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0. INTRODUCTION

Consider a reaction-diffusion system

(RD) ? =d, Au + f(u,v),
t
v
— =d, Av + g(u,v
5 =% (u, )
on Q with the boundary conditions
(BO) %=§B=Oonl’m u=1u, v==9onITy.
on  on

Suppose that Q is a bounded domain in R" with the boundary 02 = I'y + I'p, f, g
are real functions on R?, d,, d, are positive parameters (diffusion coefﬁcients) and
i, v are constants such that f(i, ) = g(@, ?) = 0, i.e. @, 7 is a stationary and
spatially homogeneous solution of (RD), (BC) (and also of (RD) with the Neumann
boundary conditions). In mathematical models arising in biochemistry, morpho-
genesis, population dynamics etc., the following situation sometimes occurs: For
a fixed d, (we shall suppose d, = 1) there is d, > 0 such that the solution U =
= [u, 8] is stable if d; > d, and unstable if d; < d,; moreover, d, is the greatest
bifurcation point of the corresponding stationary system

(RDy) 0=d, Au + f(u,v),
0=Av + g(u,v)

with (BC), i.e. a branch of spatially nonhomogeneous stationary solutions of (RD),
(BC) bifurcates at dy, U from the trivial branch {[d, U]; d € R, U = U}. Such a situ-
ation in the case n = 1 (i.e. @ =(0,1), Au = u,,, Av = v,,) with the Neumann
boundary conditions is described in detail for instance in [8], and an analogous
information about the stationary solutions can be obtained (by analogous con-
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siderations) if the Dirichlet boundary conditions*) or combined boundary conditions
(0.1) u©0) =a, u(l)=0, v(0)=17, v(l)=0
are considered.

In the paper [7], the system (RD) with some unilateral conditions instead of the
usual boundary conditions is studied. Problems of such a type are formulated in

terms of abstract inequalities on cones in a Hilbert space, the simplest example being
the system (RD) on Q = (0, 1) (n = 1) subject to the conditions

u(0) = u (1) =0,
v(0) =0, v(1)25, v(1)=20, (v(1)=d)v, (1)=0.

The sign = can be replaced by =<, and also some more complicated conditions can
be considered. In [7], simple examples are given showing that i, © can be an unstable
solution of the corresponding linearized system with unilateral conditions even for
dy > d,, i.e. that unilateral conditions can have a destabilizing effect in a certain
sense. A result about eigenvalues of inequalities was announced and it was shown
how an abstract theorem about the destabilizing effect of unilateral conditions follows
from it.

The aim of the present paper is to prove (under certain assumptions) the existence
of a bifurcation point d; of (RDg) with unilateral conditions such that d; > d,,
i.e. the existence of spatially nonconstant stationary solutions bifurcating from the
point dy, U lying in the domain of stability of U as a solution of (RD), (BC). We
do not specify the notion of stability because it is not necessary for our purposes —
all the results will be formulated in terms of bifurcation theory. We shall consider
mainly the case when the Dirichlet condition for u is prescribed at least on part of
the boundary, i.e., the case of purely Neumann conditions is excluded. (For more
precise formulation see Remark 1.1.) The simplest case of the corresponding unilateral
conditions is

(0.2) u(0) =i, ufl)=0,
v(0) =5, »1)27, v (l)=20, (v(1) — D) v (l)=0.

In the case of Neumann conditions on the whole boundary we shall obtain either
the existence of nonhomogeneous solutions of (RD) with unilateral conditions or
the existence of nonhomogeneous solutions to the corresponding shadow system for
d - + oo, introduced in Section 5, i.e. (roughly speaking), the obtained bifurcation
point d; need not be finite.

The precise formulation of the problem in terms of abstract inequalities is given
in Section 1. The presentation of main results is the subject of Section 2. An abstract
result about the greatest bifurcation point for inequalities is contained in Theorem

*) We want to study only the case when ¥ = u, v = p is a solution; hence, the only possible
Dirichlet conditions can be given by the values #, v.
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2.1, Remark 2.1 deals with the special case of reaction-diffusion problems with uni-
lateral conditions. Theorem 2.2 explains how the greatest bifurcation point of the
inequality from Theorem 2.1 can be obtained from the bifurcation point of the
equation by a homotopy joining the inequality with the corresponding linearized
equation. Further, basic principles of the proof of Theorem 2.2 are explained. The
basis for this proof are Lemmas 2.1, 2.2 (which seem to be interesting by themselves
and therefore they are also included in Section 2) and a modification of Dancer’s
global bifurcation result (for the equations) which is given in Section 3. The detailed
proof of Theorem 2.2 (i.e. also of Theorem 2.1) is the subject of Section 4. Let us
remark that the method of the proof is a modification of that developed in [4, 5, 6].
In Section 5, the case of Neumann conditions on the whole boundary is briefly
discussed.

1. NOTATION. ABSTRACT FORMULATION OF THE PROBLEM
AND SOME COMMENTS

Let H be a real Hilbert space with the inner product <+, > and with the cor-
responding norm |- |, K a closed convex cone in H with its vertex at the origin. We
shall denote by H the Hilbert space H x H with the inner product -, +)>.. given
by U, Wy.=<u,wy + <v,z) (U=[u,v], W=[w,z]) and with the cor-
responding norm ||| .. The identity mapping in H and H will be denoted by I and I,
respectively. The interior and the boundary of a set M will be denoted by M° and oM,
respectively. We shall suppose K + H, K° + 0. The weak convergence and the
strong convergence is denoted by — and —, respectively, R and R* will be the set
of all reals and of all positive reals. Throughout the paper we suppose that

(A) A is a linear completely continuous symmetric positive*) operator in H,

(N) Ny, N,: H — H are nonlinear completely continuous operators,
N{U) _
vy .-o U]~

We shall study the bifurcation problem for the stationary inequality
(ST) ~ ueH, vek,
du — by Au — by, Av + Ny(u,v) = 0,
v = by Au — byyAv + Ny(u,v), ¥ —v> 20 forall YyeK,
where b;j(i,j = 1, 2) are given real numbers satisfying

(SIGN) bisbyy <0, byy +0, by, <0.
*) Le. {Au,uy >0 for all u = 0.
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Simultaneously the system of equations
(SE) du — by Au — by,Av + Ny(u,v) =0,
v — by Au — by,Av + Ny(u,v) =0
will be considered.
Remark 1.1. Consider the reaction-diffusion system (RD) from Introduction with

a fixed d, = 1. Suppose that f, g are twice continuously differentiable, f(i, 7) =
= g(i1, v) = 0 with some & > 0, & > 0 and

