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There is a well-known relation between Moufang planes and certain classes of
Jordan algebras (as described e.g. by H. Freudenthal, T. A. Springer, N. Jacobson,
F. Veldkamp). In this connection it is natural to ask what is the relation between
homomorphisms of Moufang planes and homomorphisms of the corresponding
Jordan algebras. This paper deals with this question. Our research uses the known
result about projective plane homomorphisms and places of coordinate octonian
algebras ([1], [3]). We prove in Theorem 1 and its Corollary that every Jordan
homomorphism with (1 [ij])° = 1[ij]" implies a projective plane homomorphism.
In Theorem 2 we start from a projective plane homomorphism 0, construct a mapping
o of subsets of Jordan algebras and derive the properties of . Theorem 3 is the
converse of Theorem 2.

Let C be an octonion algebra (or Cayley division algebra) over a commutative

field K with a characteristic %2, 3. C is an alternative not necessarily associative
algebra. We consider Jordan algebras 4 = A(C, y;) of matrices

(1) } 0y c 71_1)’35 I
x = {779 @ a ,
| b V3 1923 03

where ;€ K, a, b, ce C (C is called the coefficient algebra of A), a denotes the
conjugate element to a and y; are fixed elements =0 in K. N. Jacobson proved ([4],
p. 128) that there is no loss of generality in assuming that y; = 1. The multiplication
in A is the Jordan multiplication x . y = 3(xy + yx), where xy is the matrix product
A is a commutative not necessarily associative algebra over K with a unit element e.
Throughout the paper we shall assume that i, j € {1, 2, 3}. As usual, let e;; denote
the matrix having 1 in the (i, j)-position and 0’s elsewhere. Thus e = Ze;;. If we put

(2) a[ij] = ae; + Yj_l?iaeji
then (1) yields
(3) x = Zo€i + a[23] + b[31] + c[12].
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If #(x) = Za; is a trace in A4, then Q(x) = % #(x?) is a quadratic form on A and
O(x + ) — Q(x) — Q(y) = #(x . y) = #(x, y) is the corresponding bilinear form.

We note that this Jordan algebra A is an exceptional simple reduced Jordan
algebra with the reducing set of primitive idempotents ey 4, e,, €33 ([4]).

Besides the ordinary product, a crossproduct in A is defined ([2], [7]):

(4) xXy=x.y—3ty)x —1t(x)y — Lt(x, y) e + L t(x)t(y)e.
This product is related to the symmetric trilinear form (x, y, z) on A defined by
(5) (x,9,2) =t(x x y, 2).

Inserting (4) we obtain
(x,yz2)=tx.y.2) = 3ex)(y.z) — 2 t(y)t(x.z) —
—3iz)t(x.y) + T (x) ((y) 1(z) .
From the trilinear form (x, y, z) we determine a norm n(x) on 4 by
(6) (x,x,x) = 3n(x).
An element x € A4 is said to be of rank one if x & 0and x x x = 0.

The following result is known ([9]):

Proposition 1. If x € A, then x x x = 0 if and only if either x is a scalar multiple
of a primitive idempotent or x* = 0.

Recall that an incidence structure is an ordered triple (, 4,I), where = and 1
are non-empty sets of elements called points and lines, respectively, and I is a binary
relation from = to A called an incidence relation.

Denote

I

I

We now define an incidence structure T, .. = (n, 4,1) by putting = = 4 = {IT)
and x1 yiff {x,y) =0, x, ye IT.

Il

{xed; x+0, x x x =0},
{{x) = K*x; xell, K¥ = K\{0}}.

The following proposition are known ([4], [7]):

Proposition 2. If x and y are linearly independent elements of IT, then x x y e II.

Proposition 3. If x, y, z € I, where x, y are linearly independent, then t(x, z) =
= K(y, z) = 0 if and only if z is a multiple of x x y.

