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Let A be a lattice. Denote by Int (A4) the lattice of all intervals of A (including the
empty set). Let B be a lattice and f an isomorphism of Int(4) onto Int(B). The
one-element intervals of 4 are just atoms of Int(A) and so the isomorphism f
induces a bijective mapping f’ of A onto B defined by: f'(a) = b iff f([a, a]) =
= [b, b]. The aim of this paper is to give answers to the following two questions
(see [1], Problem I1.10):

1) Under what conditions is f’ an isomorphism or a dual isomorphism?

2) Under what conditions does Int (4) determine 4 up to isomorphism or dual
isomorphism?

Recall that if I = [a, b] and J = [c, d] are intervals of 4, thenI v J = [a A ¢,
bvdlandI AJ=InJ=[ave bnad]orthe empty setifa v c£b Ad.

Lemma 1. For all x,y € A,
f[x Ay x v y]) =[x ALB), f(x) v IG)].

Proof. f([x AY, XV y]) = f([x: x] Vv [y, J’]) = f([X, x]) Vv f([)’: )’]) =
= [,/ @] v L)L O] =L A0 £(x) v IB)]

Lemma 2. If f’(x) < f’(y) for all x, y € A such that x < y, then f' is an iso-
morphism. If f'(x) = f'(y) for all x, y € A such that x <y, then f" is a dual iso-
morphism.

Proof. It is enough to show that if f’(x) <f'(y) then x £ y. Suppose that f'(x) <
§f’(y). By Lemma 1, f([x ANY, XV y]) = [fl(x),f'(J’)]- Since x A ye[x ALY,
x v y], fi(x A y)=f(x). By assumption, f'(x) = f'(x A y) and so f'(x) =
= f’(x A y). Thus x =x A Y, i.e. x £ y. Dually one can obtain the rest.

1. BOUNDED LATTICES

In this section let 4 be a bounded lattice with the least element 0, and the grea:test
element 1,. Let B be a lattice and f an isomorphism of Int (4) onto Int (B). Then,
evidently, B = f([0,4, 14]) is a bounded lattice with the extreme elements 0 and 1,.
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If f'(04) < f'(14), then £'(0,) = Op, f'(14) = 15 and f([0,, x]) = [0s, f'(x)] for all
x € A. Thus f' is an isomorphism. Dually, if f'(0,) > f’(1,), the mapping f’ is
a dual isomorphism.

Now suppose that f* is neither an isomorphism nor a dual isomorphism. Then the
elements f'(0,) and f’(1,) are incomparable and, by Lemma 1, £(0,) A f'(1,) = 0
and 1/(0,) v (1) = 15,

Lemma 3. The elements r,se€ A such that f'(r) = Oy and f'(s) = 15 are in-
comparableandr v s = 1,andr A s = 0.

Proof. By Lemma 1, fi[r as, rvs])=[f(r)Af(s) f(r)v[f(s)]=
= [0515] = f[04, 14]). So r A s =0, and r v s =1,

Lemma 4. Forallxe A, x = (x A1) v (x A sjand x = (x v r) A (X V s).

Proof. By Lemma 1, f([x A r, x v r]) = [f'(r), f'(x)] and f([x A5, x v 5]) =
= [f'(x), f'(s)]. Since the interval [(x A 7) v (x A s), x] is a subinterval of both
the intervals [x A 7, x v r] and [x A s, x v s|, we get that f([(x A r) v
vi(x A s),x]) € [F(): S X)] o [f(x): ()] = [fx). f(x)] Thus (x A1) v

vV (x As)=x. Dually, (x v r) A(xVvs)=x

Lemma 5. Let x,y be elements of A. If x Ar=y Arand x As=Yy As,
thenx =y If xvr=yvrandxvs=y Vs, then x = y.

Proof. Let x Ar=y Ar and x A s =y A 5. Then, by Lemma 4, x =
=(xAr)v(xAas)=(yAr)v(yAs)=y. Dually we get the rest.

Lemma 6. Let x, y be elements of A. The following equalities hold:
ra(xvy)=sFax)v(ray), rv(xay)=Fvx)a(rvy),
sA(xVvY)=EAXx)V(SAY), sv(xay)=(vx)a(svy).

Proof. Denote a=r A(x v y) and b= (r A x) v (r A y). It is clear that

rva=rvb=r.Bylemma4, sva=sv(sa(xvy)v(rakxvy)=

=svxvyad svb=sv(sax)v(isayvEax)yv(ray=sv
v x v y. Thus, by Lemma 5, a = b. The rest can be shown similarly.

2. CONGRUENCE RELATIONS

In this section let 4 and B be lattices and let f be an isomorphism of Int (4) onto
Int (B). Suppose that the induced mapping f* is neither an isomorphism nor a dual
isomorphism. By Lemma 2, there exist elements a, b, ¢, d € A such that a < b,
¢ <dand f'(a) < f'(b), f'(¢) > f'(d). Let M be the set of all intervals of 4 containing
elements a, b, ¢, d. For any interval I € M, the mapping f/Int (I) is an isomorphism
of Int (I) onto Int (f(I)) such that the induced mapping f’[I is neither an isomorphism
nor a dual isomorphism. Let r; and s, be elements of I such that f(I) = [f'(r)), f'(s))]-
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By Lemma 3, I = [r; A s;, rp v s;]. It is evident that any interval of 4 is a sub-
interval of an interval from M.