(SIGN,,) g(ﬁ,ﬁ)@(a,ﬁ)<0, g(ﬁ,ﬁ)#O, a—g(ﬁ,ﬁ)<0.
ov ou ou ov
Set

)
b11=g[(ﬁ»l7, b12=‘£(ﬁ,5,
ou ov

0g ,_ _ g ,_ _
by, = —(u,v), by, =—(u,1).
i 6u( 2 61:( )

First, consider the case n = 1, 2 = (0, 1) and the boundary conditions (0.1). Intro-
duce the space H = {u € W}(0, 1); #(0) = 0} with the inner product

1
(1.1) {u, @ =f u,p.dx forall u,oeH
)

and with the corresponding norm | || which is equivalent on H to the usual norm of
the Sobolev space W(0, 1). Introduce operators A: H — Hy, Ny, N,: H — H by

{Au, @) = J'l up dx,
0
(Ny(u, v), @) = —Jl[f(ﬁ+u,ﬁ+ v)-—g(ﬁ,ﬁ)u —g(ﬁ,ﬁ)v:lq)dx,
0 du v

r _ dg ,_ g ,_
{Ny(u, ), ¥> = ~f [g(u +u, b+ v)— = (#,0)u — ——(u,v)v]l//dx
o ou ov
for all u, v, @, Y € H. It is easy to see that if u, v satisfy (SE) then the couple u + i,
v + 0 is the classical solution of (RDs), (0.1) (we have u, v e C*0, 1)). Let K be
a cone in H with its vertex at the origin. It is natural to define the weak solution of
the system (RDg) with unilateral conditions given by H, K, @, 7 as a couple u + i,
v + 7, where u, v satisfy (SI) with the operators defined above (see [7], cf. e.g. [2]).
Particularly, if we choose K = {ve H; v(1) = 0}, then it is easy to see that the
weak solution of (RDg) with the conditions given by H, K, i, ¥ satisfies (RDg),
(0.2) in the classical sense (we have u, v € C*(€0, 1)). (In more complicated examples
the weak solution of (RDs) with conditions given by K need not be a classical solu-
tion of the corresponding boundary value problem.)

In the case n > 1 we shall consider a bounded domain in R” with a lipschitzian
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boundary dQ. We shall suppose that I'j, I'y are disjoint sets which are open in 0Q
and such that meas [0Q\(I'p, U I'y)] = 0 and meas I';, > 0. We shall define H as
the space {u € W)(Q); u = 0 on I'j, in the sense of traces} equipped with the inner
product

(1.2) u, ) = | Y up9,, dx forall u,peH.

gi=1
The corresponding norm is equivalent on H to the usual norm of the Sobolev space
W3() under the assumption meas I', > 0. Further, we can define the operators 4, N;
as above (but by the integrals over Q). It is easy to see from the usual regularity
argument that if u, v is a solution of (SE) then u + #, v + ¥ is also a (classical)
solution of (RDg), (BC). Analogously as above, we can consider a cone K with its
vertex at the origin in H and define the weak solution of (RDg) with the unilateral
conditions given by H, K, #i, ¢ as a couple u + i, v + 0, where u, v is a solution
of (SI). For example, for K = {we H; w < 0 on I'y} the weak solution of (RDg)
with the conditions given by H, K, u, © is the weak solution of (RDS) with the bound-
ary conditions

u=u, v=>vonly,

- = 9_§Oav

IIA
I

; 92(0-17):0 on Iy.
on

D
S
S

Remark 1.2. Speaking about the problem (RDg) we shall automatically have in
mind the weak formulation given by (SE) or (SI). Particularly, in this sense we can
speak about critical or bifurcation points of (RDS) (with (BC) or with the conditions
given by H, K, i1, b) which will be defined below for (SE), (SI).

Remark 1.3. We shall usually write (SI) and (SE) in the vector form
(sp~ Uek,

(D(d)U — BAU + N(U), ® — U>. 20 forall ®#ekK
and

(SE)~ D(d)U — BAU + N(U) =0,
respectively, where

R={UeH; U=[uv], veK},

D(d):(g:(l)), ie. DU =[du,v] for U=T[u0],

B is the matrix with the elements b;; (i,j = 1,2),
AU = [Au, Av], ie. BAU = [byAu + by,Av, by Au + by, Av],
N(U) = [Ny(u, v), Ny(u, v)]

forallU = [u, v] € A. Simultaneously, we shall consider the corresponding linearized
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problems

(L)~ Uek,
(D(d)U — BAU, & — Uy. =0 forall dek,
(SEL)”~ D(d)U — BAU = 0.

Definition 1.1. A point dy, > 0 is called a critical point of (SIL)~ or a critical
point of (SE.)™ if there exists a nontrivial solution of (SI.)~ or of (SE,)"~, respectively,
with d = d,. We shall denote the set of all solution of (SI.)~ and of (SE.)~ for
d =d, by E/(d,) and E4(d,), respectively. A critical point d,, of (SE.)" is simple if the
dimension of ) Ker (D(do)I — BA)* is one.

st .

Definition 1.2. A point do > 0 is called a bifurcation point of (SI)™ or a bifurca-
tion point of (SE)~ if any neighbourhood of [d,, 0] in R x H contains a solution
[d, U] of (SI)~ or (SE)~, respectively, satisfying |U]|. = 0.

Remark 1.4. If d,isa simple criticial point of (SE.)™~ then Eg(d,) is spanned by
a single vector W,. If Eg(dy) n K° # 0 then we can choose W, such that — W, e K°,
W, ¢ K.

Remark 1.5.If d, is a bifurcation point of (SE)~ then d,, is a critical point of (SEy);
further, if d,, U, satisfy (SE)~, d, > do, |U,|~ -0, W, = U,[|U,|. —~ W, then
W, —» W, We Eyd,). Analogously, if d, is a bifurcation point of (SI)~ then d, is
a critical point of (SIp)™; if d,, U, satisfy (SI)~, d, —» do, |U,||~ =0, W, =
= U,/|U,]|~ = W, then W, > W, We E/(d,). This will follow from Remark 2.5
by setting 7, = 7 = 1 (cf. also [6, Remark 1.2]).