A consequence of these propositions is that if x and y are linearly independent

elements of IT, then x x y is either the line incident with the points x, y or the point
of intersection of the lines x, y.

It can be easily proved that the incidence structure ¥, ,, is a projective plane
([4])- T. A. Springer showed that if Jordan algebras A and 4’ have isomorphic coef-
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ficient algebras C and C’, then the incidence structures T, ,, and T, . are iso-
morphic. Thus T, ,, depends only on the coefficient algebra C. This projective plane
<4, is isomorphic to the plane introduced previously in a different manner by
R. Moufang. The above construction of T, has its origin in the starting ideas
of P. Jordan ([5]) and H. Freudenthal ([2]) for K — the field of reals and was
adapted by T. A. Springer ([6], [7], [8]) for an arbitrary field K of a characteristic
#+2, 3. Recall that an octonion plane is a projective plane over an octonion algebra C
with points (a, b), (m), (c0), lines [m, c], [a], [c0] and the incidence relation such
that

(c0) lies on [eo] and [a],

(m) lies on [oo] and [m, c] and

(a, b) lies on [a] and (a, b) lies on [m, ¢] provided b = ma + ¢ witha, b, ¢, me C.
We shall denote this projective plane by P.

Now we shall find a convenient isomorphism between ¥ ,, and P.. Choose in 4
a primitive idempotent u = e;;. Then in accordance with T. A. Springer ([7]) we
associate with the point (b, ¢) the class {x) of all scalar multiples of the element
x € A such that

(7) x=py)=u+310)(e—u)+y*—100)(e+u)+y=
=u—Qy)u+y +y,
where y = b[31] + c[12]. It can be verified that
(3) Il'1 c yilyshb
X = || 73"'74€ 72 '716€ 3 738b ||,
b be y7 y3bb

where x x x = 0 or x € IT. So we have (b, ¢) & (x>. By ||(b, ¢)| we shall denote
a chosen matrix of the class {x). The line passing through the points (bl, cl) and
(b, c,) is associated with the matrix [[(by, ¢1)| % [(b2s ¢2)||. In detail, we have

(e=)
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1 c 71 'ysb
123 ch V2 7’1‘36 123 ?3Cb
b be yi ly;bb ”

&, 9l =

for all b, ¢ € C. This enables us to evaluate
Using the incidence relation I we obtain

101l = 110, 0)] x [0 )] = ess.,
[0, o] = [0, 0)f =

For b,ceC (b =+ 0 and, if necessary, also ¢ F 0) we have

l=822.

0 o0 0
I[eb™*, 0] = x |8, Q)] = ‘ Vi '73bb 73 '752b
10 =be 72 vsce
[ vi'vabb 0 —71 '73b |
1610 = (e ] x (b, 0)] =]I 0 0 ,
—b 1
" y3 e —c 0
Ito. <1l = 0.l x I, 9l = | =3 'ne 10
|’ 00

[KO) = [Ifo, o1 x [0, 1] = es,
leo)l = L0l < [t = eza
Ilecdll = 1O > ()] = ess

l 00 0
I(eb™)] = [[[eo]]| x [[eb™", 0 = [0 v:"ysce v3'y5eb l
0 be 97 y3bb

10, O < (e, 0)ff =

Il

I[=eb™" €]l

(bb) (c2) —yl"yz(b—l;) ¢ —(cc) b
= || —(bb) ¢ 71 'y,bb cb
_Y;1Y1(05) b ')’3._1)’2bc ')’3_17155
Putting b = —m™'c in the last expression we get |[m, c]|.

Various forms of T, ,, depend on the choice of the starting idempotent u, but all
are isomorphic.

