Czechoslovak Mathematical Journal

Francisco J. Carreras
On the Riemannian curvature tensor of an almost-product manifold

Czechoslovak Mathematical Journal, Vol. 36 (1986), No. 1, 72-86

Persistent URL: http://dml.cz/dmlcz/102068

Terms of use:

© Institute of Mathematics AS CR, 1986

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/102068
http://dml.cz

Czechoslovak Mathematical Journal, 36 (111) 1986, Praha

ON THE RIEMANNIAN CURVATURE TENSOR
OF AN ALMOST-PRODUCT MANIFOLD

FrRANCIScO J. CARRERAS, Burjasot

(Received July 27, 1984)

0. Introduction. Let E be an n-dimensional real vector space with a positive
definite inner product, and consider the vector space Z(E) of all the 4-covariant
tensors on E satisfying the same symmetries as the Riemannian curvature tensor
of a Riemannian manifold. Then, Z(E) decomposes (see [1]) as a direct sum of sub-
spaces invariant and irreducible under the action of the orthogonal group O(n),
the structure group of Riemannian manifolds. If we consider an almost-Hermitian
structure on E, i.e., an automorphism J of E such that J* = — identity and g(JL, JM)
structure on E, i.e., an automorphism J of E such that J* = — identity and
g(JL, JM) = g(L, M) for all L, M € E, then, Tricerri and Vanhecke ([4]) have given
a decomposition of #(E) as a direct sum of subspaces invariant and irreducible
under the action of U(m) (assuming n = 2m), the structure group of almost Hermitian
manifolds. In this paper we get a similar result for the structure group of almost-
product manifolds, O(p) x O(q), where p and q, with p + g = n, are the dimensions
of the vertical and horizontal subspaces determined by such a structure. Then we
compute a system of generators of the space of invariant quadratic forms on %(E)
from which we conclude the irreducibility of the decomposition. Finally, we prove
that the projectors of #(E) onto some of the subspaces are conformal invariants.

1. The decomposition of %(E) under the action of O(p) x O(q). Let E be an
n-dimensional real vector space with a positive definite inner product g, and let V
and H be orthogonal subspaces of E of dimensions p and ¢, respectively, with
p + q = n,and such that E = V @ H. (This is equivalent to giving an automorphism
P of E such that P? = identity and g(PL, PM) = g(L, M) for all L, M € E; i.e., an
almost-product structure.) An orthonormal basis {E;};—;, , will be said to be
adapted if E;eV for i =1,...,p and E;e H for i = p + 1, ..., n. Next, we
consider the space of 4-covariant tensors on E satisfying the same symmetries as the
Riemannian curvature tensor of a Riemannian manifold,

#(E) = {Re ®*E* |R(L, M,N,U) = —R(M, L,N, U) = —R(L, M, U,N) and
R(L,M,N,U) + R(M,N, L,U) + R(N, L, M,U) = 0 forall L, M,N,UeE},
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where E* stands for the dual space of E. As is well-known, if R € Z(E), then
R(L,M,N,U) = R(N,U,L,M) for all L, M,N,UeE, and also dim #(E) =
= Ln¥(n? — 1)

12 -

If O(p) and O(q) are the groups of orthogonal transformations of ¥ and H, respec-
tively, then O(p) x O(q) acts upon E in a natural way, so that the action preserves
the subspaces V and H, and the inner product g. It induces an action on #(E) as

follows:
(AR) (L, M, N, U) = R(A’IL, A"'M, AT'N, A7'U)

for all A€ O(p) x O(q), Re Z(E) and L, M,N, U € E.

We also have a positive definite inner product <, > in #(E), defined by

<R3 Rl> = Z R(Ei7 Ej’ Ek> El) R'(Eis Ej, Ek’ El)
ijhl=1
where {E;};_ ..., is an adapted orthonormal basis of E.
First, we have a trivial decomposition of %(E) as a direct sum of subspaces in-
variant under the action of O(p) x O(q), namely,

Q(E) = Rao @ Ros ® A31 @ R13 © %32

where, if {E,»},-Zl’“,’,, is an adapted orthonormal basis of E, #,, is the subspace of
the R € Z(E) whose non-vanishing components R;;; = R(E; E;, E,, E,) are exactly
those having o arguments in ¥ and f arguments in H. It is clear that these subspaces
are invariant by O(p) x O(q) and mutually orthogonal with reespect to <, >.

