follows that 
the trivial solution of ( R D L ) with unilateral conditions given by У, К is unstable 
for some dj > dç, (cf. Remark 1.3). Simultaneously it will follow from Lemma 2.1 
and Remark 1.2 that the trivial solution of ( R D L ) , (BCQ) is stable for any d > do 
and unstable for d < do only (see Remark 2.1). 

Notice that for the cone (1.3) the assumption Eß{do, 0) n X° ф 0 is fulfilled if 
VQ^ д > 0 on r^ for some nontrivial solution Wo> ^0 of (RD^), (BCQ) with d — do, 
Я = 0. 

2. PROPERTIES OF EIGENVALUES OF (ЕЁ) AND OF THE 
OPERATORS BÄ - D{d) I - XÄ 

Lemma 1Л. Under the assumptions (A), (B) there exists the greatest critical 
point do > 0 of (EE^) and ft = 0 is the greatest real eigenvalue of the operator 
BA - D{do) L Further, 

(2.1) for any d > do all the real eigenvalues of BÄ — D{d)l are negative', 

(2.2) for any 0 < d < do there is at least one positive eigenvalue of BÄ — D(ä)l. 

^) i.e. the greatest d for which Я == 0 is an eigenvalue of (RDA)> (BCQ); for its existence see 
Lemma 2.1 (and Remark 1.2). 
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Moreover, if d^ is simple"^) then there is rj > 0 such that 

(2.3) for any de[dQ — f], do) there is one simple^) positive eigenvalue of BÄ — 
— D[d)I and the other real eigenvalues are negative. 

Proof. The assumption (A) ensures that the eigenvalues of the operator A form 
a decreasing sequence {% }̂, x̂ - > 0 (z = 1, 2, . . . ) , Hi -> 0 (i -> +oo) and the cor­
responding eigenvectors form a complete orthonormal system [e^ in V. For any 
[w, Î;] = 17 we have 

(2.4) w = ^ <w, е^> ^ i , У = E <^' ^i> ^i 
/ = 1 1 = 1 

and therefore BAU — D[d) U = ixU is equivalent to 

<w, et} {d - bii%i + pi) - <ü, ei} b^2^i = 0 , 

<w, e^y b2iyci - <y, e^y (1 - 622^» + /г) = 0 , 
i = 1, 2, 3 , . . . . 

The couple <w, e^), <Ü, в̂ > can be nontrivial for some i only if 

(2.5) ^Jd-b,,^^-ii.b,2^, \ 
^ ^ \b21^P 1 - 2̂2?̂ :̂  + li) 

i.e. 
(2.5') p} - Ai[(bii + ^22) ̂ -{d + 1)] + 

+ (d - b^^yc>j (1 -- b22>̂ i) - Ъ^гЪц^] == 0 . 

It follows that p is an eigenvalue of the operator В A — D{d) I if and only if /̂  is a root 
of (2.5') with some (at least one) i, and in this case the corresponding eigenvectors 
are 

(2.6) L lzAi^^i±iiJ. 
L ^12^i J 

Particularly, J is a critical point of (ЕЕ") (i.e. /x = 0 is an eigenvalue of BÄ — 
- D{d) I) if and only if 

(d - b i i ^ i ) (1 - b22^f) - bi2b2ixf = 0 , i.e. 

d = d, = --^^-f~^- + bii%,, 
1 - b22?^i 

for some i (remember that 1 — b22>^i > 0 by (B)). 
It is easy to see that the properties of the function 

Ki) = ^ ^ ^ + b,,t 
1 - b22^ 

^) We mean always the geometrical simplicity, i.e. the corresponding null-space is one-
dimensional (see Remark 2.2, cf. Definition 1.2). 
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(which follow from (B)) and %̂  -> 0+ (for i -> oo) ensure the existence of ÎQ satisfying 
di^ = max di > 0, Hence, dQ = di^ is the greatest critical point of (EE~). Further, 

i = l , 2 , . . . 

under the assumption (B) it is not hard to see from the formula for the roots of (2.5') 
that for 0 < d < di^) the roots of (2.5') are both real, the greater one being positive 
and for J > 0, J > di^) there is no positive root (either they are both negative or 
they are complex for d sufficiently large). In other words, for (i > 0, there exists 
a positive eigenvalue of BÄ — D{d) I corresponding to the eigenvector (2.6) for 
a given i if and only if d < di and this implies (2.1), (2.2). 

If do is simple then there is a unique ÎQ satisfying di^ = d^. The assertion (2.3) is 
an easy consequence of this fact and of the previous considerations. 

