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This paper is motivated by the following question originally posed by J. Lukes§
and recently communicated to the author by I. Netuka: Let U be a relatively compact
open subset of a “nice” P-harmonic space (X, *#). Let f be a continuous real
function on the boundary U* of U such that the generalized solution HYf of the
Dirichlet problem and the function DUf associated to the solution of the weak
Dirichlet problem coincide. Does this imply that Af = HYf for every Keldych
operator A for U? Here a Keldych operator for U is a positive linear map A4 from the
space #(U*) of all continuous real functions on U* into the space #(U) of all
harmonic functions on U such that A(h|ys) = h|y for every function h € %(U) which
is harmonic on U. We recall that HY and DY are Keldych operators given by
HY f(x) = &&’(f) and DY f(x) = &“Y(f) where B{CU) is the essential base of CU.

As we shall see already the heat equation on R? provides an example showing that
the answer is negative. However, it will turn out that for every harmonic space the
answer is positive if we modify the original question allowing only Keldych operators
A which satisfy A(p v < pIU for every potential p on X.

1. A COUNTEREXAMPLE

If we do not require point separation by harmonic functions, there are of course
immediate examples where the answer is negative: Let (R, *5#) be the harmonic
space associated to uniform motion to the left on R and let U be an open interval
Ja, b[. Then HYf = DYf = f(a) for every fe %({a,b}) and the mapping A:
%({a, b}) - #(U) defined by Af = f(b) is a Keldych operator for U such that
Af + HUf if f(a) + f(b).

On the other hand, if (X, *#) is “nice” in the sense that #(X) is linearly sepa-
rating, then it is well known that HY is the only Keldych operator for U if and only
if HY = DY ([10, p. 123], [1, p. 103]). Moreover, H’ = DV for every open subset U
of X if and only if every semipolar subset of X is polar [1, p. 106]. Hence we may
hope to find a nice counterexample only for a harmonic space not satisfying the axiom
of polarity and an open subset U such that the operators H” and DY are different.
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So let us now consider the harmonic space (RZ, *’) given by the heat equation
0*uox* = oufot. Let V'=10,3[ x 10,3[, y = (3, 3), B = [1,2] x {2} and define

U=V\({y}uB).

Let f = 1;,,. Then of course H'f = DUf = 0, whereas DVl = 0, H'l, > 0 on
10,3[ x J2,3[. Taking o > 0 and defining a linear mapping A: %(U*) — #(U) by
Ag = D% + ofg(y) — &%(9)) H'Ly
we have Af = aH"ly # 0. Moreover, if h € 4(U) such that h|y € #(U), then h(y) =
= &$%(h) and hence A(h|ys) = DY(h|ys) = h|y. In order to obtain the desired counter-
example it therefore suffices to show that A is positive if o is sufficiently small. Now

there exists o > 0 such that &l = ael’ for every z € B. Then for every g e €*(U¥)
end every xe U

DV g(x) = eV(g) = (0P (g) 2 j £(g) o¥(dz) =

- j e(g) e¥(dz) 2 o £(g) &7 (B) = 2.5¥(g) HUL,{x),
B

hence 4 g(x) = 0, i.e. 4 is positive.

2. THE POSITIVE RESULT

In the following let (X, *5#) be a PB-harmonic space with countable base. Let 2
denote the convex cone of all continuous real potentials on X and let €,/X) be the
space of all continuous real functions on X which are #-bounded.

Given a finely open subset U of X let S(U) (H(U) resp.) be the set of all functions
fe%4(X) such that e(f) < f(x) (e(f) = f(x) resp.) for every x e U and every
fine neighborhood V of x satisfying ¥V = U. We recall that the essential base (CU)
is the set of all x € X such that for every fine neighbourhood V of x the set V\U
is not semipolar. It is the largest basic subset of CU, in particular (CU) is contained
in the base b(CU) of CU. We define kernels H and DY on X by

HY(x,*) = &¥, DY(x,") = b

x X
and note that DVs < H's < s for every s e S(U).

For every x € X let .#,(S(U)) denote the set of all positive Radon measures p
on X such that u(s) < s(x) for every s € S(U). We know by [3, p. 266] that u(D°f) =
= DV f(x) for every p € #,(S(U)) and that the set of all extreme points of ./#(S U))
is the set of all measures 5”5, B = X \ {x}.

