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In [7] M. Svec has proved versions of Schauder’s Fixed Point Theorem for more
general Banach spaces (spaces of n times differentiable functions with bounded
derivatives of order <n defined on a finite or infinite interval). The aim of the present
paper is to extend these theorems to the case of multifunctions. In the sequel we shall
follow the method of M. Svec and, instead of Schauder’s theorem, we shall use
a modification of the fixed point theorem by Ky Fan. .

Now we shall introduce the notation and give preliminary results which will be
needed in the paper.

Let X and Y be topological spaces Let us denote by 27 the family of all nonempty
subsets of the space Y. A map F is called a multifunction if it assigns to each element
of the space X exactly one set belonging to 2¥. In a symbolic notation F: X — 27.
From now on we shall use capital leters to denote multifunctions.

Definition 1. The mapping F: X — 2Y is upper semicontinuous at a point x € X,
iff for an arbitrary neighbourhood O, of the set-image F(x) there exists such a neigh-
bourhood O, of the point x that F(0,) = Op,,, where F(0,) = U F(z).

2€0x
Definition 2. The mapping F: X — 2Y is upper semicompact at a point x € X iff
the assumptions x, € X, x, — x, y, € F(x,) imply that there exists a subsequence of
the sequence {y,}, convergent to some y € F(x).

Definition 3. The map F is upper semicompact at a point x € X iff F is i) upper
semicontinuous at the point x and ii) the set F(x) is compact.

Lemma 1. (W. Sobieczek, P. Kowalski [6].) Let X fulfil the first axiom of counta-
bility and let Y fulfil the second axiom of countablllty Then Definitions 2, 3 of
upper semicompactness are equivalent.

Let A be a subset of E,. Then |A| = sup {|a|: a € A}, and coA will denote the
convex hull of 4. 4 will denote the closure of 4. Further, cf (Y) will denote the set
of all nonempty closed convex subsets of the topological vector space Y. Let I = E
be an arbitrary interval (bounded or not). By B,(I) (m 2 0) we shall denote the Banach
space of all continuous and bounded real functions having bounded derivatives to the
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m-th order on I with the norm
/s, = max {sup |7P()[} -
0 I

<ism Xxe

Definition 4. The sequence f; € B,(I) quasi-converges (g-converges) to fe B,(I)
iff limf,ﬁ")(x) =f(i)(x) for every xel and i=1,2,..., m. This will be denoted
k=0

by fi =1 f.

Definition 5. A set M < B,(I) is said to be g-compact in B,(I) iff every infinite
subset of M contains a sequence g-convergent in B,,(I).

Definition 6. A set M < B,(I) is said to be uniformly bounded iff there is K > 0
such that for every fe M, xeI and i = 0, 1, ..., m we have |f(x)| £ K.

Definition 7. A set M < B,(I) is said to be equicontinuous iff for each ¢ > 0
there is 6() > 0 such that for |x — x’| < &(¢), x, x' €l and each fe M we have

[fO>x) = fOx) <&, i=0,1,2,...,m.

Lemma 2. (M. Svec [7].) Let M < B,(I) be a uniformly bounded and equi-
continuous set of functions. Then co M and co M are also uniformly bounded and
equicontinuous sets of functions.

Lemma 3. (S. Mazur’s theorem, L. Collatz [1], p. 351.) If M < B,(I) is a relatively
compact set then co M is a relatively compact set.

Theorem 1. (Ky Fan [2].) If B is a locally convex topological vector space and B,
is a compact convex subset of B, then for every semicontinuous mapping T from B,
into cf (By), there exists a point x € By such that x € T(x).

Corollary 1. Let M be a closed convex subset of B,(I). If T: M — cf (M) is upper
semicontinuous and TM is compact, then there is x € M such that x € Tx.