Lemma 7. Let I, JeM and I < J. Let x be an element of 1. The following
equalities hold:
XAF=XAF AT, XVFI=XVF VT,

XAS, =XAS AS;, XVS=XV5VSs.

Proof. By Lemma 1, f([r, A x, r; v x]) = [f'(r), f'(x)] and f([r; A x,
r; v x]) = [f'(r,), f'(%)]. I < J, then f'(r;) < f'(r;) and so [r; A X, 1 v x] S
< [ry A X, r; v x]. Thus we have 7; A x £r; A x and r; v x £ r; v x. Hence

xArp=xArpAryand x vry;=xvr;vry The rest can be proved in the
same way.

Lemma 8. Let x, y be elements of an interval I € M such that x A rp =y A ry
(or xvr=yvr xXAs;=yAs, xVsg=yVs) Then x Ary=y ATy
(XVry=YyVIr,XAS;=yAS,XV S =)V sy,respectively) for any interval
JeM such that I < J.

Proof follows from Lemma 7.

Now define relations «, f on A by the following rules: .

xay iff x Arp=yAr, forsome IeM,

xpy iff xAs; =y As forsome IeM.

Lemma 9. The relations o, f are congruence relations on A and an f =id,
(the identity relation on A).

Proof. The relation « is clearly reflexive and symmetric. Let xay and yaz, i.e.
xArp=yAryand y Ar;=2z A ry for some I, Je M. Let Ke M be an in-
terval such that I < K and J < K. Then, by Lemma 8, x A rg = y A rx =2 A rg.
One can easily show that xay implies (x A ¢)#(y A ¢) and, by Lemmas 6 and 8,
(x v e)a(y v ¢) for all ce A. Thus « is a congruence relation on A. In the same
way we can prove that f is a congruence relation on A. It follows from Lemma 5 that
an f=id,.

Lemma 10. Let u, v be elements of A and let I € M be an interval containing u, v.
Then (u A ;) v (v A s;)) o and (u A r) v (v A sp)) Bo.

Proof. Using Lemma 6 we get (u Ar) v (v As)) Arp=uar and
((uAr)v@Aas) As;=0vAs.

For x € 4, denote by a(x) and f(x) the congruence classes of the congruence rela-
tions o and f containing x.

Lemma 11. Let x, y be elements of A. Then f'(x) < f'(y) if and only if a(x) = e(y)
in the lattice AJo and B(x) < B(y) in the lattice AJ.

Proof. Let I € M be an interval containing x, y. Using Lemma 1 we get that
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SX)SfFW)if [xar, xvr]s[yar, yvrl ie. xAr 2y ar and
x v rp £y v rp. Bvidently, a(x) = «(x A r;) and oy) = a(y A r7). By Lemma 6,

B(x) = B(x v r;) and B(y) = B(y v r,).

Lemma 12. The lattice A is isomorphic to Alu x A and the lattice B is iso-
morphic to (AJa)* x A|B, where (Afo)* denotes the lattice dual to Alo.

Proof follows from Lemmas 9, 10 and 11.

Lemma 13. Let L, M be lattices. The lattice Int (L x M) is isomorphic to
Int (L x M*), where M* is the dual of M.

Proof is easy.

3. THE RESULTS

Let A be a lattice. Denote by CSub (4) the lattice of all convex sublattices of A
(including the empty set). The lattice Int (A) is a sublattice of CSub (4) and any
nonempty interval of A4 is either an atom or a join of two atoms in CSub (A4). Thus
whenever CSub (4) is isomorphic to CSub (B), then Int (4) is isomorphic to Int (B),
too. On the other hand, any isomorphism of Int (4) onto Int (B) can be extended
to an isomorphism of CSub (4) onto CSub (B) in a natural way (any convex sub-
lattice of A is the join of all intervals of this sublattice).

Using Lemmas 12 and 13 one can easily prove the following theorems and corol-
laries.

Theorem 1. Let A and B be lattices. The following assertions are equivalent:
(i) Int(A) is isomorphic to Int (B).
(if) CSub (A) is isomorphic to CSub (B).
(iii) There exist lattices Ay, A, By, B, such that A = A; x A,, B= B, x B,,
A, is isomorphic to B, and A, is dually isomorphic to B,.
Theorem 2. Let A be a lattice. The following two assertions are equivalent:

(i) Whenever B is a lattice and f an isomorphism of Int (A) onto Int (B), then the
induced mapping f' is either an isomorphism or a dual isomorphism.
(i) A is directly irreducible.

Theorem 3. For a lattice A, the following two conditions are equivalent:
(i) Whenever B is a lattice such that Int (A) is lsomorphzc to Int (B), then A is
either isomorphic or dual isomorphic to B.

(ii) Either A is directly irreducible or whenever A = Ay x A, (both A, and A,
have more than one element), then both A, and A, are self dual.

Corollary 1. The lattice Int (A) determines A up to isomorphism if and only if
whenever A = A; x A,, then both A, and A, are self dual.
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Corollary 2 ([2]). Let V be a variety of lattices. With any lattice A, the variety V

contains all lattices B such that Int (A) is isomorphic to Int (B) if and only if V is
self dual.

Remark. V. I. Igosin proved in [3] that any finite lattice A having just one atom

is determined by Int (4) up to isomorphism or dual isomorphism. This result follows
immediately from Theorem 3. '
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