Let A and A’ be Jordan algebras. The mapping ¢: A — A’ satisfying (x + )) =
= x° + y° is called
(i) semilinear if
9) (ox)” = *x” for xeA, aeK, where x:K K’

is an associated isomorphism ,
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(ii) a Jordan algebra homomorphism from A into A’ if
(10) (x.y=x".y" forall x,yed.
Now we shall prove the following

Lemma. Let ¢ be a semilinear mapping of A into A’ with an associated iso-
morphism x: K — K’ satisfying ¢’ = e'. Then g is a Jordan algebra homomorphism
if one of the two equivalent conditions is valid:

(11) n(x7) = ¢ n(x)*,
(12) X7 x y7 = (x x y), geK'*.

Proof. If we put x = e in (11) then we get 1 = n(e') = n(e°) = ¢ n(e)” = o.
Thus we have

(117 n(x%) = n(x)*.
Using (x, y, z) = t(x X y,z) and (x, x, x) = 3 n(x) we obtain
(5309 = M+ 3+ 2) = nx +3) = s+ 2) =y +2) +

+n(x) + n(y) + n(z)).
Then (11") implies

(13) (%% 5%, 2% = (x, y, 2)".
Now #(x) = t(e.x) = t{e x e, x) = (e, e, x), " = ¢’ and (13) yield
(14) t(x") = t(x)" .

Further #(x x y) = t(x x y, e) = (x, y, e), (13) and (14) imply
1(x7 x y°) = (x% )% €)= (x, y, &) = t(x x y)* = t((x x y)°)
and since #(x) is a nondegenerate form we have
(15)° (x x )7 =x"x ).
So we have proved that (11) implies (12).

It remains to show that ¢ is a Jordan algebra homomorphism. From the definition
of the cross-product it follows that

(16) yxe=4ty)e—y).
Using the trilinear form we get (y, y, ¢) = (y,e,¥), t(y x y,e) = (y x e, y) or
(17) Hy x y)=1(y x e).y).

Then (y x y)* = t((y x e).y)* (14) and (15) give
t(y” X y") = t((y X e) . y)" .

52



After arranging the left and the right hand sides of the last equation with help of
(14)—(17) the left hand side assumes the form

1(y7 x 3°) = (" x €).)7) = 3((t(7) & = y°).y") =
= 31(1(y7) ¥ = (¥°)) = 3(() 1»7) = KO7))
and the right hand side
(v x ). y)* =t((y x €. y)) = 3(((») y — ¥*)) =
= 3(t(y7) ¥ = (»?)) = 3(() 1(y7) — ((»*))) -
Thus we obtain
(18) t((y7)?) = d(y?)) = (»*)*.

Hence we get that the quadratic form Q(x) = % (x?) and the bilinear form t(x, y) =
= 0(x + y) — O(x) — Q(y) satisfy
(19) 0(x") = 0,

t(x, y)* = t(x%, y°).

Finally, the definition of the cross-product together with (15) and (19) gives the re-
quired relation (x . y)° = x7. y°.

Now we prove that (12) implies (11). The definition of the cross-product yields
e x e =e. Then (12) implies ¢ = e° x e” = ge’ = ¢¢’ and ¢ = 1. Again using
(16) we obtain (t(y)*e” — y°) = (y x €)” = y° x & = (1(y°) ¢ — »°) and

(20) (y) = vy

Further, (x,y,e) = #(x x y).e) = f{x x y), (12) and (20) give (x, y, ¢)* =
=1t(x x y)* = (x x ¥)°) = t(x* x y°) = (x°, y°, €'). We also know that (x, y, e) =

=(x,e,y) = t((x x €).y) = 3((t{x) e — x). y) = 31(t(x) y — x . y). Hence suc-
cessively obtain

3(H(x7) y* = x7.y7) = (x", ¢, ¥°) = (x, &, y) =
= 3((x) y — x. py = $(t(x)* y* = (x. ¥))s
(x%) y° — x°.y° = 1(x°) y° — (x.y)°,
(x.y) =x".)",
(x% 5% 2%) = 1((x* x y°).z°) = t((x x y)°.z2°) =
=1(((x x y).2)") = t((x x y).z2)" = (x,, 2)*.
Finally, (x, x, x) = 3 n(x) yields the required relation
n(x%) = n(x)*.
N. Jacobson proved ([4], p. 130)

