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ENDOMORPHISMS AND CONNECTED COMPONENTS
OF PARTIAL MONOUNARY ALGEBRAS

DANICA JAKUBIKOVA-STUDENOVSKA, KoSice

(Received July 2, 1984)

Homomorphisms and endomorphisms of (complete) monounary algebras were
investigated in [1], [3]—[6]; for the case of partial monounary algebras cf. [2].

Let 4 & 0 be a set, card A = 2. We denote by F the set of all partial mappings
of the set A into A. If f € F, then (4, f) is said to be a partial monounary algebra.
To each f e F there corresponds a partition P of the set A consisting of all connected
components of (4, f) (cf. § 1 below). Let End (4, f) be the set of all endomorphisms
of (4, f).

Let F, be the set of all mappings of the set 4 into 4. In [1] it was shown that for
each f e F, the relation

(1a) (9 € Fo&End (4, f) = End (4,9))= P, =P,
is valid.

In this paper it will be proved that for f e F the analogous relation
(1) (ge F&End (A, f) = End(4,9))= P, = P,

need not hold, but that the set of nonisomorphic types of partial monounary algebras
(A, f) such that (1) fails to hold for f is small (independently of the cardinality of the
set A). Namely, we shall describe partial mappings f;, f, € F such that, whenever
f € F and f does not satisfy (1), then (4, f) is isomorphic either to (A4, f,) or to (4, f,).
(Cf. Thm. 4.6, type 7 and =.)

Further, we shall establish some results on the relation between (A4', /) and (4', g'),
where f,geF, A'eP; and f' = f | A, g =9 ‘ A’ (under the assumption that f
fulfils (1)). :

I. PRELIMINARIES

Let (4, f) be a partial monounary algebra. We shall denote by D, the set of all
x € A such that f(x) does not exist. A mapping H: A — A is called an endomorphism
of the partial monounary algebra (4, f) (cf. [2]), if the following relation is valid:

(Yxe A — D,)(H(x)e A — D, & H(f(x)) = f(H(x))) .
The system of all endomorphisms of (4, f) will be denoted by the symbol End {4, f).
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Let N be the set of all positive integers. For each x € A we put f°(x) = x. Let
ne N.If f"(x) is defined for each me N U {0}, m < n, and if /"~ '(x) ¢ D, then we
put f%(x) = f(/""'(x)). Further, denote f~"(x) = {yeA:f"(y) = x} for each
neN. For x,ye A we shall write x =y, if there exist m, ne N U {0} such that
S"(x) = f™(y). The relation = is an equivalence relation on 4 and the elements of
the set A/Ef are called connected components of the algebra (4, f). If Al=, has
one element, then we shall say that (4, f) is connected. The connected component
containing the element x € 4 will be denoted by K ((x).

Let Ord be the class of all ordinals; denote Ord, = Ord U {00, ©0,}. We put
o < 00; < 00, for each o € Ord. For each f e F, a mapping s, of the set 4 into the
class Ord, was defined in [2].

The following propositions (T), (T0)—(T3), which will be often used in the sequel,
are immedaite consequences of 3.3 and 4.8 [2].

(T) If (4, h) is a partial monounary algebra, H € End (4, h), x € A, then s,(x) <
< s(H(x)).

(TO) If (A, h) is a partial monounary algebra, xe A4, ne N u {0}, h™"(x) + 0,
h™"~!(x) = 0, then s,(x) = n.

(T1) Let (4, h) be a partial monounary algebra, xe D, y€ A — K,(x). Then
si(x) < s,(y) if and only if there exists H € End (4, h) such that the following con-
ditions are fulfilled:

(i) H(x) = »,
(ii) H(h™"(x)) = h™"(y) for each neN,
(i) H(r) = t for each t€ A — Upenoioy h™"(%).

(T2) Let (A, h) be a partial monounary algebra, x, y € 4, x + h(x) = h(y). Then
su(x) < s,(v) if and only if there exists H € End (4, h) such that (i), (ii), (iii) from
(T1) are valid.

(T3) Let (A, h) be a partial monounary algebra, x, y € A, s(y) # oo; (i = 1,2),
yef T x), ke N. Then s/(x) > s/(y).