We intend to show that for every function fe %5(X) satisfying HUf = D'f we
have the equality u(f) = DY f(x) for every x € U and every p € #,(S{U)) which is
supported by CU. The connection to the original problem is resulting from the fact
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that for every Keldych operator A for an open set U which satisfies A(p]m) < pIU
for every p € 2 we have A(x, ) € M(S(U)) for every x e U.

2.1. Proposition. Let U be a finely open subset of X and fe %(X) such that
HYf = D'f on U. Then e{°"4(f) = DV f(x) for every x € X and every subset A
of CU.

Proof. Since the functions Hf and DVf are finely continuous, we have HYf =
= DYf on b(U). If x € Ch(U), then x is contained in the fine interior of CU, hence
x € B(CU), ice. & = &8V = ¢,. In particular, H’f = Df on X.

Now fix x e U, let K, be a compact subset of CU, and define F = B{CU) U K.
Fix 6 > 0 and a strict potential p, € 2. There exist a sequence (p,,) in 2 such that,
for every neN, p, = p, in a neighborhood U, of K, and such that the positive

function w = Z (p,, R}?) satisfies w(x) < 6.

Let S(U) denote the set of all limits of increasing sequences in S(U). By [4, p. 38]
there exists a function s € S(U) such that s > f on B(U) and s(x) < eV)(f) + 6.
Define a function s” on X by

s,={s+w on CK,,
f on K.
Moreover, by [3, p. 264], there exists a function te€ — S(U), compact subsets
., K; of F and py, ..., p, €2 such that

1
t:=t+)yRISf on F
i=1

and &f(f) — 6 < #'(x). We intend to prove that s’ = #'. To that end we note first
that obviously s" = f =t on F, ie. s — t = 0 on F. Moreover, let y e CF. Then

there exists an open neighborhood V of U K; such that y ¢ V. Defining p = &{Vv¥

we have u * ¢,, W(Ko) = 0, pe M,,(S(U)) and H(RY)) = RYI(y) for every 0 < j £ L.
Therefore  p(s’) = pu(s + w) < (s + w) (¥) = s'(y) and p(*') = 7(y), hence
(s — t') 2 0. Next we claim that s’ is Ls.c.. Indeed, s + w is ls.c. and f is con-
tinuous. We have (s + w) (y) = s(y) = 5V (f) for every y e X and &V(f) = f(y)
for every y e Ch(U). Suppose that z € K, and that (x,) is a sequence in b(U)\K,
converging to z. Let (y,) be a subsequence of (x,) such that lim s'(y,) = lim inf s(x,)

and the sequence (Rp(y,)) is convergent. Clearly, o := lim Ry(y,) < po(z). If
n—oo

o = po(z), then lim R%¥(y,) = po(z), hence hm el = ¢, by [6, p. 440]. Since

s (yn) 2 S(y") 2 eg.(lcw\f) = 8 (f)

for every n € N, we conclude in this case that

lim s'(y,) 2 hm ec"(f) = f(z).

n—oo
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Suppose now that o« < py(z). Then there exists n, € NV such that

zZ)— o
pO(yn) - R[\O\yn pO( )2

for every n = ny. Given m e N there exists n, = n, such that y, e n U; for every
n = ny. Then for every n > n, j=1

W00 2 3 (0 = RE) () = 3 (00 ~RE) ) 2 m P =2

This shows that lim w(y,) = oo, hence lim s'(y,) = o = f(z).

n—oo n—ow
Thus 5" is Ls.c.. Moreover, ¢’ is u.s.c.. Applying a general minimum principle to
the convex cone P + R.(s" — t') we conclude that s’ — 1" = 0. In particular,

er(f) — 0 < 1(x) < s'(x) < 2V(f) + 25.

Since & > 0 is arbitrary we obtain that ¢5(f) < &2Y)(f). Replacing f by —f the con-
verse inequality follows. Thus g£(f) = &2V)(f).

Finally, let A be a subset of CU. There exists a set A’ € Z(X) such that fCU) U A =
c A’ = (U and &} = "4 and there exists an increasing sequence (K}) of com-
pact subsets of A’ such that sup RX"(x) = RA (x) Since K, = B(CU)U K, = A’
for every ne N, we have lim R”(w)“K "(x) = R2(x), hence lim el(*VVK" = ¢ =
= ¢fCVY4 Therefore n= o n= o

D) = lim DK ) = L),

An application of the fine continuity of the function y— &5“”V*(f) and the fact
that ef®VY4 = ¢, for every y e f(CU) finishes the proof.

The following lemma allows to obtain results for arbitrary finely open sets by
proving the statements only for finely open Borel sets. As usual let T\CU) denote the
smallest closed subset of X supporting the measures &5, x € U ([2], [6], [8], [12]).