In order to get a further decomposition of each of these subspaces, we define
two 2-covariant tensors associated to each curvature tensor:

P
ov(R)(M,N) = ; R(M,E, N,E,),

ou(R)(M,N) = Y R(M,E,N,E,)
u=p+1
for all M, N € E, where {E;};~; ..., is an adapted orthonormal basis.
Also, we consider for each R € QZ(E) the scalars

WR) =3 0dR) (En ) = 3 R(Ew Eu En By,

a 1

TH(R) = Z IQ"(R) (Ew Eu) = z R(Eu’ Er? Em Ez) )

v=p+ wo=p+1

P

ulR) = 3 0u(R) (Ew E) = 3 0ulR) (Ew E) =

u=p+1 a=

M~

Z R(Ea: Eu’ Ea, Eu) .
u=p+1

]

a=1
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To begin with, it is clear that %, is isomorphic to the space of curvature tensors
(V) on the vector space V, and O(q), as a subgroup of O(p) x O(q) acts on %,
as the identity, so that a decomposition of %,, as a direct sum of irreducible sub-
spaces under the action of O(p) x O(q) is given by the classical decomposition of
(V) under O(p) (see, for instance, [1]). Then, we can write

‘%40 = WV@‘%VEBR'Roua
where

Wy = {ReR|0/R) =0},
Wy ® Ry = {Re Ay | 1(R) = 0},
Ry = W (the orthogonal complement of % in #, @ &y),
and R.R,, = (% ® Zy)" (the orthogonal complement of %", @ %y in Ayy) -

The notation in the last case is due to the fact that (#7, @ %y)" is the one-dimensional
subspace of %4, spanned by the tensor R,,, given by

R,(4, B, C, D) = g(4, C) g(B, D) — g(4, D) g(B, C)
forall A,B,C,DeV.
Similarly,
Ros = WH®'@H®R'ROIN
where
Wu = {R € Roa [ QH(R) = 0} >
Wy ® Ry = {RE Ry | tu(R) = 0},

Ry =W (the orthogonal complement of % 'y in %'y ® Zy) ,
and R.R,, = (#y @ #y)"* (the orthogonal complement of ¥y @ Zy in Zo4),
R,, being the element of %,, determined by

Ru(X, Y, Z, W) = g(X, Z) g(Y, W) — g(X, W) g(Y, Z)
forall X,Y,Z, We H.

On the other hand, %5, can be considered as the subspace of A?V* ® V* ® H*
of all tensors R such that R(4, B, C, X) + R(B,C, 4,X) + R(C, 4, B, X) = 0 for
all 4, B, Ce Vand X e H. Since the action of O(q) upon Vis trivial, the decomposi-
tion of %, is given by that of the subspace of A2V* ® V* formed by all tensors o
such that

oA, B,C) + «(B, C, A) + o(C, A,B) = 0

for all A4, B, C e V, under the action of O(p). The latter is well known (see for example
[3]) and as a result we get

‘@31 = gvl 6’) ng
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where
9,, = {Re R, | 0y(R) = 0}

and %,, = {Re #;, | R(4, B, C, X) = }1_—1 (9(4, C) o(R) (B, X) —

— g(B, C) ¢y(R) (4, X)) forall A,B,CeV and XeH}.

The fact that %, is orthogonal to %,, follows by a straightforward computation.
Similarly,
Ry =G4 @ Y2
with
G ={R6113|QH(R) }

and ,, = (Re Z,, | R(X, Y, Z, A) = _I“I (9(X. Z) 0u(R) (Y, 4) —
q—
—9(Y, Z) 0u(R) (X, A)) forall AeV and X,Y,ZeH}

and, as before, ¥, is orthogonal to %,,.