Remark 1.6. In the sequel, we shall have in mind the situation mentioned in
Introduction when d, separates the domain of stability from the domain of instability
of the solution U of (RD), (BC). In some examples (e.g. in the situation described
in [8]) this fact is connected with the following assumption (examples will be studied
in a forthcoming paper):

(GC) for any d > d,, all the real eigenvalues of B4 — D(d)I are negative,
for any d e (dy — &, dy) with some & > 0 there is one positive simple eigen-
value of B4 — D(d) I and the other real eigenvalues are negative.

Note that (GC) particularly ensures that d, is the greatest critical point of (SE;)~
(see Definition 1.1). (

Remark 1.7. Let us remark that if our space is equipped with the inner product
(1.1) or (1.2) then A is represented by the identity mapping in H in the weak formula-
tion (Remark 1.1). If meas I', = O then (1.1) does not define an inner product and
it is necessary to use the usual inner product >

(1-3_) Cu, @) = | (X ux s, + nue) dx

o i=1
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with a positive 5 and to replace the expressions in (SE) and (SI) by
du — (byy + nd) Au — by Av...,
v — by Au — (byy + 1) Av ...

This creates no problem with the second equation or inequality provided 7 is suf-
ficiently small. Complications arise in the first equation because the coefficient
b,, + nd depends on the variable parameter d. More precisely, see Section 5.

Remark 1.8. It would be possible to replace (BC) by the boundary conditions

gﬂ:Oon I'yy, u=#only,, @=00n I'y,, v=vonlp,,

on ’ ’ on ’ ’

where I'y y + I'y 5, I'py + I'p , in general, and suppose only meas I';, ; > 0 (i.e.,
Neumann conditions can be prescribed for v on the whole boundary, cf. Remark
1.7). But in this case it would be necessary to consider different spaces H,, H, for
u, v and the situation would be formally more complicated.

2. MAIN RESULTS

Theorem 2.1. Let d, be a simple critical point of (SE)~ satisfying (GC) from
Remark 1.6, Eg(do) n K® % 0, and let (A), (N), (SIGN) be fulfilled. Then there
exists a bifurcation point d; of the inequality (SI)™ satisfying dy > do. In more
detail, there is 5, > 0 such that for any 6 € (0, 8,) there exist d(8), U(d) satisfying
(SD~, U(8) e 0K, |U(3)|% = 6, d(8) > do and such that all the limit points d;*)
of d(3) for 6 — 0, are greater than dy; d(6), U(8) do not satisfy (SE)7.

Remark 2.1. Consider the system (RD) satisfying the assumptions of Remark 1.1,
i.e., particularly, meas I', > 0 and (SIGNfg) hold. Let H, A4, N be from the definition
of the weak solution (see Remark 1.1) and let K be a closed convex cone in H with its
vertex at the origin. For this special case we can read Theorem 2.1 as follows:

Let d, be the greatest critical point of (RDg), (BC), i.e. the greatest d for which
A = 0is an eigenvalue of the problem

(RD)) dAu+g(ﬁ,ﬁ)u+al(ﬁ,E)v=—lAu,
ou ov

Au+@(a,ﬁ)u +@(a,ﬁ)v= —AAv
ou ov

with (BC). (This is the classical formulation of BAU — D(d) U = AU.) Suppose that

d, is simple (i.e. dim {J Ker (D(do)I — BA)* = 1). Let all the real eigenvalues of
k=1

(RD,), (BC) be negative for any d > d,, and for any d e(d, — &, d,) (for some

*) There is at least one.
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¢ > 0) let there be a unique positive simple eigenvalue of (RD;), (BC), the other real
eigenvalues being negative. Suppose that there exists a solution ug, v, of (RD,),
(BC) with d = d, 2 = 0 satisfying v, — & € K°. Then there exists a bifurcation point
d; > d, of (RDs) with the conditions given by H, K, i, . For any & € (0, §,) there
are d; > d, and a nonconstant weak solution u;, v, of (RDs) (with d = d;) with
the conditions given by H, K, i, 3, satisfying |[u; — i, v; — 5]|2 = 6, v; — b€ 0K;
ds, us, vs do not satisfy (RDg), (BC). Analogously for n = 1, Q = (0, 1) and the
boundary conditions (0.1). Particularly, for the cone K = {ve H; v(1) 2 0}, d, is
a bifurcation point of (RDs), (0.2) and dj, u;, v, are solutions of (RDy), (0.2) satis-
fying vs(1) = ¥ (see Remark 1.1).

For this reformulation of Theorem 2.1 for the case of reaction-diffusion systems it
is sufficient to recall Remark 1.1. Let us remark that all our assumptions are satisfied
in the situation described in [8] We shall study the applications more precisely in
a forthcoming paper.

Remark 2.2. We shall denote by P and P the projections onto the closed convex
cone K in H and K in H, respectively, i.e.

“Pu - u” = min Hw — u“ , ﬂﬁU — U“., = min ”W—— U”~ .
wekK Wek

Obviously PU = [u, Pv] for all U = [u,v]e H. It is easy to see (precisely see
[10]), that P is positive homogeneous (P(tu) = tPu for t >0, u € H), lipschitzian
and
(P) (I-Pu=0 for ueK, |u|*=<I—P)u,uy>0 for u¢K,
(P, K" {(I—=P)u,vy) <0 for u¢K, vekK°.
The same holds for P, I, K.

Remark 2.3. It is well-known (see e.g. [10]) and easy to see that for any Ve A,
PVis the unique point from K satisfying

(V—PV,W—Pry=<0 forall Wek.

The inequality in (SI)~ can be written as (D" *BAU — D"'N(U) — U, W — U »< 0
where D™! is the inverse of D(d). It follows (setting V= D' BAU — D' N(U))
that (SI)~ is equivalent to

(2.1) D(d)U — P(BAU — N(U)) = 0.

Analogously, d is a critical point of (SI.)~ with U € E/{(d) if and only if

(2.2) D(d) — PBAU = 0.