R e m a r k 2.1. It is easy to see from the proof of Lemma 2.1 that for an arbitrary 
d E R'^ the operator BÄ — D{d)l has no complex eigenvalue with a nonnegative 
real part. It is known that this together with (2.1), (2.2) means that the trivial solution 
of (AE~) is stable for any d > d^ and it is unstable for any 0 < J < JQ. Using 
Remark 1.2 we obtain the last assertion, in particular, for the problem ( R D L ) , (BCQ). 

R e m a r k 2.2. If /i ^ 0 is an eigenvalue of the operator BÄ — D{d)l '̂ ) (with 
some d > 0) then its geometrical simplicity is equivalent to the algebraic simpHcity, 
i.e. 

dim Ker {BÄ - D{d) I - /л!) = 1 
if and only if 

dim и Ker {BÄ ~ D{d) I - iilf = 1. 
k=l 

For the proof it is sufficient to show that <{7, l/*>^ Ф 0, where U and (7* are the 
eigenvectors of BÄ — D{d) I and of B'^Ä — D(d) / , respectively, corresponding to /i, 
J5* is the adjoint matrix to В (see e.g. [16]). But it follows from the proof of Lemma 
2.1 that и is given by (2.6) and analogously we obtain 

= ^b 

(with the same z). This together with (2.5) and (B) implies 

^y^ jj^y^ ^ I + (^ - b,i%, + iif ^ 1 + d~{b,, + 622)^/ + 2Af ^ ^ ^ 

Lemma 2.2. Let (A), (B) be fulfilled and let d^ he the greatest critical point 
of (ЕЕ"). Suppose that do is simple. Then there exist continuous functions X\ 

) Notice that in general all di need not be positive. 
^) We must distinguish the eigenvalues of the operator В A — D{d) 1 (i.e. /г such that BAU — 

— D{d) U=ßUha,s a nontrivial solution) and the eigenvalues of (ЕЕ") in the sense of Definition 
1.1. 
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(c/o — г, do} -> H^, U: {do — r, dg} -> V (WI7/Î some r > 0) swc/i t/ш^ A(d) fs an 
eigenvalue of (EE~)^) with the corresponding eigenvector U(d), À{d) > 0 
for all de (do — r, do), A(Jo) = 0. Further, for any de (do — r, do}, d is the 
greatest number for which À = 1(d) is the eigenvalue of (EE^). 

Proof. We shall use similar considerations as in the proof of Lemma 2.L The 
equation 

D(d) и - BAU + ÀÂU = О 
is equivalent to 

<w, Ci} [d - (Ьц - X) K,] - <ü, e^y Ъ^2^; = 0 , 

<w, Ci^ b2iXi - (v. Ci} [1 - (^22 - Я) Xi] = О, 

г = 1, 2, 3, . . . , and Я is an eigenvalue of (EE~) (in the sense of Definition LI) if 
and only if 

Л'х^ - ф , , + b22)--(d+ l ) ] x , + 

+ (d - b i i x ^ ) ( l ~ b22^i) - b^2b2xx\ = 0 

for some /. An elementary investigation of the formula for the roots of this equation 
with i = /Q (cf. the proof of Lemma 2.1) shows that there exists a continuous function 
À = À(d) on <0, do} such that À(d) is an eigenvalue of (EE~), À(d) > 0 for d < do, 
À(do) = 0. Further, Eß(d, À(d)) is generated by 

\ ^ - ( Ь ц - Kd))^io ^ ' 