As for #,,, the defining conditions of %(E) imply that the components of a tensor
Re R,, are determined by those of the form R(E,, E,, E,, E,), for 1 <a, b < p
and p + 1 = u, v < n. As a consequence, #,, can be considered as the space

(V* ®@ H*) v (V* ® H*) ;
(v means the symmetric tensor product). Actually, if we identify this space with the
space of 4-linear maps o: ¥V x H x V x H — R such that for all 4, Be V and all
X,YeH, (A, X,B,Y)=0o(B,Y,A,X), then the map ®: %,, - (V* @ H¥) v
v (V* ® H*) given by ®(R) (4, X, B, Y) = R(A4, X, B, Y) for all R € #,,, A, BE V,
X, Ye H is a vector space isomorphism, whose inverse is
v (V* @ HY v (V* @ H¥) - %,,
defined by
¥(«) (L, M, N, W) = —a(vM, hN, vL, hW) + o(vL, hN, vM, hW) +
+ o(vL, hM, vN, hW) — «(vL, hM, vW, hN) — o{vM, hL, vN, hW) +
+ a(vM, hL, vW, hN) — «(vW, hL, vN, hM) + «(vN, hL, vW, hM)
for all e e (V* ® H*) v (V* ® H*) and all L, M, N, We E.
Now, having in mind that
VEQ VE=AV* @ ViVt @ {1},,
where A?V* is the space of skewsymmetric convariant 2-tensors on V, \/2V* the space

of traceless symmetric covariant 2-tensors on ¥, and {1}, the orthogonal complement
of A*V* @ ViV* in V* ® V* (with regard to the inner product induced by the

75



restriction of g to V), and that, similarly,

we get

where

Si

S,

S

Ss

H* @ H* = A°H* @ V2H* & {1},
By =85S, ®S; DS, DS,
={ReZ, |R(4,X,B,Y) = —R(B, X, 4,Y) = —R(A, Y, B, X)
forall 4,BeV and X,YeH},

{ReZ,, | R(A,X,B,Y) = R(B, X, 4, Y) = R(A, Y, B, X) for
all A,BeV and X,YeH, and QH(R) = Qv(R) - 0}

) L1 ‘
{ReZ,, | R(A.X,B,Y) = ;g(X, Y)0y(R)(4,B) forall A,BeV
and X,YeH, and QV(R) = 0} ,

) 1
= (R | R(A.X,B.Y) = ;g(A, B) o(R) (X, Y) forall 4,BeV

and X,YeH, and ¢4(R) =0} and

T
= {Re%,, | R(A,X,B,Y) = ;Vq‘i 9(4,B)g(X,Y) forall A4, BeV

and X, YeH}.

It is easy to see that these five subspaces are mutually orthogonal, and hence, we

have proved

Theorem 1. The space #(E) is isomorphic to the direct sum of the following
fifteen subspaces invariant by O(p) x 0(q):

WV5 '%V7 R. Row 7/‘H’ ‘%H’ R. Rolu gvl) gvz, ghla ghb Sl) S25 S3’ S4, SS .

The dimensions of these subspaces are given in Table I, in terms of the dimensions p

and ¢q, of Vand H.
If R € #(E), then its orthogonal projections into each of the invariant subspaces

(in the same order as they appear in Table I) are determined as follows, for all

4, B, C,

DeV;X,Y,Z, We H:

| 1
p:(R) (4, B, C, D) = R(4, B, C, D) — ;-‘2 (9(4, C) ov(R) (B, D) —
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+ 9(B, D) o(R) (4, C)) + FTTV)%)"IS (9(4, C) g(B, D) ~

— 9(4, D) g(B, C)),



SR
Table 1
p=2 p
E] g 3 = 2, =3 = 1, >3 = =1
P4 P q =2 p q J p=q
v, plp +1)(p+2)(p - 3) 0 0 0 0
12
Ry (p = 1)(p+2) 1)2(1’ +2) 0 0 0 0
R.R,, 1 1 1| 0 0
, alg + 1) (¢ +2)(q - 3) (g+1)(qg+2)(g—3) ala +1)(q +2) (¢ + 3)
Wy aqr)rI)d— 44T 0 0
12 12 12
(¢ —1D(a+2) (¢ =g +2) (¢ —1(q+2
Ry M J)ET ) Mz T 4 0 Mz T ) 0
2 2 2
R.R,, 1 N 1 1 1 0
g, pap +2)(p —2) ? (r = 2) 0 0 0 0
Y, pq 2q : 4 0 0
@ ra(a +2)(q = 2) 2q(q + 2)(q — 2) 0 q(qg +2)(q —2) 0
" 3 3 3
I Py ) . S . 2 R S 0
s, palp = D(g = 1) alq ~ 1) ) 0 0
4 2
L — el S - o
s, Q’_—_l)z(l’ +2) 2 2 0 0
.  (@-1D@+2 o (a-1)(¢+2 (¢ —1)(q +2)
S, M=Z)WET=) A L. 2 0
2 2 2
S, 1 1 1 1 1




