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Let K be the fundamental group of the Klein bottle. In § 1 we compactify K by
computing its profinite completion K. It turns out that K is topologically isomorphic
to a semidirect product of two copies of the profinite completion of the additive group
of rational integers.

The analysis of the structure of K is begun in § 2. Our first step is to find all the
normal subgroups of K of odd index. We then determine the p-profinite completions
of K for each prime number p. In the last part of this section we obtain a decomposi-
tion of K in its p-Sylow subgroups, which are expressed in terms of those completions.

Finally, in § 3 we establish several finiteness, centrality and radical properties of K.

The author wishes to thank K. O. Stohr for several helpful and stimulating con-
versations.

1. The profinite completion. We recall that K has a presentation given by two
generators a, b and the relation abab™! = 1. If Z is the additive group of rational
integers and o the homomorphism of Z onto Aut(Z) that maps the integer 1 onto
the automorphism —1 of Z, K is isomorphic to the semidirect product Z x , Z.

Now let G be any group and A the family of all normal subgroups of G of finite
index. Define a partial order < on A by setting S < T if and only if T< S for S
and T'in A. For each such pair let ¢3 be the canonical epimorphism of G|T onto G|S.
Then (4, (G/S), (¢3)) is a projective family of groups. The projective limit lim (G/S)
of this family is called the profinite completion of G and is denoted by G or by G”.

If G = Z we can take A to be the set of positive integers with the partial order <
defined by m < n if and only if m divides n; and for any pair m, n of elements of A
such that m divides n we let ¢ be the canonical epimorphism of Z/nZ onto Z|mZ.
Then # = (4,(Z|mZ), (")) is a projective family and we have Z = lim (Z/mZ).

Let r be a fixed positive integer. Since the family (4, (Z/rmZ), (¢/y)) is cofinal
in # we also have Z =lim (Z[rmZ). Let rZ be the projective limit of the family
(A4, (rZ[rmZ), (¢7)), where we use the same symbol for the restriction of ¢} to
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rZ[rnZ. 1t is clear that rZ is a subgroup of Z, and as projective limits commute with
the operation of passing to quotient groups we have an isomorphism Z/rZ =~ Z[rZ.
(Here and in the sequel isomorphisms are topological.) Thus the subgroup rZ is
open (and therefore closed) in Z, and if we consider Z with its natural structure of
commutative ring, rZ is the (open and closed) ideal in Z generated by r.

Now let 1~ be the identity automorphism of Z and & the homomorphism of Z
into Aut (Z) defined for all e Z by 6(n) = 1~ if ne2Z and 6(n) = — 1" if y ¢ 2Z.
Let Z x , Z be the semidirect product of two copies of Z with respect to 4.

Theorem 1. The groups K and Z x ; Z are isomorphic.
Proof. Since any normal subgroup of K of finite index contains 2nZ x , 2nZ for
some integer n, we have an isomorphism

(2 x,2)" = 1im((Z x,Z))(2nZ x ,2nZ)).

Now let 1,, be the identity automorphism of Z/2nZ and 7,, the homomorphism of
Z[2nZ into Aut(Z/2nZ) defined for all X € Z2nZ by 1,,(X) = 1,, if Xe2Z[2nZ
and 7,,(X) = —1,, if X¢2Z/2nZ. The canonical mapping of Z x,Z onto
(z]2nZ) x,,(2]2nZ) induces an isomorphism of (Z x, Z)/(2nZ x,2nZ) onto
(Z]2nZ) x,,(Z]2nZ) for all n which is compatible with all the connecting epi-
morphisms. Therefore, we have an isomorphism

lim (Z x,Z)/(2nZ x,2nZ)) =lim ((Z[2nZ) X .,,(Z|2nZ)).

As a topological space, the right-hand side is the cartesian product Z x Z. The
naturally induced composition law on this space is continuous, as is the operation
of taking inverses, and we obtain an isomorphism

lim ((2/2nZ) x.,, (Z[2nZ)) = Z x, Z.

2. The p-profinite completions. Let G be any group, p a fixed prime number and 4,
the family of all normal subgroups of G of index a finite power of p. Define a partial
order on A, and connecting epimorphisms ¢7. just as in § 1. Then (4,, (G/S), (¢3))
is a projective family of groups. The projective limitlim (G/S) of this family is called
the p-profinite completion of G and is denoted here by G,.

If G = Z we can take 4, to be the set of positive integers of the form p" with the
usual partial order; and for any pair p™, p" of elements of 4, such that m < n we
let Y be the canonical epimorphism of Z/p"Z onto Z[p"Z. Then (4, (Z[p"Z), (V)
is a projective family and we have Z, = lim (Z/p"Z). (This is the group of p-adic
integers.)