for all d e (do — r, do} (with respect to the simplicity of do) with r > 0 sufficiently 
small (io is uniquely determined, cf. proof of Lemma 2.1). This impHes the assertion 
about U(d). It remains to show that r > 0 can be chosen such that the last assertion 
of Lemma 2.2 holds. If this were not true there would exist sequences {d,^], {Я„} 
such that d„ < do, d„ > J,„ d„ -> do and À(d„) is an eigenvalue of (ЕЕ") with d = Я„ 
(and not only with d = d,^). Let U„e Eß(d^, À(d„)), Ü„e Eß(d„, X(d„)), \\U„\\^ = 
= \\U„\\^ = 1. Clearly, {d„} is bounded and we can suppose d„-^ d ^ do, U^ -^ U, 
V,, -^ v. The compactness of A impHes U^ -^ U e Eg(do, 0), (7, -^ E7 e Eg(d, 0). 
The case d > dois impossible by the assumption that do is the greatest critical point. 
Hence, d = do. Set U„ = [ŵ „ t?„], [/„ = [i7„, t̂ „], U = [u, r ] , U = [w, v]. We have 
\\u\\ Ф 0, ||й|| Ф 0 because in the opposite case we would obtain from (ЕЕ'") (rewritten 
into the components) also f = 0 or i? = 0, i.e. U = OorU = 0 and we know ||t7|| ~ = 
= \\Ü\\^ = L If we proved <w, w> = 0 then we would have a contradiction to the 
simplicity of do and our assertion would be proved. Writing (ЕЕ") for d„, t/„, À(d„) 
and for d„, Ü„, À(d„) in the components, multiplying the individual equations by 
i/„, v„ and M„, v„, respectively, and subtracting we obtain (d„ — d„) <м„, w„> = 0 
(cf. [4], proof of Lemma 2.1). Hence <м, w> = 0 and the proof is complete. 
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R e m a r k 2.3. Analogously as in Remark 2.2 it is possible to show that for any 
eigenvalue Я ^ 0 of (EE~) the algebraic and geometrical simplicity are equivalent. 

Lemma 2.3. Let (A), (B) be fulfilled and let the greatest critical point JQ O / ( E E " ' ) 
be simple. Then there exists Q > 0 such that for any d^ e (do — Q, do} the following 
assertion holds^): 

(2.7) if d > di then all the real eigenvalues of BA — D[d)l — À{di) A are 
negative; 

(2.8) if d e {d^ — ^, d^ {with some ^ > 0 depending on d^) then there is one 
simple positive eigenvalue of BA — D{d)l — À(di) A and the other real 
eigenvalues are negative. 

Proof . Analogously as in the proof of Lemma 2.1, /г is an eigenvalue of BA — 
— D(d) I — À(di) A (for a given d and d^) if and only if 

ß' - fl[{b,, + b22) X,-{d+l + 21 {d,) %,)] + 

+ [d~ {b,, - Ä{d,)) %,] [1 ~ {b22 - Kdl)) ^ J - b,2b21^- = 0 , 

for some i. The assertion of Lemma 2.3 can be obtained by an elementary investiga­
tion of the formula for the roots of this equation analogously as (2.1), (2.3) in the 
proof of Lemma 2.1. We replace only do by d^, realize that dim Eß[d^, ^{à^)) = 1 
if Q is small enough and use the last assertion of Lemma 2.2 instead of the fact that d^ 
is the greatest critical point. 

3. PROOF OF THE MAIN RESULT 

The foliov^ing assertion will be the basis for the proof of Theorem 1.1. It is a modi­
fication of Theorem 2.1 from [4]. 

Theorem 3.1. Let (A), (B) be fulfilled. Suppose that X^ e <0, b^^) is a simple 
eigenvalue of (EE~) with some di > 0 and Eß{di, Я )̂ n К^ Ф 0. Further, let 
there exist ^ > 0 such that 

(GC) for any d > di all the real eigenvalues of the operator BA — À^Â — 
— D[d) I are negative; for any d e(di — ̂  d^) there is one positive simple 
eigenvalue of BA — X^Ä — D{d)î and the other real eigenvalues of this 
operator are negative. 

Then there is d\ > d^ such that X^ is an eigenvalue of (EI~) with d == d\, 

Ej{dl X,) cz ÔK, Eßidl Xi) = {0}. 

P roo f of this assertion can be obtained directly from Theorem 2.1 in [4]. It is 
sufficient to replace d^ by J^, В by Б^^ ~ В — X^E (£ denotes the unit matrix). 

) Я = À(d) denotes the function from Lemma 2.2. 
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to set iV = о, 5 = 1 and to use the fact the JB^̂  satisfies (B) under the assumption 
Я̂  G <0, Ьц). We must use the simplicity of/Ij and Remark 2.3 instead of the algebraic 
simphcity of JQ-

P roof of Theo rem 1.1. Under the assumptions of Theorem 1.1, Lemma 2.3 
ensures the existence of ^ > 0 such that (GC) is fulfilled with an arbitrary d^ e 
e (do — Q, do} and with À = À{di) > О from Lemma 2.2. Further, Eß[di, A(Ji)) n 
n K^ Ф 0 for all di e (JQ — Q> ^o) if ^ > 0 is sufficiently small because Eß{dQ, 0) n 
n JS^ Ф 0 by the assumption and normed vectors W{d) from E^(d, X{d)) depend 
continuously on d by Lemma 2.2. Hence, Theorem 3.1 implies that for any d^ e 
e(do ~- Q, do} there exists dl such that À{di) > 0 is an eigenvalue of ( E P ) with 
d = d\ in the sense of Definition 1.1, Ej(dl, À{d^)) cz дК, Eß[d], À[di)) = [0]. 
It is sufficient to show that d] > do for any di e (do — Q, do} if Q > 0 is small enough. 
If this were not true we should have sequences {J„}, {J"} such that d,^ < d] S <̂o? 
d„ -» do and À(d„) > 0 is an eigenvalue of (EI~) with d = d" corresponding to some 
WnedKn Ei{d], /l(J„)), \\Wj\\^ = 1. Hence, we have 