Pa(R) (4,5, €. D) =~ (9(4, ©)es(R) (B, D) = o(8, ©) () (4, D) ~

— 9(4, D) ¢/(R) (B, C) + g(B, D) ¢y(R) (4, C)) ~ ;%;_V%)

(9(4, C) 9(B, D) — g(4, D) g(B, C)),

ps(R) (4, B, C, D) = Rp“(% (9(4. ) (B, D) — g(4. D) g(B, C)),
1

PAR) X, X 2,W) = KOG X, 20W) = (o8, 2) i) (01 ) -
— 9(Y, Z) 0u(R) (X, w) — g(X, W) 0u(R) (Y, Z) +

4(R)
+ 9(Y, W) on(R) (X, Z)) + @-1@-2 (9(X, 2) g(Y, W) —

—9(X, W)g(Y, 2)),

PR) (X, 1,2, ) = 1 (a(X, Z) ealR) (% W) — (Y, 2)ealR) (X, W) =

— X, W) 0ulR) (Y, 2) + g, W) eu(R) (X, 2)) — 2B
q(q — 2)
(9(X, ) g(Y, W) — g(X, W) g(Y, Z)),

PR (X, ¥,2,W) = 8 (40, 2) (v, W) = g(X. W) (¥, 2).

a(q — 1)
p+(R) (4. B, C, X) = R(4, B, C, X) - p—}—l (4(B. C) 0n(R) (4, X) ~
- 9(4, C) ¢/{R) (B, X)) ,
PalR) (4, B, €. 3) =~ (9(8, ©) oR) (4. X) = (4 €) ) (5, X)),
PlR) (X, , 2, A) = ROK, Y, 2, 4) = (o(% 2) eu(R) (X, 4) =
— (X, Z) e(R) (Y. 4)
PilR) (X, Y, 2, 4) = L (0(%,2) ealR) (X, 4) = (X, 2) eu(R) (¥, 1)

p1:(R) (4, X, B, Y) = (R(4, X, B, Y) — R(B, X, 4, Y)),



P12(R) (4, X, B, Y) = 4(R(4, X, B, Y) + R(B, X, 4, Y)) —

= 260X, 7) 0ulR) (4,B) = - o4 B) ol R) (X, ) + 7;’9 4(4, B) g(X, V),
pis(R) (4, X, B, Y) = %g(X, Y) ou(R) (4, B) — T_V;%R) o(4, B) g(X, Y),
PalR)(4,X, B, 1) = = 6(4,B) u(R) (X, ) = 48 g4, By g(x. 7),

o) (4,5, Y) = 228 o4, 5y g(x, 7).

2. Invariant quadratic forms on %(E). Let ¥~ be the space ®* E*; then O(p) x 0(q)
acts upon 7~ as follows:

(A.0)(Xps .o X)) =A™ X, .., 47" X))

for all A€ O(p) x O(q), e ¥, and X, ..., X, € E. In a way similar to the case
of O(n), if F:¥" — R is a homogeneous polynomial of degree h, we say that F is
a product of traces if the following holds:

— k x h is even, equal to 2s, and

— there exist a permutation o of {1,...,2s} and an adapted orthonormal basis
{E,, ..., E,} of E, such that, for all xe 7,

ORND 5

war=1 ug,... us-pr=p+1

o(®"«) (E,,, E, E E, E,,l, E,,...E,_ ,E,._),

where r is an integer such that 0 < r < s, ®*« is the element of ®"" E* taking
(X g5 oo X)) into (X g, X)) X Xy gse0 Xop) X oo X o Xynm1y1 15 - » Xp), and
o(®" o) takes (X, ..., Xyy) into (®" o) (X 1) > Xguy)- It is clear that the expres-
sion of F(a) is independent of the choice of the adapted orthonormal basis, and in
particular, F is invariant by O(p) x O(q). As a consequence of the corresponding
theorem for O(n) [5] (see also [1], [2]), we have

Theorem 2. The vector space of real homogeneous polynomials on ¥, invariant
by O(p) x 0(q), is spanned by the products of traces (as defined above).