By using the fact that U € K if and only if D{d) U e K for any d > 0, it follows that
(2.3) UeEgd)nK ifandonlyif UeE(d), BAUeK;

(2.4) U satisfies (SE)~ and U € K if and only if U satisfies (SI) and

BAU — N(U)eK.
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Definition 2.1. For each § > 0 fixed we shall denote by Z; the closure (in B x
x H x R) of the set of all [d, U, 7] e R* x H x (0, 1) such that

() U] = o,
(b) D{d)U — BAU + «I — P)BAU + tR(U) = 0,
where R(U) = PBAU — P(BAU — N(U)),
ie. R{U)=[N,(U),Ry(U)] with R,(U)=
= P(by Au + by, Av) — P(by;Au + by4v — No(U)) for U = [u,v].
Remark 2.4. The assumptions (A), (N) imply that

(R) R: H - A is completely continuous, lim RU) =0
noi~o U]~
because P is lipschitzian (Remark 2.2).
Remark 2.5. If [d,, U,,t,] € R x H x (0, 1) satisfy (b), |U,[~. * 0,
[d,U, 1]~ [d01], d>0 W,=U,[|U,|-.— W, then W, > W and

D(d) W — BAW — (I — P)BAW = 0.

This follows from (b) (with d,, U,, t,) divided by |U,|. by using the compactness
of A, the condition (R) (Remark 2.4) and the fact that D(d,) W, - D(d) Wif and only
if W, - W.

Remark 2.6. Setting 7 = 0 and = = 1 in (b) we obtain (SE.)™ and (2.1) (which
is equivalent to (SI)™ by Remark 2.3), respectively. For [d, U, 7] € Z; we have 7 = 0
ifand only if U = 0 by (a). If [d, 0, 0] € Z;, d > 0, then d is a critical point of (SE,)~.
Indeed, there exist [d,, U,, 7,] € Z; such that 7, > 0 (n = 1,2,...), [d,, U,, 1,] =
— [d, 0, 0] and the assertion follows from Remark 2.5 by setting © = 0.

Remark 2.7. It follows from the compactness of 4, N that the set Z; is locally
compact.

Theorem 2.2. Let the assumptions of Theorem 2.1 be fulfilled. Then for each
6 €(0, o) (with some 5, > 0 fixed) there exists a closed compact connected subset
Z o of Z; containing [d,,0,0] and at least one point [d(5), U(8), 1]. The following
implications are true for all [d, U, t] e Z],:

(c) if [d, U, 7] * [do, 0, 0] then BAU ¢ K,
(d) if [d,U, 1] * [do,0,0] then dy < d £ d,

with some d,, > 0 independent of §. (See Fig. 1.)

Proofof Theorem 2.1. Suppose that Theorem 2.2 is true. Remark 2.6 and Defini-
tion 2.1 imply that for any [d(5), U(d), 1] € Z;, from Theorem 2.2, d(5), U(d)
satisfy (SI)~, |U(5)|2 = & and D(d(6)) U(d)e K, ie. U(6)e K. We shall prove
U(8) € 9K for all § € (0, 8,) with &, sufficiently small. In the opposite case there are
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d, = d(5,), U, = U(8,) satisfying (SI)~ and |U,||2 = 6, > 0, U,e K It follows
from (b) from Definition 2.1 (with d,, U, t = 1) that P(BAU, — N(U,)) e K°,
i.e. BAU, — N(U,) € K°. Using (d) from Theorem 2.2 we can suppose d, — d = d,,
W, = U,/|U,| - W. 1t follows from (b) that W, > W and D(d) W — BAW = 0

d
\

- [d(¢),U(d),1]

4,0

[dD,O,O] 1 T Fig. 1.

(see Remark 2.5). This means d is a critical point of (SE,)~, i.e. d = d, because d,
is the greatest critical point by the assumption (GC) (see Remark 1.6). We have
BAW, — (N(U,)||U.| ~ € R® and BAW, ¢ K by (c) from Theorem 2.2. Hence we
obtain (using the assumption (N)) that D(d,) W = BAWe 0K, i.e. also We oK.
This contradicts the assumption that d, is simple and Eg(d,) N K° + 0 (see Remark
1.4).

The estimate d(8) > d, and the existence of a limit point of d(5) for 6 — 0+
follows from the implication (d) of Theorem 2.2. Suppose that there exist , such that
3, - 0+, d(5,) > do. We can suppose W, = U(,)/||U(5,)]|~ — W and (b) from
Definition 2.1 implies W, — W, D(d,) W — PBAW = 0 (Remark 2.5). But we know
that U(6,) e 9K, which means We dK and this contradicts again the assumption
that d,, is simple and E4(d,) n K° = 0. Hence, all the limit points of d(3) for § — 0+
are greater than d,.

It remains to show that d(8), U(6) do not satisfy (SE)~ for § small. If this were
not true we should have d(é,), U(4,) satisfying (SE)™~ for some 6, — 0, d(8,) > do,
U(é,) € 0K and we should obtain a bifurcation point of (SE)~ greater than d, by the
previous considerations. This is impossible because d,, is the greatest critical point
by the assumption (GC) (see Remarks 1.5, 1.6).

Mainideas of the proof of Theorem 2.2 (for the details see Section 4; cf. also
proof of Theorem 2.2 in [6]): We shall show that the system of equations (a), (b)
can be understood as an abstract bifurcation equation in the space A x R (mori:
precisely, see Remarks 4.1, 4.2) for which a modification of Dancer’s global bifurca-
tion result described in Section 3 (Theorem 3.1) holds. It will follow from it that for
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each § > 0 there exist closed connected subsets Z;, and Z;, of Z; starting from
[do,0,0] in the direction Wy ¢ K and —W, e K°n EE(do), respectively; further,
either

(1)  Z, contains a point of the type [d(5), U(5), 1]

or

(2) Z;, is unbounded in d

or
(3) Zj, Z;, meet each other at a point different from [d,, 0, 0].

Our aim will be to show that the two last cases cannot occur for 6 small so that (1)
is true. The boundedness of Z;, will follow from elementary considerations about
the equation (b) (Lemma 4.1, Remark 4.3). The case (3) will be excluded by proving
that all the points from Z;, (6 small) fulfil (c), (d) and that BAU € K° for all
[d, U, 7] eZ;, with d 2 dy, [d, U, ] * [d,, 0, 0]. The proof of (c), (d) is based
on the following principles:

(i) for an arbitrary 6 > 0, the values d are “locally increasing along Z;,” near
d = do, |U|~ =0, © = 0; this is the meaning of Lemma 2.2;

(ii) for § > 0 small, BAU cannot intersect K with t > 0 as long as d = d, for
[d, U, 7] lying on Z;, (if this were not true for a sequence Z; , with J, » 0+
then we should obtain from (b) by the limiting that there exists We 0K n Eg(d,)
and this would contradict the simplicity of d, and the assumption Eg(d,) n K® +
+ 0); simultaneously, Z,;”, o cannot intersect the line d = d, as long as BAU ¢ K;
this follows from Lemma 2.1; more precisely, see Lemmas 4.2, 4.3.

