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In 1873 Hermite [2] succeeded in proving the transcendency of e while in 1882
Lindemann [3] proved the transcendency of n. The present paper follows the papers
[4] and [5]. The transcendency of m and e, where a is a nonzero real algebraic
number, is proved here by two similar methods. In order to understand the proofs
it is not necessary to have the knowledge of the theory of complex functions but it
suffices to know Rolle’s theorem, the Euler function and some properties of algebraic
integers.

Lemma 1. Let V, p,, py, ..., Dy be natural numbers and let x, ..., x, be real
numbers (x; = x; if and only if i = j). Put

14
N=Y(+1)-1,
i=0
14

0i(z) =T1(z — x)** for j=0,1,...,V.

k=0
k*j

Let us assume that f has N continuous derivatives on

{ min x,, max x> .
0<ks<V  O0<k<V
Then there is
ye< min x,, max x,»
0<ksV 0SksV
such that

(1 J(Pos - Py, f(%), V) =§ I’i S (x) [ 1 :|<m) =f(N)(y),

k=om=0 m!(p, — m)! | Q,(z) N!

Z =Xk

Proof. Put

) 3 V e f(Pk*‘M)(xk) m 1 1 (m~—s) 3 s
P —_k;O mz=:o (o — m)! 5;0 (m — s)! [Qk(z):l 0l (x = )

Z =Xk

For j=0,...,¥, q=0,..., p; we have

P(")(xj) _ i g FPTm(xy 1 [ 1 ](m—S) [Qk(x) (x — %)~ fcq;x, -
Qk(z)

k=om=0 (p, — m)! s=o (m — s)!

z =Xy
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Py fpi=m)(y m 1 1 (m—s) q . .
Sy L Lol 5 () 1 —rr 1, 0oy -

m=0 (p; — m)! s=0 (m — s)! o, i

2] (Pj=m)(y m (m—s)
Y S y 1 [ 1 ] ( q )(pj—s)! QP I(x ) =

_m=m—q(Pj —m)! s=pi=a (m = )1 0)(z) i=s, \Ps =S
_ ij: f(Pj-m)(xj)q! m (m —p;+ 11) [_I_:rm-s)Q(fl"”H)(x )=
m=p;-q (P; — m)! (m+ q — pf)!s=Pj_‘1 9-pjts Qj(z) z=x; ’ '
=fx)).

By Rolle’s theorem there is

ye min x;, max x,»
0<ksV 0<k=V

such that
J®@) = PM(y) = 0.

FO(y) = PM(y) =

= > § ) § ! L x) (x — x,)P<~ s
"go "';0 (P — m)!s=o (m — s)! [Qk(z)] [ ( ) 2
Vb f(Pk“m)(xk) 1 (m)
) [ ] N1

k=om=0 (p, — m)! m! | Q\(z)

Hence

Z =X

z =X
which implies (1).

Lemma 2. Let V, pos ..., Pv» Qj(z) be the same as in Lemma 1. Put py = p, = ...
ee.=py=mn,x, =k, k=0,..., V. Then there is ¢ depending only on V and such

that
N2V +V (m)

2 "z L[—I‘] €Z for m=0,...,n,
m! Qk(z) z=k

where Z denotes the set of all integers.
Proof.
(V!)ZnV +V 1 (m)
m! ,:Qk(z)]z=k

(=1 (n+ my)t  (v1)>r*!

. -
t'm,! k — sytitme
iéo"“='"s*k n! m (k=)
i*k
- (= (") U
14 _ s¥k n (k — s)n+1-(~mA *
i§()m‘_m
itk

Hence (2) follows.
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Lemma 3. Let V, n, V + 0 be natural numbers and let f(x) have (V + ODn+vy

continuous derivatives. Put

L(f(x), V) = (V)Z"wa f f((V+1)n+V)(Q(xl’ e xV))slfII(xi"*"l(l = x,)" dxs)

)V+1

where
v v
O(x1 o 3) = ¥ -
i=1j=i
Then the identity
14 n 1 ]
(3) I,,(f(X), V) =.Z Z "I;‘ kjf(k)(])
J=0k=0
holds, where
4 Ay; are integers and |4, < ¢

and c depends only on V.
Proof. The proof proceeds by induction on V.
1. For V = 1 we have

1 .n _ n
L(f(x), 1) =f ﬁ(%;;)_z’if(znﬂ)(xl) dx, =

_ Zﬂ (2n — ) ( >(( 15 £0(1) 4 (— 1)n+1f(k)(0)) =

=y 3 La,r),

1
j=ok=o0 k!

where A,; satisfy the condition (4).
2. Suppose (3), (4) are valid for (V — 1), we will prove that they hold for V. We

have

(V!)Zn-i-l 1
L(f(x), V)= Tf (1—x,) =DV =1p (D (o 1), V- 1) dxy =

; n MJ‘ xy(l —x ) f(n+k+1)(x (J+1)) dxy,

k=0 n! k!
where 4,; satisfy the condition (4). Put
Px) = {1 - x).
Then the repeated integration by parts yields

o L) =5 5 A (),

j=0k=0 + 1
where
n+k
B,; = Z (__l)s (} + 1)n+k—s (P(s)(l)f(n+k—s)(j + 1) — P(s)(O)f(n+k—s)(0)) .
s=0
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Now it is easy to see that
s Wk
PO(1) = s!(—1) (s ~ fo, n<s
n
PO(1) = 0 otherwise

P(s)(()) = S!(_l)S—n+k< n k> for k<sZ<n+k,
s —_

P®(0) = 0 otherwise ,

I\

n+k,

The substitution s = n + k — s yields

Akj 14| 2n+1 n 1
o i) oL [, AT + 1) + By (),

where Ay, By, satisfy the condition (4), By (5), (6) we obtain (3) together with the
condition (4).