Now, for h = 2 and k = 4 we get h x k = 8 and s = 4. Then, the products of
traces, in this case, are the quadratic forms

P n
R — Z
atyees@r=1 ug,etta—p=p+1

(R ® R) (Eal,Eal,.. E,,E, E,,I,E es Euy_,s By, )

where o is a permutation of the set {1, e 8}, and r is an integer with 1 < r < 4.
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Having in mind the defining symmetries of the curvature tensor R, and denoting
by R,; the component of R in Z,,, we get the following products of traces:

For r = 4,
’1 = Z R(Eal’ Enp Eas’ an) R(Ea" Eﬂz’ EGJ’ Ead) = ”R40”2 ’

ai,

Iy = 3 R(Eq, Eqp Eqy Eg) R(Eqs Eop By Eo) = [o(Rao)[* = [ler(R) [y [?

a

I3 = Z R{Eﬂx’ Eaz’ Eﬂ;’ Edz) R(Eﬂa’ Ea4’ Eas’ Ea4) = TV(R)Z .

For r = 0,
[4 = Z R(Eula Euz’ Eu;a Eu4) R(Eu17 Euz! Eu;p Eu4) = ”R04”2 s

LN )

]5 = Z R(Eu,s Eu_ﬂ Euy Euz) R(Eula Eu49 Eu3a Eu4) = HQ(RO4)||2 = "QH(‘R)IHXH'”2 )

For r =
17 = }: R(Ea,w Eula Euu Eaz) R(Eap Eul’ an Eul) = ‘CV(R) TVH(R) 5
18 = Z R(E;1|’ Eﬂ_]’ Ea;a Eaz) R(Ean Eul’ Eap Eul) = <QV(R) ’VXV; QII(R)leV> 5

19 = Z R(Eﬂx’ Eﬂ:’ Eas’ E”l) R(Eax’ Eaz’ Ea;’ E“l) = —}4‘HR31”2 ’

ay.ay.a3.ug

IIO = Z R(Ean’ Env Eu;’ Eaz) R(Ean Eas’ Eu:’ Eas) = HQV(R) iVXHHZ =

= "”‘Q”V(‘;)"\m V”Z .

For r =1,

Ill = Z R(Eup Eu;a Eu,a Euz) R(Euga Ea,’ Eug’ Ea;) = TH(R) TVH(R) ’

ay.ug .3

112 = Z R(Eun Euzs Eu;’ Euz) R(Eu,’ Eals Eup Em) = <QH(R) !HXH’ QV(R)lHXH>;

ap.uy,uz,u3

113 = Z R(Euﬁ Euz* Eu;a Ea,) R(Eul’ Euz’ Eu39 Ea,) = %“RISHZ 3

ay,uy.ux.u3

]14 = Z R(\E"[’ E"z’ Eal’ Euz) R(Elll’ Eus’ Eﬂl’ E“S) = ”QH(R)‘HXV“Z .

Ay g a3

For r = 2,
115 = Z R(Ea]’ Eaz’ Ea,: Eaz) R(Eu,s Euzs Euls Euz) = TV(R) Tl{(R) 5

ap,az,uyp.uz

116 = Z R(Eul, Eala Ea

a;.az,uy,un

= <QV(R)IV><H’ QII(R)leH> s
117 = z R(Eala Eula Eaz, Eu;) R(Eazs Eul’ Ea,a Euz) 5

ag,az.uy,uz

E,)R(E,, E,, E, ., E,) =

It az>

*
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118 = Z R(Ean E“l, Eaz’ Etlz) R(Eal’ E

a(,a2,u1,u2

119 = Z R(Eal’ Eul’ Ea,’ Euz) R(Eaza Eu,> Eaza Euz) = ”QV(R)leHHZ s

ap,az,uy,uz

120 = Z R(EH1> E"l’ Eﬂz’ E“x) R(Eﬂl’ E“z’ Eﬂz’ E“z) = ”QH{\R)‘VXVHZ ’

ai,az,uy,uz

Ea;’ Euz) ’