Proof. Let M, = FcS(TM). Then M, is convex and by Mazur’s theorem it is also
compact. On the other hand TM < M and since M is closed and convex we have
co (TM) = M. Hence we have

TM, = T(co (TM)) =« TM <= co (TM) = My, = M .
The assertion of the corollary now follows from Ky Fan’s theorem.

Lemma 4. Let M < B,(I) be a uniformly bounded set of functions which are
equicontinuous on every compact subinterval of I. Then M is g-compact.
Proof. Let {aj;, b;> be such a sequence of intervals that a;.; < a;, b; £ b;,;,

lim a; is equal to the left end point of I, lim b; is equal to the right end point of I.
Jjo o Jj= o

By the Ascoli Theorem, M is g-compact on every compact subinterval of I. Thus M
contains a sequence { f jk}, k=1,2,..., which is g-convergent on {a;, b;> and
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and {f;+,4}, k =1,2,..., is a subsequence of {f;}, k = 1,2,.... Define f; = f,.
Then {f,} is the required sequence which is g-convergent on I.

Definition 8. The operator T: B,(I) —» 2" is upper g-continuous iff the as-
sumptions

fk(x) _yqf(x), fk(x)’ f( )EBm( )’ yne T(fn)
imply that there exists a subsequence of the sequence { Y.} convergent to some
y € T(f) (in the norm).

Corollary 2. If T is an upper g-continuous operator, then T is upper semicompact.

Lemma 5. If the operator T: B,(I) — 2" is upper g-continuous, then T is upper
semicontinuous.

Proof. Lemma 5 is a consequence of Corollary 2 and Lemma 1.

Theorem 2. Assume that
i) g(t) = 0 for t 2 t, and [ g(t)dt = o < +o0,
i) By, = {x(#) : x(t) € C(<to, +0)) and |x(1)| < o},
B, = {x{t):x(t) measurable on {1y, +©) and |x(t)| < o},
i) F: B, - cf (B,), |[F(x(t))| < g(1) and F is upper semicompact.
Then the operator TF: B, , = cf (BO,Q) defined by

TF x(t) = {zeBO‘Q: z =f

t

y(s)ds, ye F(x) and xe BO’Q}

is upper g-continuous.

Proof. Let x; —»7x, x4, x€ By, and z, € TFx,. We have to prove that there is
a subsequence of {z,} converging to some z € TFx (in the norm of B,).

Let z, = [ yi(s) ds, y, € F(x,). Since F is upper semicompact and B, is equipped
with a.e. pointwise convergence, there is a subsequence {y} of {y,} which converges
to some q € F(x) a.e. on {t, +00).

Further,

|Zlk(tl) - Zlk(tz)l =

12
J Yud(s) ds
151

Thus the functions z,, are equicontinuous and uniformly bounded. By Lemma 4,
there is a subsequence {z,;} of the sequence {z,} which g-converges to some z
on {ty, + ).

On the other hand,

t
<[ e, wsn.
31

zt) = wa’Zk(S) ds.

Wt
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This yields (by the Lebesgue Theorem)
)= [ "y as,
t

i.e. ze TFx.
In virtue of

sup |zu(d) — 2(0)] = f yals) = ¥is)] ds
to

the Lebesgue Theorem implies that {z,,} converges to z in the norm of B,.

Theorem 3. Let J = <0, +0) and let a mapping F:J x E, — cf (E,) satisfy
the following conditions:
(co) F(t, x) is a nonempty, compact and convex subset of E, for each (t, x)e J x E,,
(c4) for every fixed t € J the function F(t, x) is upper semicontinuous,
(c;) for each measurable function x: J — E,, there exists a measurable function
fi:J = E, such that

f{0) e F(t, x(t)) a.e.on J.

Further suppose that there exists g: J x J — J such that
i) g(t, u) is monotone nondecreasing in u for each fixed te J,
ii) [ 97 (s, ¢)ds < +o0 for any constant ¢ > 0; p' > 1,
iii) for each x€E,,
|F(t, x)| < 9(t, |x|) ae on J.
Given a function x € C'(J), denote by M(x) the set of all measurable functions
y:J = E, such that y(t) € F(1, x(t)) a.e. on J.
Then the correspondence x — M(x) defines a bounded mapping of

B, = {x(1) e C'0) ¢ (9] < o)

into cf (L, (J)).