Lemma 2.1 (cf. [6, Lemma 3.1]). Let d,, be a critical point of (SE.)~, Eg{do) 0
N K° % 0 and let (A), (N) be fulfilled. If
(2:5) D(dog) U — BAU + (I — P)BAU = 0
for some U = 0, then either T = 0 or D{d,) U= BAU e K.In any case U € Eg(d,).
Particularly, E[(d,) = Eg{d,) n K.

Proof. Using the equality PU = [u, Pv], (2.5) can be written as

(2.6) dou — b Au — b, Av =0,

(2.7 v — by Au — by, Av + 1(I — P) (byAu + by,Av) = 0.
Suppose U, = [ug, v5] € R® N Eg(d,), i.e.

(2.8) dottg — by Aug — by, Avg =0,

(2.9) vy — byi Ay — byydvy =0,

Multiplying (2.6), (2.8) by u,, u and subtracting, we obtain (using the symmetry of A)
(2:10) — b, {Av, uy> + by, {Avy, ud> = 0.
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Multiplying (2.7), (2.9) by v,, v and subtracting, we obtain
(2.11)  —by,{Au, vo) + by CAug, v) + (I = P)(byyAu + byrAv), v5> = 0.

It follows from (2.10), (2.11) that t{(I — P) (b;;Au + b;,Av), v,) = 0 and therefore
either © = 0 or by;Au + b,,Ave K by (P, K°) because v, € K° (see Remark 2.2),
ie. BAU e K. Further, (2.5) and (P) (Remark 2.2) imply D(d,) U = BAU. Setting
t = 1 and using (2.3) from Remark 2.3 we obtain E/(d,) = E4d,) n K.

Lemma 2.2 (cf. [6, Lemma 3.2]). Let (A), (N), (SIGN) be fulfilled. Suppose that
[d,, U, t,]eR" x Hx (0,1, |U,]|~ 0

(b) D(d,) U, — BAU, + t(I — P)BAU, + 7,R(U,) = 0

(n=1,2,..)) and [d,, U, t,] - [do, 0, 0] with dy >0, W, = U,[|U,|. — W, =
= [wo, zo), Wo ¢ K. Then W, — W,, d, is a critical point of (SE.)~, W, € Eg(d,) and
: dn - dO b12 '
(2.12) lim = - > (I = P) (b1 4w, + by4z), 20> > 0.
n— oo Ty b21“W0”

Proof. It follows directly from (b) that W, — W,, |W,|~ = 1, W, € Ex(d,) (see
Remark 2.5). Rewriting (b) and (SE.)”~ with do, W, in the components, multiplying
the individual equations by wq, w, u,, 4 and subtracting similarly as in the proof of
Lemma 2.1, we obtain

(dn - dO) <W05 W0> + Ty gl(—ljﬁ)’_wﬁ + P_IZ Tn<(1 - P) (bllAWn + bZZAZn)5 ZO> +

10~ b2
b, R0z
by U~
where [W,, z,] = W,, [wo, zo] = W,. Using (N), (R) we obtain
(2.13) [ wo? lim d—do _ _ % (I = P)(by1Awg + biyAzp), zo) .
n— oo Ty 21

We have {(I — P) (by;Awg + byy4z,), o) = (I — P) z,, zo) because D(do) Wy =
BAW,. We have z, ¢ K because W, ¢ K and (2.12) follows from (2.13), (SIGN)
and (P).

3. SOME REMARKS CONCERNING THE KNOWN GLOBAL
BIFURCATION RESULTS

Consider a general bifurcation equation of the type
(BE) x — L(w) x + G(u, x) = 0

in a real Hilbert space X with the inner product <+, +», and with the corresponding
norm |||-|||. Suppose that
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(L) for any peR, L{u) is a linear completely continuous operator in X; the
mapping pu+> L{u) of R into the space of linear continuous mappings in X
(with the operator norm) is continuous;
(LG) the mapping M: R x X — X defined by M(y, x) = L{u) x + G(g, x) is com-
pletely continuous;
(G)  lim (G(u, x)[|||x||[) = O uniformly on bounded subsets of R.
{lix[ll-0
Well-known global bifurcation results of P. H. Rabinowitz [9] and E.N. Dancer
[1] deal with the special case L{u) = pLbut can be modified for the case of the equa-
tion (BE). We shall formulate precisely such a modification of Dancer’s result
(see Theorem 3.1) which will be essential for the proof of Theorem 2.2.
Remark 3.1. Denote by C the closure (in R x X) of the set of all nontrivial solu-
tions of (BE), ie.
C={[m.x]eR x X; ||x]| + 0, (BE) is fulfilled} .

Suppose that y, is a simple critical point of

(BEL) x—Lip)x =0,

xo € By(Ho), |||xo]|| = 1, i.e. xo is a nontrivial solution of (BE;)™ with 1 = y, and

dim U Ker (I — L{p,))* = 1(cf. the notation from Section 1 for (SE)). If [1,, x,] € C,
k=1

o = o ||[xall| # 0, [[|x,]| > 0 and x,[||x,)|| = % then x,[|[|x,|| > X and either

X = xo 0r X = —x,. This is easy to see if we divide (BE) (with p,, x,) by |[|x,/|| and

use (L), (G).

Remark 3.2. In what follows, we shall consider the situation from Remark 3.1.
Let C, be the component of C containing [po, 0]. It is well-known that C, + 0
under our assumptions (see [9]).

Choose 1 € (0, 1) and set

Ky = {lu x]e R x X5 [<x, xo>x| > nffx[[}
Ky ={[n,x]eK,; <x,xopx >0}, K, =K, \KI.
(see Fig. 3.1a). It follows from Remark 3.1 that there exists R > 0 such that

(€ {l1t0: O1) 1 Belsto 0) < K,

where Bg(tto, 0) = {[1, x] € R x X; |u — po| + [|x]| £ R}.*) For each re(0,R)
denote by D and D; the components containing [y, 0] of the set {[0, 0]} LU
U (C 0 BJpo, 0) n K}) and {[uo, 0]} U (C 1 By(to, 0) 0 K;), respectively. Denote
by Cg, and Cg, the components of Co\ D and Cy\ D, respectively, containing
[”0! 0]

*) Cf. the considerations in [9, pp. 495, 496] which remain valid if we consider the general
case L(u) instead of uL, we replace the assumption that #, is a simple characteristic value by the
assumption that u is a simple critical point.
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Define

¢ =U G, G= U GC,.
0<r<R 0<r<R
According to Remark 3.1 the sets Cy, C, are independent of the choice of 77 € (0, 1),
they are connected and C, > Cg U Cq *). See Figs. 2a—c: Fig. 2a shows how the
projection of C, into X can look like, Figs. 2b) and ¢) show the corresponding pro-
jections of Cy and Cj , respectively, into X.