2.2. Lemma. Let U be a finely open subset of X. Then there exists a finely open
Borel subset V of U such that V) = B{CU) and & = &V for every xeX, i..
DY = DY and H” = H". In particular, S(V) = S(U) and T(CV) = T\CU).

Proof. For every x € U there exists a finely open Borel set U, such that xe U, =

< U. Since the fine topology is quasi-Lindeléf, we may choose a sequence (U,,)
oo}

of finely open Borel sets contained in U such that U\ |J U, is semipolar. Moreover,
n=1

there exists a finely closed Borel subset F of X containing CU such that f = ¢5’

for every x € X. Choosing o

V:=CFuUU,

n=1
we have a finely open Borel set V = U such that B(CV) = B(CU) and & = £V for
every x € X.
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By [7], S(V) = S(U). Moreover, cleatly & (CT(CU)) = &/(CT\CU)) = O for every
x €V and hence T\(V) = T(CU). In order to prove the converse inclusion we fix
x €U and a strict potential p e 2. Since the function R’ is finely continuous and
U\V is semipolar, there exists a sequence (x,) in V such that lim x, = x and

lim RY(x,) = R} (x). By [6, p. 440], lim &/ = &;” and hence
n— o0 n—>o

el(CTCV)) = eZ(CT(CV)) < lim inf &3 (CT(CV)) = 0.
Thus T\CU) = T(CV).

2.3. Theorem. Let U be a finely open subset of X and f € €p(X) such that H’f =
= DY on U. Let xeX and pe M (S(U)). Then p*({Df + f}\(U U {x})) = 0.
In particular, p(f) = DV f(x) if pe(U U {x}) = 0. Moreover, u(f) = f(x) if xe U
such that e’({x}) = 0.

Proof. By (2.2) we may assume without loss of generality that U is a Borel set.
If x € B(CU), the statement is trivial since then &f‘? = ¢, and #,(S(U)) = {e}.
So let us assume that x ¢ B(CU). Let K be a compact subset of {D'f > f} \(U u {x})
and let v be an extreme point of the compact convex set .#,(S(U)). Then by [3, p.
266] there exists a finely closed Borel subset F of X such that f{CU) = F and v = &;.
Let A = Fn K. Since B(CU)U A < F and x ¢ f{CU) U 4 we obtain by [2, p. 73]
that

W(K) = of(K) = &£(4) = L)
By (2.1)
8£(CU)UA(f) = DUf(x) — sg(CU)UA(DUf) .

Since f < DVf on the finely closed Borel set B(CU) U 4 and since f < DYf on A, we
conclude that
el A(4) = 0.

This shows that the u.s.c. affine function v+ v(K) vanishes at every extreme point
of My(S(U)). Therefore pu’K)=0, p({D' > fIN(Uuv {x}))=0. Similarly
p{ D% < fIN(U U {x})) = 0. If y(U U {x}) = 0, this implies that

W(f) = (D) = DY 1(x).
Finally, let « = &’({x}). By [2, p. 75]
&l = ae, + (1 — o) €N

By (2.1), &(f) = eS"°5(f) = DY f(x). Therefore DY f(x) = f(x) if « = O.
It may be interesting to mention the following consequence of (2.3). Note, however,
that the results of [6, p. 439 and p. 442] allow a different proof.

2.4. Corollary. Let U be a finely open subset of X, xe U and pe M (S(U)).
Then p*(C(U L T(CU) U {x})) = 0. ,
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Proof. As before we may assume that U is a Borel set. Let K be a compact subset
of UN(U u T(CU) u {x}). Then there exists a function f e %,(X) such that f =0
on T\(U) and f = 1 on K. Then H’f = DYf = 0 on U, hence u(K) = 0 by (2.3).
Since u(CU) = 0 the statement follows.

The next corollary of (2.3) contains the result on Keldych operators we announced
at the beginning.

2.5. Corollary. Let U be an open subset of X and let f € €5(U*) such that H'f =
= DYf on U.

Then Af = DYf on U for every positive linear operator A from €5(U*) into the
space of all real functions on U such that A(h|y.) = h|y for every he H(U) and
A(ply+) £ plu for every pe 2.

Proof. The statement is an immediate consequence of (2.3). It suffices to extend f
to a function in %,/X) and to note that for every x e U the mapping g+ A g{x)
from %,(U*) into R is given by integration with respect to a measure A(x, *)e
€ A (S(U)) which is supported by U*.
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