Proof. We have to show that for every x € Bg ,,
a) M(x) is nonempty,
b) M(x) is convex,
¢) M(x) is closed,
d) M(x) < L,(J),
e) for every 6 > 0 there is a constant K > 0 such that sup [x(1)| < & implies |y], =

< K for every y € M(x).

a), b) are trivial. e) follows from assumptions ii) and iii) and obviously implies d).
Thus we have to prove c) only. Let { y,}, y, € M(x) be a sequence such that |y, — V], =
— 0. By the Riesz theorem there is a subsequence {y,,} of the sequence {y,} such
that {y;,(f)} converges a.e. on J to y(f) as n — + co.

On the other hand,

Vilt) € F(t, x(t)) ae.on J.
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Because of (c,),
y(t)e Ft,x(t)) ae.on J.
Thus y € M(x).

Definition 9. Let X and Y be normed linear spaces. The mapping F: X — 2% is

weakly upper g-continuous at a point x € X iff the assumptions
x,xeX, x,-%x, y,€F(x,)

imply that there is a subsequence of the sequence {y,} which weakly converges to
some y € F(x).

Theorem 4. Let the hypotheses of Theorem 3 be satisfied. Then the mapping
M: Bj , — cf (L,(J)) is weakly upper g-continuous.

Proof. Let x, »?x, x,, xe By , and y, € M(x,). Then

, 1/p’
[yalpr S €= <J 9" (t.0) d5>
J

and thus there is a subsequence {y,} which weakly converges to some y € L'(J).
We only have to prove that y € M(x). By the Banach-Saks Theorem, there is a sub-
sequence {y,,} of the sequence {y4,} such that

-0 for n—-> +o0.
p,

Z Yok —
nk=1
Now, by the Riesz theorem, there is a sequence {a,,} 6,€ N, o, = n such that

1 On
— Y yult) > ¥(f) ae.on J for n— +ow.
0, k=1

On the other hand, by assumption (c,), for almost every fixed t € J and any ¢ > 0
there is an integer N(e,t) such that F(t, x(f)) = F(t, x(t)) + K, = {u + viue
€ F(t, x(1)), |v] < &} for i = N(e, 1).
Thus
yalt) e Fit, x(t)) + K,, 2k = N(e, 1)

and by convexity of F(t, x(t)),

L S ) e F(t, x(t) + K., 20, = N(e 1)
o, k=1
so that :
y(t) e F(t, x(t)) ae.on J.

The proof is complete.

Theorem 5. Let the hypotheses of Theorem 3 be satisfied and let h(t)e L(J)
where 1[p + 1[p’ = 1.
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Then the operator TM: B , — cf (By) defined by

™ x(t) = {z €eBy:z= rh(s) y(s)ds, ye M(x)}

t

is upper g-continuous.

Proof. Let x, »?x, x,, x € By , and z, € TM x,. We shall show that there exists
a subsequence of {z,} that uniformly converges to some z € TM x.

Let

z(1) = th(s) yis)ds, y;eM(x)).

t

Then, since M is weakly upper g-continuous, there is a subsequence {y,;} of {y;}
which weakly converges to some y € M(x), i.e.

2ut) > (1) = j “Ys) h(s)dse TM x(i) ace. on J as i +c0.

Further, the functions z,(f), i = 1,2, ..., are uniformly bounded and by virtue of
t2 t2
|214(t1) — z1i(t2)] éj |h(s) y1s)| ds = J. |h(s)| g(s, @) ds, t; <1,
ty t1

they are also equicontinuous on J. By the Ascoli theorem, as well as Cantor’s dia-
gonalization process, the sequence {zy;} contains a subsequence {z,;}, which is
uniformly convergent on every compact subinterval of J. This fact together with the
inequality

|z240)| < J |h(s)| g(s, @) ds, i=1,2,...,
t
guarantees the uniform convergence of {z,;} on J.