Theorem. Let A(C, y;) and A'(C', ;) be Jordan algebras. Suppose 1 is an octonion
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algebra homomorphism of C into C' such that y! = y;. Then the mapping 6: A — A’
defined by x° = ||x%;|| (x € 4, x;; € C) is a Jordan algebra homomorphism satisfying
(1[i])° = 1[if]’, where a[ij] € A, a'[ij]' € A’,a e C,a’ € C'. Conversely, if 6: A — A’
is a Jordan algebra homomorphism sytisfying (1[ij])” = 1[ij]" then the mapping
n: C > C' defined by a'[ij]' = (a[ij])” is an octonion algebra homomorphism
satisfying y! = yi.

Let T = (m, 4,1) and T’ = (n/, X', I') be two incidence structures. The mapping
0: T > I is called a homomorphism of T into T’ if B = n/, 2P = A and xIy
implies x° I’ y°.

Let A(C, y;) and A'(C’, y;) be Jordan algebras with octonion coefficient algebras
C,C" and let T, ,, and T,. .- be the corresponding projective planes. Now we shall
prove

Theorem 1. Let o: A(C, y;) > A'(C', y;) be a semilinear mapping such that
(21) n(x°) = on(x)*, xed, geK*, n:K—->K

is an associated isomorphism ,

(22) (L) = 1]

Then the mapping 0: X, ,, > T, .- defined by |X°| = x°, where X is a point or
alinein X, . and x € A is its corresponding expression in A, is a projective plane
homomorphism satisfying

23 (0,00 =(0,0y, (L1)’=(L1), (0 =(0), () = ().

Proof. From (22) we get ef, = e};, i = 1,2,3, and €° = Zej; = Zej; = €. Now
we can use Lemma, by which ¢ is a Jordan algebra homomorphism. Further, in
accordance with Jacobson’s theorem there exists an octonion algebra homomorphism
n: C - C' with a"[ij| = (a[ij])” and y] = ;. This all implies (23).

We recall that (x, y, z) = #(x x y, z) which implies that xeIT if and only if x + 0
and (x, x, y) = 0 forall y € A. Now from (x°, y°, z°) = (x, y, z)* it is clear that x € IT
if and only if x®eII’. Lemma also gives (x x y)® = x” x y° which guarantees
that 0 reproduces the incidence or 6 is a projective plane homomorphism. This
completes the proof.

From Theorem 1 and Lemma we have the following

Corollary. Let o: A(C,y;) > A'(C', v}) be a Jordan algebra homomorphism such
that (1[ij])” = 1[ij]’. Then the mapping 0: T, ,, — T, defined by |X°| = x°
(with X, x as in Theorem 1) is a projective plane homomorphism satisfying (23).

Let C,, = Cu {00} and let us extend the ring structure on the octonion algebra C
to C,, by setting 0”1 = 0,07 = 0,a + 0 = w0 + a = o forae C and a0 =
= owa = o for 0 + g € C. Similarly we extend another octonion algebra C’. Note
that o0 + o0, 0co and 000 are not defined.
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A place on C is a mapping ¢ of C,, into C., which satisfies
(i) 12=1,
(i) if a® + b® is defined for a, be C, so is a + b and (a + b)® = a® + b°,
(iii) if a®b? is defined for a, b € C, so is ab and (ab)® = a’b®.

Note that (a7 *)? = (a®)™*,0° = 0, 0% = o0.If a? = 0, b® + oo then(a + b)* =
= 00. Also b? = 0 is equivalent to b* = 0, ¢ = oo is equivalent to ¢” = oo and
(—c)? = oo.