In what follows, the notation s,(x) = co means that either s(x) = oo, or s{x) =
= 00,. (Thus 5(x) % oo means that neither s,(x) = 00, nor s/(x) = oo, holds.)

Let (A4, f) be a partial monounary algebra. By 47 we shall denote the set of all
x € A such that there exists y € D, with y =, x. Further, let Al = A — 4.

Remark. In the figures we use the following notation:

y

— a pair of elements x, y € 4 with f(x) = y;

X

x oQ — an element x € 4 with f(x) = x;

— an element ze D,.
ZD
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1.1. Definition. We say that a partial monounary algebra (B, h) is of type t, 1, §
or y, if it fulfils the following condition (), (), (8) or (y), respectively (cf. Fig. 1):

(t) card A4 > 1 and there is x € B such that h(f) = x for each 1 e B;
() there is x € B such that h(x) = x and 0 + D, = B — {x};

(8) h{t) =t for each t e B;

(v) B = D,

If (B, h) is of type © or of type 7, x € B and h(x) = x, then we also say that (B, h)
is of type t or of type n with the end x.

Q o <« o o 0O
6

Fig. 1.

1.2. Definition. Let (B, h,) and (B, h;) be partial monounary algebras such that

(i) B= {x;:ieN}UUn.i>1 Bi» Where x;, ieN, are distinct elements, B,
ieN,i> 1, are disjoint sets and x; ¢ B; for i,jeN, j > 1;
(i) hy(bis+1) = X4, for each b;e B, U {x;}, ie N, and hy(x,) = x,;
(iii) hy(b;s,) = x; for each by € B4y U {X;1,}, i€ N, and x, € D,,.

The algebra (B, h,) or (B, h,) is said to be of type ¢ or g, respectively (cf. Fig. 2).
If (B, hy) is of type ¢ or ¢ and there are x; (for each i e N) and B, (for each i€ N,
i > 1) fulfilling (i), (ii) or (i), (iii), respectively, then we write

(B, hy) € o(xy, X3, ..., By, By, ...),
(B, hy) € o(xy, X3, ..., By, By, ...) .

1.3. Definition. Let (B, ;) and (B, h,) be of type t and =, respectively, with the
end x. We shall write

(B, hy) = (B, hy)*, (B, hy) = (B, hy)".
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1.4. Definition. Let (B, h,) and (B, h,) be of type & and 7, respectively. We shall
write

(B, h,) = (B, h,)’, (B, hy) = (B, h).

X4
% Xs
BZ
X X
3 3
X 8 X,
2
%
g o
Fig. 2.

1.5. Definition. Let (B, h;)eo(xy, X5,..., B, Bs,...), (B, hy)eo(xy, x5 ...,
B,, B;, ...). We shall write

(B, hy) = (B, hy)Y . (B, hy) = (B, h).

2. AUXILIARY RESULTS

Now let (4, f) be a partial monounary algebra. Further assume that (4, g) is
a partial monounary algebra with the property End (4, /) = End (4, g).

2.0. Lemma. Let x € A, f(x) = x. If A # D,, then x ¢ D, and g{x) = X.
Proof. Let H(t) = x for each € A. It is obvious that H € End (4, f), hence H €
€ End (A, g). This implies that either x € D, or

x = H(g(x)) = g(H(x)) = g(x) .
Let ye A — D, and suppose that x € D,. From the definition of an endomorphism it

follows that for no G € End (A, g) the relation G(y) = x is valid, which is a contradic-
tion with the fact that H(y) = x and H € End (4, g).
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2.1. Lemma. Let x€ A] — D,. Then g(x) e K (x).
Proof. We can use the proof of Lemma 4 from [1].

2.2. Corollary. Let x € A{. Then g(K (x)) = K {(x).

2.3. Lemma. Let ze D, n A{, xe f~!(z). Then x € D,

Proof. Define a mapping H: A — A as follows: H|K/(x) = f|K/x) and
H|(A — K/{x)) =id | (4 — K(x)). Since HeEnd(4,f), then HeEnd(4,g).
We have H(x) = z € D, thus x € D,.