Uy

121 = z R(Eal’ Eul, Eala Eu,) R(Eaza Euzy Eazs Euz) = TVH(R)Z .

ay,a2,U1,U2

So, from Theorem 2, we have

Theorem 3. The vector space of quadratic forms on R(E), invariant by O(p) x
x 0(q), is spanned by I, ..., I,;.

Now, in order to prove that the invariant subspaces of Theorem 1 are irreducible
we make use of the following theorem:

Theorem 4. [4]. Let G be a subgroup of O(n) and let T be a finite dimensional
real vector space acted upon by G. Let <, > be a positive definite inner product on T,
invariant by G. Then, T is irreducible if and only if the space of quadratic in-
variants on T is one-dimensional.

As a consequence, to prove that one of the fifteen subspaces is irreducible, it suf-
fices to prove that the restrictions to it of the twenty-one products of traces vanish
or are multiples of just one of them. In Table II we list the non-vanishing invariants
on each subspace (we treat only the case p, g = 3, the others being similar).

Then, we have

Theorem 5. The fifteen subspaces given in Theorem 1 are irreducible for the action
of O(p) x O(q).

The norms of the projectors of Z(E) onto each of these subspaces can be expressed
in terms of the quadratic invariants as follows

lp(R)* =1, - 4_ SLa+ oo 1)2(p 5 I,
L

ledR" =L - q 4— 2 (a - 1)2(q -2 o
los(®? = —— 15— 2

16’
q-2 a(q — 2)
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Table 11

Wy I,
4
'%V I = I
1 p(p _ 1) 2
R.R,, I, = 2 -2 I,
p—1 p(p—1)
W I,
4
'%H =
4 q(q — 1) 5
R'Roh 4 - 2 = 2 I
qg-1 a(qg — 1)
gvl I9
1
ng I, = _ 1110
G I3
1
7 Ii; = I,
Sl 117 = “118
S, 117 =118
1
S3 Il7=118=—120
p
1
S 117=118=—119
q
1 1 1
Ss 117=I1s=—121=—119=“120
rq
2
po(R)|* = Is,
2 4
lpo(R? = 4o = —— Lo
p—
4
”P:;(R)”2 = Iio>

—p—l



4
HPS’(R)HZ =4l; - I,
qg—1
4
qu(R)“Z = I,
qg—1
"P11(R)”2 =6l — 6I,7,
4 4 4
”plZ(R)HZ =2g+ 2, —-Io — —I;g + — Iy,
q p rq
4 4
”P13(R)”2 =—l0 — — I,
prq
4 4

||p14(R)”2 =—Ig — — 1,
q pq

4
Ipis(R)? = = 1oy -
prq

3. Conformally invariant projectors. It is a classical result that the space Z(E)
decomposes as a direct sum of three irreducible invariant subspaces under the action
of O(n), namely .
HE)y=W DRDR.R,,
where

W = {ReAE)|oR) =0},

W ® R ={ReRE)|«R) =0},

# = W+ (orthogonal complement in # @ %), and R.R, = (¥ @ %)*-.
If p is the projector of .@(E) onto #’, then p is a conformal invariant, in the sense
that if (.#, g) is a Riemannian manifold, R its curvature tensor, g’ a Riemannian
metric in .#, conformally related with g, and R’ the corresponding curvature tensor,
then

p(R) = p(R),
up to multiplication by a scalar, due to the contraction with g. In this context, we
have

Theorem 6. The projectors py, P4, D7, Do, P11 and py, are conformally invariant.

Proof. Let (.#, g) be a Riemannian manifold and let g’ be a Riemannian metric
on .# such that g’ = e*/g, where f is a real function on .#. Then, the curvature
tensor R’ of g is related with that of g, R, by the formula ([4])

(1) R(L,M,N, W) = e*/(R(L, M, N, W) + AM, N) g(L, W) —
— MM, W)g(L,N) — {L,N) g(M, W) + AL, W) g(M, N) +
+ o] (gL, W) gM, N) — g(L, N) g(M, W)
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for all L, M, N, We Z(.#), where
AM,N) = (Vyo) N — o(M) oN)
and o = df. It can be easily seen that A is symmetric.