V. Havel ([3]) and J. R. Faulkner - J. C. Ferrar ([1]) proved

Theorem. Let 0: P. — P.. be a projective plane homomorphism satisfying

(i) (0,0)° = (0,0), (0)° = (0), (e0)° = (o0, (1, 1)" = (1, 1),
Then there exists a place ¢: C,, — C., (in [3], a place is called a pseudohomo-
morphism) with

(i) (m) = (m),

(iii) (a, b)® = (a®, b®) for a + © % b, a? *+ o + b?,

(iv) (a, b)’ = ((ba™')?) for a + oo * b, but © € {a® b*},

(¥) [a = [,

(vi) [m, c]® = [m®, ¢*] for m + o0 % ¢, m® + o0 =+ ¢,
(vii) [m, ]’ = [(=m™'c)?] for m + o0 *+ ¢, but o e {m?, c?}.

Conversely, every place ¢: C,, — C., of octonion algebras with (ii)—(vii) induces
a homomorphism 0: P, — P¢. of projective planes with (i).

Now we shall prove
Theorem 2. Let 6: P, — P, be a projective plane homomorphism satisfying
(24) 0,00 = (0,0, (1,1)° =(1,1), (0)°=(0), ()= (o)

and let ¢: C, — C. be the corresponding place in accordance with Havel-
Faulkner-Ferrar’s theorem. Then the mapping o: II — II' constructed by

(235) @l =l = Il

(26) I[e1l" = [CeX’l = ICe°10 s

@7) &0l = 1o =% e for byeb?c” + 0,

(28) [[m. ell” = |[m. eI’ = [[m? I for m,c,m®,c® % o0,

(29) [ )7 =B, cf'] =[(cb™) for biek oo, but coe{b® e},

(30) |[[[m, c]|” = |[m, c]’] = |[(=m~e)]| for m,c+ oo, but ooe{m® ¢}
satisfies
(31) (0x)° = 8°x°, where deK*, d°eK'*, xell,

(32) x7 x y° =g(x x y)° for x,yell, geK'*.
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For every X € P. we can choose such a matrix x € IT that
(33) X = % = [xil” = [x5l, where all xf; + 0.
If we extend the mapping o on a subset B of A, where B = {y € 4; V5 * w}, by
"= |y5], then
(34) x*+ )’ =(x+y) for x,yeB,
(35) (L] = 1[i] -

Proof. In accordance with T. A. Springer we associate with a point or a line
X € P the class {x) of all scalar multiples of the element x € IT, where x is a matrix
satisfying x = |X||. Thus 6x, 6 € K*, is also a matrix expression of X and for every

y € {x) we have y° e (x°). Therefore (6x)° = §'x°, 8’ € K'*. Here it is sufficient to
choose &' = 6% and we get (31).

From the assumption that 6 is a projective plane homomorphism and from (24)
we get [0,0]° =[0,0], [»]" = [co], [0]°=[0], [L, 0] =[L,0], [0,1]° =
= [0, 17, [1]° = [1] (1.0’ = (1,0). (0 1) = (0. 1), (1) = (1). Then (0, 0)" =
= (0, 0)’, (00)? = (o)’ and (0)° = (0)" imply €f; = ej;.

Now 1? = 1, 0° = 0 and (31) imply (33) in the cases (27), (28) and in (25), (26)
with ¢? &= o0 # b®. So in these cases we get

Sl o I Vel B R el (CTR R I G
Then
112 = 0, 1y = [0, 0y — v "¥il(e0) || =
= [0, D" = (0, 0)7 = (2 *7ull(e0) )" = (1[12])"

1317 = ||[(1, 0y = (0, 0)'[| — ¥~ "w3](0)[ = (1[31])",
1[32] = (1| = »2~ "vill(eo) || = »i~"¥5] (O)[ = (1[32])"-

Using 1[ji] = y; "y[ij] we get (1[ij])" = 1[ij]" for all i,je{1,2,3}. Thus (35)
holds.
Now we shall prove (33) in the remaining cases.