2.4. Lemma. In A] n D, there exist no distinct elements xy, X,, x3 such that
f(xx) = X, f(xz) = X3.

Proof. Suppose that such x,, x,, x5 exist. Let s,(x;) < s,(x,). From (T1) (for
g, X1, X, instead of h, x, y) it follows that there is H € End (4, g) with H(x,) =
= H(x,) = x,, H(x3) = x3. Then H € End (4, f) and we obtain

Xy = H(x;) = H(f(x)) = f(H(x,)) = f(x2) = x3,

a contradiction. Now let s,(x;) = s,(x,). According to (T1) there exists H, €
€ End (4, g) such that H,(x,) = H,(x,) = x,, Hy(x3) = x3. Thus H, € End (4, f)
and

Xy = Hy(x;) = H(f(xy)) = f(H(x,)) = f(x,) = x2,
which is a contradiction.

2.5. Lemma. Let z€ D, A{. Then f~(z) — {z} = 0.

Proof. Assume that x e f~*(z) — {z}. From 2.3 we infer that x e D,. First let
s,(x) < s,(2). According to (T1) there is H € End (4, g) such that H(x) = H(z) = z
and then
(1) z = H(z) = H(f(x)) = f(H(x)) = /(2) -

Since z € D, 2.0 and (1) imply that A = D,. Thus 0 = s5,(z) < s,(x) = 0. Therefore
s,(z) < s,(x) and (T1) implies that there is G € End (4, g) such that G(z) = G(x) = x.
Hence G € End (4, f) and we obtain

(2) G(/(x)) = G(z) = x + z = f(x) = /(G(x)),

a contradiction.

2.6. Lemma. Let z;,z,€ A{ n D,, z; € K{z,). Then there is neN such that
1(z2) = 14(z2) |
Proof. Since z, € K/(z,), there exist m, n € N with f"(z,) = f"(z,). We can assume
that s(z;) < s,(z,). From (T1) it follows that there is H € End (4, g) such that
H(z,) = H(z,) = z,. Then H € End (4, f) and we obtain
["(z2) = ["(H(z,)) = H(f"(z1)) = H(f"(z2)) =
= P(H(R) = 17(23) = 7).
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2.7. Lemma. Let ze D,n A], xe A, neN and suppose that f*(x) + f"(z) =
= f"(x) # f"(z) for each n"e N U {0}, n’ < n. Then x € D,

Proof. Suppose that x ¢ D,. From 2.5 it follows that f~'(z) = 0. From the as-
sumption of the lemma we obtain that there exists the least positive integer m such
that there is x’e€ A — D, with the property

(1) fm(x") £ f"(z) = f"(x") £ f"(z) foreach m'eNuU{0}, m <m.
Put

H(r) = {

Then H € End(4,f), thus H e End (4, g). Denote U = {te A: H(f) % t}. Since
H(x') = x', the relation x'e K,(z) implies H(z) = z, a contradiction; therefore
x" ¢ K,(z). Analogously, if H{t) = t for some t€ A, then t ¢ K,(z). Thus we have

(2 K (z) = U.

fe78(x"), ifthereare 0 = ky < ky <m  with  fA(f) = f*(z),
t otherwise .

The relation s,(z) < s,(H(z)) = s,(x") is valid and (T1) implies that there exists
G € End (4, g) such that G(z) = x, G(r) =t for each te 4 — K (z), G(g7%(2)) <
< g ¥(x') for each ke N. Let te U, ie. f*(t) = f*¥(z), where 0 < k; < k, < m.
We get

SHx) = 1(6(2) = G(f*(2)) = G(f*(1) = (G(1)),
hence G(1) € f~(f*(x")). Since t € f~¥(f**(z)) and f*(f*(2)) n f 74 (f*(2)) = 0,

the relation G(f) = ¢ is valid. Therefore ¢ € K,(z), hence

(3) UcK)fz).
From (2) and (3) we obtain
(4) Kfz)=U={te A: H(t) + t} .

Denote y' = g(x'). Since H e End (4, g), there exists G, € End (4, g) such that

G.(n = g(H(1)), if teK,z),
(1) = t otherwise .