Further, we shall suppose that

(Ind) ind(I — L{po + ¢€)) + ind (I — L{uo — ¢)) forall &e(0,¢,)

with some g, > 0 **), where I is the identity in X and ind (I — L(p)) is the Leray-
Schauder index of I — L(u) with respect to the origin (see eg. [11]).

Theorem 3.1 (cf. [1, Theorem 2]). Let p, be a simple critical point of (BE.) and
let (L), (LG), (G), (Ind) be fulfilled. Then either both Cy and C; are unbounded
or Cq n Cy contains a point different from [uo, 0], where Cg, Cy are introduced
in Remark 3.2.

Proof can proceed in the same way as that of Theorem 2 in [1]. The only dif-
ference is that in [1] it is supposed that L{y) = pLand p, is a simple characteristic
value of L(which is the same as the simple critical point in this case). In this special
situation (Ind) is fulfilled automatically and therefore it is not explicitly supposed
(see [1]). But in the proof only the properties (L), (LG), (G) together with (Ind) are
used.

Remark 3.3. It follows from the definition of Cg, C; and from Theorem 3.1
that for any r > 0 there exist [g, x] € B (115, 0) n K" n Cg and [p, x] € B,(u, 0) N
N K, n Cg, respectively. Particularly, it follows from here and Remark 3.1 that

X,
-0, —= X3

I3

there exist [u,, x,] € C such that p, > po, |

xn

n

**) It is s”upposed that the indices in (Ind) are well-defined for ¢ € (0, ¢g).
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Iﬁ—:- - —Xq .
il

there exist [u,, x,] € C5 such that g, > puo, | x| -0,

The same assertion holds also for any nonempty subset of the type C¢ \ Cy, where C7

is any closed connected subset of Cg such that Cg N C{ n C{" = [u,, 0]; analogously
for subsets of Cj .

4. PROOF OF THEOREM 2.2

In this section the assumptions of Theorem 2.1 will be automatically considered
to be fulfilled and notation from Sections 1, 2 will be used.

Remark 4.1. We shall use the results of Section 3 for the special case of the
space X = H x R (with the points [U, £]) and the operators L{y): X —> X, G5: R x
x X — X (for any pe R, 6 > 0) defined by

(¥ Vi) x = L) (U, 2) = [D() BAV, 0],
Gy/u, x) = G/p, U, ¢) =

€ v -~ € 1+e¢

- (I — P) D(x) BAU + —— D(y) R(U), — Ul

[, 0= P B+ o p Rw), — 2 o]
forall peR, x=[UeleX.

This means

(4.1) Lip) (U, &) = [uby Au + pby,Av, by Au + b,,Av, 0],

© (I = P)(byyAu + by,dv) +
&€

1+

(42)  Giu, U,e) = [Jﬁi Ny(U),
1+¢

&
+

1+e 2
R,(U), —— U .
RO, Ul

We shall consider the point p, = 1/d, and x, = [W,, 0], where W, € Eg(dy) n
N (—K°) (see the assumptions of Theorem 2.1 and Remark 1.4). It is easy to see
that the operators () satisfy (L), (LG), (G) (for any § > 0) and g, is a simple critical
point of (BE_), xo € By(o). In the described case, we shall write Cs, Cs,0, C5.0, C;.o
instead of C, C,, Cq, C; for the sets from Remarks 3.1, 3.2.

Remark 4.2. If we set d = 1/p, © = ¢/(1 + &), then the equation (BE) (With G,
instead of G) is equivalent to (a), (b) from Definition 2.1 for d + 0 =% u, & > 0.
We have ¢ = 0 for all [, U, &] e C;, because of [uo,0,0] e C, o, (2) cannot be
fulfilled with ¢ € (— 1, 0) and C; 4 is connected.

Lemma 4.1. There exist 5, > 0, & > 0 such that p 2 &, for all [p, U, el e C, ,
with 6 €(0, d,).

Proof. In the opposite case there exist [, U, ¢,] € C;, o satisfying p, > 0,

653



“Un"~ > 03 6n > 0 (n = 1’ 2’ )’ 611 - O> u‘n - 0: 8"/(1 —|— 6") e ‘C, VVn =
= U,/|U,|l. - W. We have [U|. —0 by (a) (see Remark 4.2). Setting W, =
= [Wy» 2,], rewriting (BE) into the components (see (4.1), (4.2)) and dividing by
U]~ we obtain

&y Nl(Un) _

4.3 - bAu—nbAn+ n =
( ) W, — H,011A4W Hy012AZ U I+, ||U,,”~

>

2

(44) 2, = byydw, = bypdz, + - (I = P)(by Aw, + by,Az,) +

€, RZ(U,,) -0
1+eg, |U,|-~
Using (N), (R) (Remark (2.4)) and the compactness of A4 we obtain w, — w, z, - z,
ie. W, > W, |[W|. = 1. It follows from (4.3) that w, — 0 and therefore |z,| — 1.
Multiplying (4.4) by Az, we obtain a contradiction because the obtained left-hand
side should be positive for n large in virtue of the positivity of 4, (SIGN), (R) and (P)
(Remark 2.2).
Remark 4.3. For any 6 € (0, 6,) (with 8, from Lemma 4.1) we can define

[ﬂ> U’ 8] € C:O} )

| 1 &
Zi,=1{[d,U]; d=~, t = ,
20 {[ ] u 1+

Z(;.O = {[d7U31]; d = la T = —8_’ [‘IL,U,S]GC‘;—‘()},
u 1+¢

Zso=12Z50UZs,.
It follows from Lemma 4.1 and Remarks 2.7, 3.2, 4.2 that Z,{O, Z; , are connected
closed compact subsets of Z, from Definition 2.1, [d,, 0, 0] € Z; o N Z; .