Corollary 3. Let the hypotheses of Theorem 3 be satisfied and let h(t) e L(J)
where 1[p + 1/p" = 1. Then the operator TM: B , — cf (By), defined by

™ x(t) = {z eBl:z = rh(s) y(s)ds, ye M(x)} 5

A
is upper q-continuous.

Proof. The proof proceeds analogously as that of Theorem 5.

Corollary 4. Let mappings F;: X — 2Y, i = 1,2 be (weakly) upper g-continuous
at a point x € X. Then the mappings —F, (i = 1,2), F; + F, are (weakly) upper
q-continuous.

538




Theorem 6. Let the hypotheses of Theorem 3 be satisfied and let hy(1)s ha(D) e Ly(J)s
where 1[p + 1/p’ = 1. Then the operator TM: B} , — cf (By) defined by

™ x(t) = {Z eBl:z— J a(s) y(s) ds — f “has) o(s) ds, ye M(x)}

0 T

is upper q-continuous.

Theorem 7. Let the hypotheses of Theorem 3 be satisfied and let D be a Banach
space. Suppose that T: L';,,(J) — D is a compact linear operator.
Then the operator TM defined by

TM x = {ze D:z = Ty and y e Mx}

maps By, , into cf (D) and is upper q-continuous.
Proof. First we shall prove that the operator TM is upper g-continuous.

Let x, »%x, x,, xe By, and z,e TM x,. We have to show that there is a sub-
sequence of the sequence {z,,} that converges (in the norm of D) to some z € TM x.

Let z; = Ty;, y; € Mx;. Since M is weakly upper g-continuous, there is a sub-
sequence {y,;} of the sequence {y;} which weakly converges to some y € Mx. Since
{y1:} is bounded and T is a compact linear operator there is a subsequence {y,;}
of the sequence {y,;} such that Ty,; > ze D as i > +oo. We shall show that
z=TyeTM x.

Because {y,;} weakly converges to y we have that also {y,;} weakly converges
to y. By the Banach-Saks theorem there is a subsequence { y3i} of the sequence
{y2:} such that

Y31+ Vaz + et Y
i

y

as i > + oo in the norm of L (J).

Since T'is compact and linear (hence T is continuous), we have

(+) T(J’31+)’32-‘|'~-~+J’3i)_)7~y as i— 4+00.

1

On the other hand, since Ty;; — z € D and T'is linear we have

.+ T
(**) z = lim Ty;; = lim Tys; + T.V32.+ + 1yse _
i»+o i>+oo i
= lim T<y31 + Y32+t ys,)
i»+ o i

By (*) and (*x) we have that z = Ty e TM x. Thus the operator TM is upper g-
continuous. From this we conclude that TM x is closed. Further, Mx is a convex
set and T'is a linear operator. Thus TM x is also a convex set.
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Lemma 6. Suppose that M < B,, is a g-compact set and T is a upper g-continuous
operator. Then TM is compact.

Proof. Let {g;} be an infinite sequence from TM and let {f,} be such a sequence
that f,e M and g, € Tf,, k = 1,2,.... Since M is a g-compact set, there is a sub-
sequence {fy;} of the sequence {f;} and a function f € B,, such that f; —7 f. Further,
T is an upper g-continuous operator. Hence there is a subsequence {gz,,} of the
sequence-{g,} such that

lim g,(t) = 9(1)e Tf(f) =« TM in the norm.
k—+ o0

Theorem 8. Suppose that M < B,, is a nhonempty, convex, closed and g-compact
set and T: M — cf (M) is an upper g-continuous operator. Then there is a point
Xx € M such that x € Tx.