(3.1) <D(J?) W, ~ BÄW, + Я(4) ÄW,, Ф - Pf„>. ^ 0 , 

for all ФеК, 

We can suppose W^-^ W and the usual considerations using the compactness of A 
yield Wn -> Ж (more precisely see Remark 3.1 below). Hence, WedK. Lemma 2.2 
imphes X{d^ -» 0+ and the hmiting process apphed to (3.1) gives 

iD{do)W-BÄW, Ф ~Wy^^^, for all ФеК, 

i.e. We Ej[{do, 0). However, Eß{do, 0) n К = Ej(do, 0) (this holds in general under 
the assumption Eß{do, 0) n ^ ° Ф 0, see Lemma 2.1 in [4]; cf. [7]). Hence We дК n 
n Eßido, 0) which contradicts the simphcity of do and the assumption Eß{dQ, 0) n 
n X^ Ф 0. 

R e m a r k 3.1. It follows from (3.1) that 

<ж„, w,,y^ = iD-\d';)BÄw,, - D-\d^)i{d,)Âw„. w„y^, 
<W„, W}^ è <D-\d'}) ВАЩ, - D-\d^) l{d,) ÄW„, W}^ , 

where D~^{d) is the inverse matrix to D(d). This together with the compactness of vl 
yields ||l̂ 1 |̂L ^ lim ||PF„|L, i.e. W^ -> Ж under the assumption W„-^ W. 

4. A HOMOTOPY JOINING CRITICAL POINTS OF THE EQUATION 
AND OF THE INEQUALITY 

Let us denote by P the projection onto the closed convex cone К in l/~, i.e. P is 
the mapping defined in V~ by 

\\PV- V\\^ = min | | 1 ^ - F| |^ . 
WeK 
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Remember that P is positive homogeneous, lipschitzian and (/ — P) 17 = 0 if and 
only if и e K. 

Remark 4.1. For any Ve V^, PVis the unique point satisfying 
{V-PV, W-PV}^ SO, for all We К 

(see e.g. [15]). It follows that (EI~) is equivalent to the operator equation 
(4.1) D{d) и ~ P{BÄU - ÀÂU) = О 
(cf. [4], Remark 2.3). 

Definition 4.1. For an arbitrary fixed À let us denote by Z^ the closure (in IR x 
X V^ X R) of the set of all [J, U, т]ей'^ x ¥^ x (0, 1> such that 

(a) 1^11'-=^' 
(b) D{d) и - BAU + XÄU + т(/ - P) {BAU - XÄU) = 0 . 

R e m a r k 4.2. If we put т = 0 and т = 1 in (b) then we obtain (ЕЕ") and (4.1) 
(i.e. (EI~)), respectively. This means that the equation (b) represents a "homotopy 
joining the equation and the inequahty". 

R e m a r k 4.3. If [ti, 0, 0] G Z;̂  then À is an eigenvalue of (ЕЕ"') (for d under 
consideration) in the sense of Definition 1.1. Indeed, there exist [d„, (7„, т„] e Z;i 
such that T„ e (0, 1>, [d„, L/„, т„] -^ [d, 0, 0]. Setting W„ = t7„/||l/J ^ we may sup­
pose W,j -^ W in V^ and (b) divided by ||^n||- together with the compactness of Ä 
implies Ж, - W and ^^^^ ^ _ ^^^ ^ ^^^ ^ ^ _ 

Theorem 4.1. Let the assumptions of Theorem 1.1 be fulfilled and let À{d) be the 
function from Lemma 2.2. Then there is Q > 0 such that for any d^ e (JQ — Q^ ^o) 
there exists a closed compact connected subset Ẑ ^̂ ^̂  of Z^^^^ containing [J^, 0, 0] 
and at least one point of the type [Jj , W, 1], d\ > do. Moreover, the following 
implications are true for all [J, U, т] e Z^^^^: 
(c) if [d, U, T] Ф [J i , 0, 0] then BAU - XÂU ф К; 
(d) / / [d, U, T] Ф [ J b 0, 0] then d^ < d ^ d,„ 
with some d.^ > 0 independent of d^. 