Remark 4.4. It follows from Remarks 3.1, 4.1 and from the definition of Z;,
(Remark 4.3) that

if [d,, Uy 1] € Z5,0, d, > do, |U, [~ = 0 (ice. also 7,/|U,[~ = 0 by (a)),
U,[|U.||~ = W, then W, > W and either W = W, or W= —W,

(i.e. either BAW, — D(do) W, or BAW, — —D(dy) W, because D(do) W, = BAW,).

We have W, ¢ K, —W, € R° and therefore W = W, and W = — W, means U, ¢ K
and U, € K°, respectively, for n sufficiently large. Particularly, it follows from here
and Remarks 3.3, 4.3 that

(4.5)  there exist [d,, U,, 7,] € Z;, such that U, ¢ K, d, - d,, |U,[|. -0,
T U . BAU
"0, — LW (1.6. also —— —»D(d)W(,);
[l Jul T vl
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(4.6) there exist [d,, U,, ] € Z;, such that U,e K®, d, > do, |U,[~ — 0,

LN 0, U - —W, (i.e. also BAU
(LU I LA 8 [u.
the same assertion holds for any nonempty subset of the type Z; ' \ Z;,, where Z;
is any closed connected subset of Z;, such that (Z;/,\Z; )N Z; | = [d,,0,0];
analogously for subsets Z; o\ Z; ; of Z; .

Remark 4.5. It is known (see e.g. [11]) that ind (I — T) = (—1)"" for any
compact linear operator T in a Banach space, where y(T) is the sum of the algebraic
multiplicities of all the real eigenvalues of T which are greater than 1, i.e. the sum of
all positive eigenvalues of the operator T — I. It is easy to see that A # 0 is a simple
cigenvalue of L(u) (for some p > 0) and [U, ¢] is the corresponding eigenvector if
and only if A is a simple eigenvalue of the operator D(u) BA and U is the correspon-
ding eigenvector, ¢ = 0. Note that A is an eigenvalue of D(x) B4 if and only if A — 1
is an eigenvalue of B4 — D(d)I with d = 1/u (for u =+ 0). It follows from here and
the assumption (GC) (Remark 1.6) that the assumption (Ind) from Section 3 for
o = 1]d, is fulfilled in our situation.

LU ——D(do) WO);

Lemma 4.2 (cf. [6, Lemma 4.1]. There exists 8, > 0 such that for all [d, U, 7] e
€Z;,, 6€(0,0,) the implications (c), (d) from Theorem 2.2 hold, where Zj, is
the set from Remark 4.3.

Proof. Denote by Z; , the component of the set

{ld,U,t] e Zy; d = do}
containing [do, 0, 0]. There exist [d,, U,, 7,] € Z;, such that [d,, U,, 7,] = [do, 0, 0],
[U.]~ >0,U,¢K, 1, >0,BAU,/|U,|~ — D(do) W, ¢ K (see Remark 4.4). Lemma
2.2 implies d, > d, for n sufficiently large.
Particularly,

(4.7) Z;, contains points [d, U, ] with BAU ¢ K for any 6 > 0.

Let us prove that

(©) there exists §, > 0 such that (c) is valid for all
[d,U,1]ezs,, 6€(0,6).

Suppose the contrary. Then it follows from (4.7) and from the connectedness of Z;
that there exist J, and [d,, U,, 7,] € Z,", such that

(4.8) 8, >0, 8,20, d,=2dy, [d,U,1,]* [do,0,0],
BAU,e 0K .

We have ||U, . > 0 because in the opposite case d, would be critical points of (SEy)
by Remarks 2.6, 4.2 and there is no critical point greater than d, by the assumption
(GC) (see Remark 1.6). Further, |U,|. ~ 0 by (2) and we can suppose W, =
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= UJ|U|~ = Wt 7, dy > d ({d,} is bounded by Lemma 4.1 and Remark 4.3).
But [d,, U,, 7] satisfy (b) and it follows by Remark 2.5 that W, — W,
D(@) W — BAW + (1 — P) BAW = 0.
We obtain BAWe 0K from (4.8), and (P) (Remark 2.2) implies that d is a critical
point of (SE,), We Eyd). Hence, d = d,. But D(dy) W= BAWe 0K, i.e. We 0K
and this contradicts the assumption that d, is simple, Eg{d,) n K° + 0 (see Remark
1.4).
Further, we shall prove that
(D) there exists o > 0 such that (d) is valid for all [d, U, t] € Z;,, 6 € (0, &,).
It follows from Lemma 4.1 and the definition of Z;, that d’s are bounded by
d, = & ' for [d, U,] € Z], with & small. Suppose that (D) is not true. Then there
exist &, > 0, [d,, U,, 7,] € Z;, ; such that

(4'9) 5n>0: 5;,—’0, ”U,,".,>0, dn=d0~

We can suppose that (c) holds on Z; , and W, = U,[||U,| . = W, 7, — . It follows
from (b) for [d,, U,, 7,] that W, —» W,
(4.10) D(do) W — BAW + oI — P)BAW = 0
(see Remark 2.5). We have BAU, ¢ K since (c) holds on Z; ,, ie. BAW¢ K°. If
BAWe 0K then (4.10) together with (P) imply D(do) W = BAW, i.e. We Eg(dy) 0
N 0K and this contradicts the simplicity of d, and Eg(d) n K® # 0 (see Remark 1.4).
Hence BAW¢ K. Now, in the case t > 0, (4.10) contradicts Lemma 2.1, but the
case t = 0 is impossible by Lemma 2.2 because (d, — do)/t, = 0 and W¢ K.

Now, it is sufficient to show that

(4.11) there exists 6, > 0 such that Z;, = Z;, for each & & (0, o).

It is sufficient to take &, such that (c), (d) hold for all [d, U, t] € Z;,, 6 € (0, d,)
(see (C), (D). If 5€(0,8,), Z5y + Zo then Z5; n(Z5oNZ51) = {[do, 0, 0]}
by (d). It follows from here and (c) that there exists [d,, U, 1,] € Z; o \ Z;, with
d, < dy, 1, >0, U, ¢K, [d, U, t,] - [dy, 0,0], U,/|U,| = Wo ¢ K (see Remark
4.4). This contradicts Lemma 2.2 and the proof of Lemma 4.2 is complete.

Lemma 4.3 (cf. [6, Lemma 4.2]). There exists 5, > 0 such that for all [d U t]e
€Z; o, 6€t(0,8,), the following implication holds:

(¢7) if [d, U, 7] * [dy,0,0], d = d,, then BAU e K°.