Lemma 4. Introduce N, V, n, f(x), In(f(x) V) s in Lemma 3. Let

max If(N) x)l AN
xe{0,V)
Then the inequality
L(f(x
LG v 2 ,),H
holds with ¢y depending only on V.

Proof. Lemma 3 implies

s ) = ?)fff mox [0 5

( )V+1
Lemma 5. Let
V. n n
(7) Bn = Z Z Z /AIJSA{AEA;
j=11=05=0

where Ay, A,, A; are algebraic numbers depending only onV, B, is also an algebraic
number of degree V and

]
8 B, L
®) . | I = (n!)V

Aj are integers and

noa
|4, £ S nl,

where ¢, depends only on V. Then there is ny such that B, = 0 for every n > n,,.

Proof. Put

v n n

©) D, = K*B, =¥ ¥ ¥ A (KAY (Kds) (KA,

j=1t=05s=0
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where K is a nonzero integer such that the numbers K4, KA,, KA; are algebraic
integers. Then the conjugates of D, satisfy

| 4

=L L

where E; is the conjugate of KA, for i = 1, 2, 3. Consequently,
1 4

(10) LA
=)

where ¢, depends only on V.
In virtue of (7), (8), (9) and (10), for the norm of D, we obtain the inequalities

mE"EzE

||[\/]=
"M:

Y A B B B S ¢,

"M=

N(D,) < () ~H K|V L < G

(n)" ~ n!

Hence N(D,) = 0 for every n > n,, which implies B, = 0.

Theorem 1. Let a be a nonzero real algebraic number. Then €° is transcendental.

Proof 1. Suppose a and e® are algebraic numbers. Denote by V the degree of the
field Q(a,¢?). In Lemma 1 put py =p, =...=py=n, x, =k for k=0,...,V,
f(x) = ¢™ and in Lemma 5 put

B, = J(n, .cyn, e, V) n! (V1)>"V+V,

By Lemmas 2, 5 it is easy to see that B, = 0 for every n > n,. However, this is im-
possible because by Lemma 1

ea.\'aN' V')Z aV+V

B,,=———N!—— +£0 ye0, V).

Proof 2. Suppose a and e” are algebraic numbers. Denote by V the degree of the
field Q(a, ”). In Lemma 3 put f(x) = ¢** and in Lemma 5 put B, = n!L(e™, V).
Lemmas 3, 4, 5 imply that B, = 0 for every n > n,. However, this is impossible,
because the function which is integrated in Lemma 3 is almost everywhere positive
(negative).

Theorem 2. The number = is transcendental.
Proof. Suppose 7 is an algebraic number. Denote by M the degree of the field
Q(n). Let V be a number for which the inequality
4p(2V)
|4

sM™!

holds. (¢ is the Euler function and the inequality evidently holds if V has a large

547



enough number of different prime divisors). Hence the degree of the field

Q (=, cos l, sin—n—
4V 4V
is less than or equal to V.

Now the proof can be completed in two different ways.

The first way:
InLemma lputpy=p;=...=py,=nx,=k+1fork=0,1,...,V,

. T
x) = sin — x,
16 = sin =

and in Lemma 5 put
B, = J(n, cens n,f(x), V) n! (V!)2nV+V )

By Lemmas 1, 2 it is easy to see that B, satisfies the conditions of Lemma 5. Hence
by Lemma 5, B, = 0 for n > n,. However, this is impossible because by Lemma 1

- ™
sin (—— x)
( 4v 207 +V
B,,=--T—(V!)" £0, xe<1,V+1).
The second way:
In Lemma 3 put

f(x) = sin fl—/x

and in Lemma 5 put
B, = n!L(f(x), V).

Now it is easy to see that B, satisfies the conditions of Lemma 5. Hence by Lemma 5,
B, = 0 for n > ny,. However, this is impossible, because the function which is
integrated in Lemma 3 is almost everywhere positive (negative).

Remark 1. We could prove Theorem 2 by Lemma 3 if we put
f(x) — e(1:/V)i:v:
(it is necessary to prove Lemma 3 for complex functions) and then continue as in the

proof of Theorem 1.

Remark 2. Ju. V. Nesterenko presented similar proofs in [4]. He integrated the
function over a simplex and obtained an identity similar to (3).

Remark 3. Identity (1) is a consequence of the Hermite identity which can be
found e.g. in [1].

>
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