R e m a r k 4.4. If [d, U, 1] e Z;(^^) then d, U satisfy (ЕГ) by Remark 4.1 and 
Eß{d, À,[di)) = {0} for d > dl by Lemma 2.2. Hence Theorem 1.1 is a consequence 
of Theorem 4.1 (cf. [4], Theorems 1.1, 1.2). 

P roo f of Theo rem 4.1. For any d^ e {do — Q, do} (with ^ > 0 sufficiently small) 
the existence of a closed compact connected set Z^^y c= Z^^o joining [d^, 0, 0] 
with some [J}, 17, 1] and satisfying (c), (d) follows from Theorem 2.2 from [4] 
(analogously as Theorem 3.1 follows from Theorem 2.1 from [4]). It is sufficient to 
replace do by J i , В by B;^^^^^ = В — À{di) E {E is the unit matrix), set iV = 0, ^ = 1 
and use the fact that B;^ ,̂̂  satisfies (B) again for d^ sufficiently close to do, i.e. for 
À{di) small (see Lemma 2.2); further, we must recall Remark 2.3 and use the last 
assertion of Lemma 2.2 instead of the assumption that do is the greatest critical point; 
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finally, the assumption (GC) from [4] is replaced by (GC) from Theorem 3.1 and 
Remark 2.3; (GC) is fulfilled by Lemma 2.3. 

Further, analogously as in the proof of Theorem 3.1 it can be proved that d] > CIQ 
for any [t/f, U, 1] e Z^^^^ with d^ e {do — Q, J Q ) if ^ > 0 is sufficiently small. 

R e m a r k 4.5. The proof of Theorem 4.1 could be done also directly by the same 
method as that of Theorem 2.2 in [4] (using a modification of Dancer's result [1]). 
The proof of our Theorem 4.1 would be easier than that of Theorem 2.2 in [4] 
because we have N = 0 (i.e. our problem is positive homogeneous; we can norm the 
solutions and the considerations from [4] about "sufficiently small ^" are not neces­
sary (cf. [7]). 

5. NEUMANN BOUNDARY CONDITIONS 

In the case of Neumann conditions 

(NC) ^ ^ = ^ = 0 on dQ 
dn dn 

Instead of (ВС) there are the same comphcations as in [4]. We must use the inner 
product „ 

<u,(py=\ ( Z ^xi9xi + nu(p) ax 
in ^=1 

(with some ц > 0 fixed) in the abstract formulation and replace the expressions in 
(EE~) and ( Е Г ) by 

du — ( 6 i t + Y\d) Au — bi2^^ •• , 

V — b2iÄU — (^22 + n) Av 

It is the variable parameter d in the coefficient at Au which causes the fundamental 
trouble (cf. Remark 1.7 and Section 5 in [4]). However, using the same approach 
as in [4], Section 5, the following assertion can be proved: 

Consider the system (RD) as in Remark 1.2 but with / \ = dQ. Set У = Wl{Q) 
and let К be from (1.3). Then either 
(i) there exists d^ > dQ such that (RD;^), (UCo) has a positive eigenvalue for d = dj 

or 
(ii) there is a positive eigenvalue À of the problem 

w = (̂  ( = const) , VEK , 

(SI) \ (^11^ + ^i2î^ - Я(̂ ) dx = 0 , 

I Z ^xX^x, " ^x.) - {Ьц^ + b22V + b) {ij/ -v)àx^O, 
^ ' = ̂  for all XJ/EK. 

The system (SI) can be called the shadow inequality to (EI~) and can be obtained 
from (ЕП) by the hmiting process (i -> +oo (cf. [14] where the shadow system for 
equations is studied; cf. also [4], Section 5). If follows that either the trivial solution 
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of ( R D L ) , (UCO) is unstable for some dj, > do or that the trivial solution of the shadow 

inequality to (RD^), (UCo) 

u(x, t) = Ç{t) , v(x, i)eK , 

Г \Ш - bn Щ - b,,vix> Ol dx = 0 . 

r ГШх^ _ ^^^^^^^ )̂ _ ^̂ ^̂ ^̂ ^ ,Л (̂ (̂ ) _ (̂̂ ^ ^̂ ) ^ 

И 

is unstable. 

dx ^ 0 for all феК and a.a. t ^ 0 
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