Similarly

If in (25) ¢® = oo we choose
| (o) = (c&)™* (2 "vscters + 1 'vsess + B[32]) =
=75 'v1€22 + 77 '73(c8) " €33 + (c2) 7" B[32]
and then x” = ()" = [(¢*)] = [*5] = (o) ]-
Similarly, if in (26) h? = oo we choose
I[6]] = (bB)~* (37 '73bbess + es3 — b[31])
and x* = [[6]]" = [[&°]] = [~5] = I[]]-
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In the case (29) for b* = o0 We choose
1B, )| = (6B)~" (eyy + 72 'victess + v7 'v3bbess + c[12] + b[31] + be[32])
and x° = ||(b, oF = (b)) = [x2], x¢ * oo, for ¢» = oo we select
(6, O = (€)™ (exs + 75 "vactens + 37" 7sbBess + c[12] + B[31] + be[32])

and we have again x° = ”(b, ol = ”xf’l |, X7 =+ oo.
In the case (30), substituting b = —m~!c we get m = —¢b~ ! and

[[m, ]| = |[—cb™", ]| = 8((bB) (&) esy + y; 'y,bbes, +
+ 73 'yyccess + €b[23] — (c¢) B[13] — (bb) ¢[21]) .

The relations m? = oo, b? % 0 imply ¢” = o0, 5o that we choose & = (c¢)~*. Then

x7 = [m, e]|7 = [[(=m~ )T = IxGl . x3 + o0
The relations ¢? = o0, b® = 0 imply m = —c¢b™! + o, m® + . Choosing
& = (e2)~* (bb)~* we have again
x7 = <Gl xf# 0.

Thus we have proved (33).

Now using (33) we can extend the mapping o on a subset B = A by )* = [y%],
where y € B, B = {y € 4; y¥; + oo}. Then it is clear that (34) is fulfilled.

The assumption that 6 preserves the incidence and the construction of ¢ lead to
2] = ] x [¥]. o]2] = [x°] x [¥*], e|X] x [¥]) = [X]" x [¥]F, where
X, Y are points (lines) and Z is their joining line (intersection point), ¢ € K'*. There-
fore (32) is fulfilled. This completes the proof.

The last theorem shows that the suppositions of Theorem 1 are too strong. There-
fore we now present a theorem with weaker conditions as a converse of Theorem 2.

Theorem 3. Let A(C, ;) and A'(C',7}) be exceptional simple reduced Jordan
algebras, IT and II' sets of all their elements of rank one and o: IT U {1[ij]} —
- IT" U {1[ij]'} a mapping satisfying

(36) (6x)* = 6'x, where xeIl, deK*, & eK'*,
(37) x*x ¥y =g(x xy), x,yell, geK'*,
(38) ALgD = 1]

(39) X{+ x5+ o+ xg = (%1 + X, + ...+ x,)°, where

xellu{l[ifl}, k=1,...,n.

Then the mapping 0: X4, —~ T4, defined by |X°| = x°, where X is a point
or a line in ¥4, and x eIl is the corresponding matrix, is a projective plane
homomorphism satisfying (0, 0)0 = (0, 0)', (0)9 = (0)', (00)0 o (oo)', (1, 1)9 =

= (1, 1.
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Proof. Using our fundamental correspondence between X and {x) we verify
by (36) that y* e (x°) for all y € {x).

From (38) we obtain ej; = ej;, which gives (0, 0)° = (0, 0), ()’ = (), (0)° =
= (0)'. Using

N(l, l)” = 1[12] + 1[31] + 1[32] + ey + Vz_l?’lezz + ?1_17’3933 s

with help of (36), (38) and (39) we deduce (1, 1)’ = (1, 1)".
Finally, (37) guarantees that 0 preserves the incidence and this completes the proof.
Theorems 2 and 3 are certain analogues of the fundamental theorem of projective
geometry ([4], p. 406). Here we have investigated a projective plane homomorphism
while in the fundamental theorem we have a projective isomorphism.
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