From (1) we get
) 0/(R) (4. B) = 0u(R) (4. B) = (p — 2) 44, B) -
~ o4, B)Y HE E) = (7 = 1) o] o(4. B)

forall 4, Be V, {E,},-;...,, being an orthonormal basis of ¥, and from (2) we have

(3) 2/ Tv(R,) = Tv(R) — 2(p — l)azzp:l,l(Ea’ Ea) _ P(p _ 1) “wnz .
(2) and (3) yield
©(R) g'(4, B) 1 ) B
(4) %\_ oy — 0AR) (4, B) =
B 2(2(5)1!);((;1,—1-3)2) T i 5 o(R) (4, B) + 3| g(4, B) + X4, B).

Now, (1) and (4) imply that

R(4, B, C, D) + — - (@(R) (B. ©) /(4. D) — 0(R) (B, D) ¢'(4,C) -

— o/(R") (4, C) ¢'(B, D) + ¢v(R') (4, D) g'(B, C) —
7(R’)

T h =z B D) - (B D)(4.0) -

= ¢*/(R(4, B, C, D) + p+2 (ev(R) (B, C) g(4, D) — 0y(R) (B, D) g(4, C) —

— 0v(R) (4, C) g(B, D) + ¢y(R) (4, D) (B, C) —

_ (R)
(rp=1)(r -2

The case of p, is similar.

(9(B, C) g(4, D) — g(B, D) g(4, C)) .

As for p,, we consider (1) for the arguments 4, B, Ce Vand X € H:
(5) R'(4,B,C,X) = ¢*/(R(4, B, C, X) — A(B, X) g(4, C) + XA, X) g(B, C).
Then
ev(R") = ¢y(R) (4, X) — (p — 1) (4, X)
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whence
XA, X) = p—i—l (ev(R) (4, X) — o/(R) (4, X)),

and substituting (4, X) and A(B, X) in (5) we get the result for p,. That of po is
similar.

Next, let us consider (1) for the arguments 4, X, B, Yand B, X, A4, Y, with 4, Be V
and X, Ye H. By subtraction we get

(6) R(A,X,B, Y)- R(B,X, 4, Y) = e*(R(A,X,B,Y) — R(B,X, 4, Y)),

which gives the result for py;.
Finally, from (1) we get, for A, Be Vand X, Ye H,

(7) R(4,X, B, Y) = e¥/(R(4, X, B, Y) — A(X, Y) g(4, B) —

— X4, B) (X, Y) = |o]* g(4, B) g(X, Y).
Hence,

®) o/(R') (X, Y) = e/(R) (X, Y) — pXX, ¥) —

~ o, V) 3 HEn E) = ploff o(. V),

where {Ea}ﬂzl,...,p is an orthonormal basis of V.
Similarly,

©) u(R) (4. B) = ea(R) (4. B) = g4, B) ¥ A(EwE,) -

— a4, B) — q|o|* g(4, B).
From (6) or (7) we get

n p
(10) e’ 5uR) = wu(R) —p ¥ ME,E) = q) ME, E,) = palo]®.

u=p+

Now, from (7), (8), (9) and (10),

(11) R(4,X,B.Y) - i@v(R') (X, Y)g'(4, B) - éQH(R,) (4,B)g'(X, Y) +
+ L wu(R) g'(4,B)g'(X, Y) =
rq
= ¢/(R(4, X, B, Y) — %QV(R) (X, Y) g(4, B) — %QH(R) (4, B) g(X, Y) +

1
+ — tyu(R) g(4, B) g(X, Y).
pq
The result for P12 follows from (11) and (6).
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We also have

Theorem 7.
o2r [ HR) w(R) ., walR)) _
(p(p - 1) i q(q — 1) ? rq )
_ _w(R) + w(R) 5 Tyu(R) -
pp—1) q(g-1) rq

The proof is straightforward from (10), (3) and the analogue of (3) for .
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