The following result will allow us to compute the p-profinite completion of K
when p is an odd prime.

Lemma. If H is a normal subgroup of K of finite odd index i, then H = Z x , iZ.

Proof. By hypothesis H contains an element a™b" with n odd and positive. Con-
jugation by a then shows that a* € H. Now the non-empty set S = {a”b%€ H : p odd,
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g = 0} may be preordered by a”b? < a"b* if and only if ¢ < s, and if a?b™ is a minimal
element we obtain ab® e H. Consideration of the images of a and b in K/H shows
that a € H and q, = i, hence H is the subgroup of K generated by a and b'.

Remark. In [I], Exer. 6.5(iv), p. 141, it is asserted that the subgroup K;, ,
(which coincides with our Z x , iZ) cannot be normal.

Now let 1, be the identity automorphism of Z, and o, the homomorphism of Z, into
Aut (Z,) defined for all n,eZ, by o,(n,) =1, if n,€2Z, and o,(n,) = —1, if
Ny, ¢2Z,. Let Z, x,, Z, be the semidirect product of two copies of Z, with respect
to o,.

Theorem 2. The 2-profinite completion K, of K is isomorphic to Z, x ,, Z,. For
any odd prime p the p-profinite completion K, of K is isomorphic to Z,,.

Proof. The first assertion is proved by making simple modifications in the proof
of Theorem 1; and the second assertion follows readily from the lemma above.

Remark. Since finite groups are required to be Hausdorff, the p-profinite comple-
tion of a topological (but not necessarily Hausdorff) group G must coincide with
that of the Hausdorff group associated to G. A non-abelian group may therefore
turn out to have an abelian p-profinite completion. A concrete example of that
situation is given by the second assertion of Theorem 2.

Let P* be the set of odd primes and for each p € P* let 1, be the identity auto-
morphism of Z,. Let v be the homomorphism of Z, x ,, Z, into Aut ([](Z, x Z,))

peP*

defined for all (&5, 1,) € Z, X4, Z; by v(é5,1,) = (1, 1,)epe if 112 € 2Z;, and 0(&5, 12) =
= (—=1,,1,),ep+ if 1, ¢2Z,. Our next result gives a Sylow decomposition of the
profinite group K.

Theorem 3. There exists an isomorphism
K = (112, x Z,)) x,(Z; x,,2,).
peP*

Moreover, Z, X ., Z, is a 2-Sylow subgroup of K and Z, x Z,is the unique p-Sylow
subgroup of K for each p e P*.

Proof. Clearly there is an isomorphism of K onto the group on the right-hand
side. As Z, x,, Z, is a 2-group, there exists a 2-Sylow subgroup S of K containing
it (cf. [3], Theor. 4(2), p. 13), and it follows that S = Z, x,, Z,. The same argument
shows that Z, x Z,is a p-Sylow subgroup of K for each p e P*, which is normal in K.

3. Further properties of the profinite completion. It is clear that K is locally infinite,
non-noetherian and residually finite. If |X | denotes the cardinality of a set X and G
is a given finite group we have [Hom (K, G)| £ |G|?, so that K is hopfian (but not
co-hopfian).

Some centrality properties of K have counterparts in K. For example, for each
integer i > 2 the i-th term of the lower central series of K is 2°"'Z x , {0}. In par-
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ticular, the commutator subgroup of K is isomorphic to Z, and the abelianized
group of K is isomorphic to (Z/2Z) @ Z. On the other hand, although K is residually
nilpotent, K is not. Since K is residually central (but not Baer-nilpotent) we have
a description of the position of this solvable group among generalized nilpotent
groups. (Cf. [2], Part 2, p. 13.)

We shall now state some other centrality properties of K that carry over from those
of K. (Cf. [4].) For each (£, 1) eK let Z(&, 1) be its centralizer in K. Let Ko =
=7 %422, and for each ¢ e Z let A, be the subgroup of K generated by {(¢, »):
weZ, o¢22Z}). Obviously, K, and A, are respectively isomorphic to Z @ Z and Z.
If ne2Z and ¢ = 0, then Z(&,n) = K; if ne2Z and & * 0, then Z(&, 1) = K3
and if # ¢ 22, then Z(&, ) = A, The center of K equals {0} x , 2Z.

As regards radical subgroups, the Frattini subgroup of K is evidently abelian.
Since any nilpotent subgroup of K is abelian, the Fitting subgroup and the Hirsch-
Plotkin radical of K are equal to K. This group is the unique maximal abelian normal
subgroup of K. In addition, there exists a continuous family of maximal abelian
subgroups of K, namely the subgroups A (Ce Z) introduced above.
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