Proof. Z;, contains the points [d, U, t] with BAU e K° (see Remark 4.4). If the
assertion of Lemma 4.3 were not true then it would follow from the connectedness
of Z; , that there exist 6, and [d,, U,, 7,] € Z;, , satisfying (4.8) or (4.9) with BAU,, ¢:
¢ K. This would lead to a contradiction as in the proof of Lemma 4.2.

Proof of Theorem 2.2 (cf. [6, proof of Theorem 2.2]): Let , be such that (c),
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(d) and (c7) hold on Z;, and Z; ,, respectively, for any & € (0, 6,) (see Lemmas 4.2,
4.3). But all these conditions can be fulfilled simultaneously only in the case Zio
N Z;5o ={[do,0,0]}, ie. C5on C5o = {[1o,0]} (see Remark 4.3). Hence, C;,
is unbounded by Theorem 3.1 and Remark 4.5. It follows from here, from the de-
finition of Z;, and (d) that Z;, contains at least one point of the type [d(5), U(5), 1].

5. NEUMANN CONDITIONS

Let us mention briefly the case of Neumann conditions, i.e.

(NC) M_%_0 on o0,
on 0On

instead of (BC). We shall consider only the model case n = 1, 2 = (0, 1), K is a closed
convex cone in W5(0, 1). In this case we must work in W;(0, 1) and hence (1.1) is
not the inner product. Take n > 0 and define the inner product

1
u, @, = J (uxpx + nue) dx
0
which is equivalent to the usual inner product
1
<Ll, (P> = J (ux(px + u(P) dx .
0

Let us denote the corresponding norms by ||, and |||, respectively, and let H,,
H be the space W;(0, 1) equipped with the norm |+|,, |||, respectively. Then ana-
logously as in Definition 2.1 for each § > 0 fixed we may denote by Z] the closure
(in R x H, x H, x R) of the set of all [d,u,v,7]eR* x H, x H, x (0,1)
such that )
(a) ‘ lu]? + [0 = o7,
(b)) du — (by; + don) Au — by, Av + tNy(u,0) = 0,

v — by Au — (by, + 1) Av +

+ (I — P)(byyAu + (by, + 1) Av) + tRy(u,v) =0,
where
Rz(u, U) = P(bZIAu + (b22 + 77) AU) —
— P(by Au + (byy + 1) Av — Nz(u,'v)) .

Remark 5.1. Setting 7 = 0, d = d, in (b’) we obtain (SE.) (with d = d,). For
n > 0 sufficiently small, the coefficients b,; = by; + ndy, by, = bys, by = by,
by, = b,, + n satisfy again the assumption (SIGN) and hence analogously as in
Section 4 we may apply the results of Section 3. For any § > 0 sufficiently small we
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obtain d, > do, u"e H, v" € 0K such that ||u"||> + [[v"|* = § and
(5.1)  du" = (byy + dy) Au" + n(d, — do) Au" — by, Av" + N(u", v") = 0,
(5.2) V' — P(by Au" + (byy + 1) Av" — Ny(u",v")) =0 in H,,
ie.

1
(5.1 f i, + [n(d, — do) u' — by’ — byso" + ny(u, )] @ dx = 0

0

forall ¢peH,

1
(5.2) j {vl(¥. - V) = [bag" + by — nap(u’, ") (¥ — v")} dx 2 0
0
forall yeK,

where —ny(u, v) = f(u, v) — byu — by, ny(u, v) = g(u, v) — byyu — byv (see
Remark 1.1). .
Now, let # = 0+ (for 6 > 0 fixed). Then either
(i) there exist n, (n = 1,2,...) such that #, — 0 and d, = d, — d(5) for some
finite d(5), ’
or
(ii) d,— +o for n—0+.
In the case (i) we can suppose u" = u™ — u{3), v" = v — v(8) and we obtain from
(5.1), (5.2) also u" — u(3), v" — v(3). The limiting process in (5.1'), (5.2') gives

(53) ﬂ {d() u(9) o — [b11 u(9) + by 0(9) — ny(u(0), v(9))] ¢} dx = 0

forall peH,

(5.4) J (04(8) (s — 0.(6)) — [bas 4(3) + bay o(6) —

0

— ny(u(3), (9))] (¥ — v(8)} dx 2 0 forall YyeK.

Hence, in the case (i) we obtain a nonhomogeneous solution u(6), v(6) of (RD) with
the conditions given by H = W;(0, 1), K, i, v satisfying v(6) e 0K, [u(5)]* +
+ |o(8)||> = 6 as in Theorem 2.1. In the case (ii) the situation is different. It follows
from (5.1) by setting ¢ = u" that

(5:5) J-l [d,(u)* = byy(u")* — n(d — do) (u")* —
: — by + ny(u", ") u"]dx = 0.

It follows from here (dividing (5.5) by d, and letting n — 0+) that [{ (u?)?> dx — 0
and therefore u" — &(8) in W;(0, 1), where ¢(6) is a constant depending on & only.
Further, (5.2) yields v" — v(8) in W;(0, 1). We have £(5)* + [|v(8)|*> = 6. Writing
(5.1) as the classical differential equation (cf. Remark 1.1), integrating it over (0,1)
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and taking the limit # — 0 we obtain

(5.6) u = &0) (= constant function on (0, 1)),
[[ o0+ b1s ) = mee) oD 05 = 0.

The limiting proce:s n - 0+ in (5.2') gives

(57) [ {06) (s = 0(6) = [bax &(6) + bz o(0) -

— ny(&(8), v(8))] . (¥ — v(8))} dx 2 0 forall YyeK.

The system
(5.8) u=2¢ (= const),
1
J [b61:1 + byov — ny(&,0)]dx =0,
0
(5.9) vek,

1
f v (Y, — 0) — [b21& + byyv — ny(E,0)] (¥ —v)dx 2 0 forall YyekK
0 v

can be called the shadow system to (RD) with the conditions given by W;(0, 1),
K, i, for d > +oo (cf. [8], where the shadow system to the classical reaction-
diffusion system for d, — + oo is studied). Hence, in the case (ii) we obtain a non-
homogeneous solution &(8), () of the shadow system for d — + oo to (RD) with
our unilateral conditions, satisfying v(d) € K, &(8)* + ||v(5)]* = 6.
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