Proof. By the hypotheses all assumptions of Lemma 6 are fulfilled. Thus TM is
compact. Further, by Lemma 5, T is an upper semicontinuous operator. Now the
existence of at least one point x € M such that x € Tx follows from Corollary 1.

Theorem 9. Suppose that M < B,, is a nonempty, convex and closed set and
T: M — cf (M) is an upper g-continuous operator. Further, let TM be a uniformly
bounded set of functions which are equicontinuous on every compact subinterval
of J. Then there is a point x € M such that x € Tx.

Proof. Let M, = co (TM). Then M, is convex and closed. By Lemma 2, M, is
a uniformly bounded set of functions which are equicontinuous on every compact
subinterval of J. Thus, by Lemma 4, M is a g-compact set. Furthermore

T, =« TM < co(TM) = M, = M .

Thus, by Theorem 8, there is a point x €e M, = M such that x € Tx.

Definition 10. An operator T: B,(I) — 25 fulfils the condition (a) iff

fi =5 fofeB,I), {|fi]} isbounded, g,eTf,
implies that there is a subsequence {g;} of the sequence {g,} such that g, > g € Tf
in the norm.

The condition that {|/,|} is bounded does not follow from the g-convergence of
{fi} to f as the following example shows.

Example. Define a sequence {f;} of functions on <0, + ) by

0, x€ <0,k — 1)U <k, +0)
A =& Kx=k+1), xek—1 k= 1J2)
—k'x — k), xelk - 1/2,k).

Then f;, »?0as k —» + o and f;, = }k - 4+ o0 as k —» + .
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Corollary 5. If the operator T: B,(I) — 28 fulfils the condition (a), then it is
upper semicompact and upper semicontinuous. If the operator T is upper g-
continuous, then it fulfils the condition (a).

Theorem 10. Suppose that M < B,(I) is a nonempty, convex and closed set and
the operator T: M — cf (M) fulfils the condition (a).

Further, let TM be a uniformly bounded set of functions which are equicontinuous
on every compact subinterval of I. Then there is a point x € M such that x € Tx.

Proof. Let M, = co(TM). Then, as in the proof of Theorem 9, we have that M,
is a nonempty, convex, closed, uniformly bounded and g-compact set such that
TMy, =« M, = M. By Corollary 5 the operator T is upper semicontinuous. Thus we
only have to prove that TM,, is compact.

Let {g,} be an infinite sequence from TM, and let {f,} be such a sequence that
g € Tfi and f, € M. Since M, is a g-compact set there is a subsequence {fy,} of the
sequence { f,} and a function f € B,, such that fy, —f. Further, because M, is uni-
formly bounded, so is { f;,} and g1 € Tf;,. Now, by the condition (a), there is a sub-
sequence {g,,} of the sequence {g 1} such that g,, — g € Tf in the norm. The proof
of the Theorem 10 is complete.

Definition 11. A set M < B,,,(I) is said to be g-closed iff f,e M, f,, —»? f implies
feM.

Theorem 11. Suppose that M < B,(I) is a nonempty, convex and g-closed set and
T: M — cf (M) is an upper g-continuous operator such that TM is a uniformly
bounded set of functions which are equicontinuous on every compact subinterval
of 1. Then there is a point x e M such that x € Tx.

Proof. It is easy to see that each g-closed set is closed. Thus we have
TMy c My =co(TM) = M,

M, is convex, closed and, as in the proof of Theorem 9, we have that TM, is a g-
compact set. By Lemma 5, operator T is upper semicontinuous. In order to apply
Corollary 1, we have to prove that TM, is compact.

Let {g,} be an infinite sequence of functions g, e TM, and let {f;} be a sequence
of functions such that g, € Tf, and f, € M,. Since M, is a g-compact set, there is
a subsequence {f,,} of the sequence {f;} and a function f e B,, such that fy, =7 f.
Because the operator T is upper g-continuous, there is a subsequence {g,} of the
sequence {g,,} such that g,, = g € Tf as k — +co in the norm. This completes the

proof of Theorem 11.
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