(The mapping is correctly defined, since g(H(z)) = g(x') exists.) Then G, € End (4, f).
Put f™(z) = u. We have H(u) = u, thus (4) implies that u ¢ K,(z) and then G,(u) =
= u. We obtain

() u=["(2) = G,(/"(2)) = /"(Gs(2)) = f"(9(x")) = 1"(¥") -

First assume that m > 1. Put

Golt) = {f(t) for teK/x'),

t otherwise .
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Then G, e End (4, f). We have G,(z) = f(z) und by virtue of the definition of H
and (4) we obtain that G,(z) e K,(z). Denote v = f™"*(z). Then veK,(z), but
Gy(v) = f (v)=u¢ K ,(z), which is a contradiction with the relation G, € End (4, g).
Hence we obtain that m = 1. From (5) it follows that

(6) ) =u=Jx)=f2).
Suppose that s/(y) < s/(x) and that f(y) # y’. Then (T2) (for f, y’, x" instead

of h, x, y) implies that there is H; € End (4, f) with H,(y') = Hy(x") = x. Thus
H, € End (4, g) and
9(x) = g(H\(x) = Hi(9(x) = Hi(y') = x".

In view of 2.0 we infer that f(x") = x’, which is a contradiction, since then f"(z) =
= f%x’), 0 < m. Hence either s/ (y') £ s(x') and f(y') = y', or s{y) > s{(x’).
In the first case s/()') = s/ (x") = o0, f(¥') = y', hence consider the possibility
si(y') Z s;(x’). Since f(x’) # x’, we can use (T2) which implies that there is H, e
€ End (4, f) such that H,(x') = H,(y') = y'. We have H, € End (4, g) and

9(y") = g(Ha(x")) = Hy(9(x")) = Hy(y') =y

In view of 2.0, f(y’) = y’. Further, from (4), (6) and from the definition of H we obtain
that K (z) = {z}.

First assume that f~!(x') & 0, sef~'(x). Put Hs(z) = s, Hy(t) =t for each
te A — {z}. Since K,(z) = {z}, the relation H, e End (4, g) is valid, thus H;e
€ End (4, f). Because of K,(z) = {z} and g~ '()') 2 {x} we have )’ + z and then
we get

9(x) = y" = Hy(y) = Hy(f(y')) = Hy(/(2)) = [(Hi(2)) = f(s) = X',

which yields a contradiction as above. Hence f~'(x") = 0. Therefore 0 = s/(x') <
< s/(z) = 0 and (T2) implies that there is H, € End (4, f) such that H,(x') =
= Hy(z) = z. Then H, e End (4, g), a contradiction, since x' ¢ D, and z € D,.

2.8. Lemma. Let x € A and let x belong to a cycle consisting of k elements,
k > 1. Then K/ (x)n D, = 0.

Proof. Assume that K/ (x)n D, % 0, z€ K/(x) n D,. We denote by C the cycle
of the component K(x). There is the least i€ N U {0} such that fi(z)e C. Put
fi(z) = u. From 2.5 it follows that z ¢ C, hence i = 1. Let k; e N be such that
kky — i 20 and put x" = f*'~i(y). Obviously, x'e C and f~'(x') — {x'} + 0,
thus 2.5 implies that x" ¢ D,. Analogously, if y’ e C, we obtain that y’ ¢ D,. Thus
Cn D, = 0. Denote g(x') = w. In view of 2.1 we have we K/(x"). There exists
G e End (4, f) such that G(tf)e C for each te K (x") and G(r) =t for each te
e(A — K/{x")) U C. Then

w = g(x) = 6(G(x) = Glg(x) = Giw).
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which implies that w e C. Since C n D, = 0, w = g(x') exists. By induction, g"(x’)
exists and g™(x’) e C for each m e N. This yields that K(x") n D, = 0 and hence
z ¢ K (x'). Put

Gy(1) = {g(t) , if teK,(x),

t otherwise .
Evidently G, € End (4, g), thus G, € End (4, f) and we obtain
9(x') = G\(x) = G,(/* 7 '(w)) = G(/™ 7 (/12) =
= [*(Gy(2)) = 1*(2) = ST () = £ 7 (w) = &'
According to 2.0 this implies that f(x) = x’, which is a contradiction.

2.9. Corollary. Let x € AJ, s(x) = o, f(x) # x. Then K(x)n D, = 0.
S A g

Proof. Suppose that there is z e K{(x) n D,. From 2.8 we obtain that there is
no cycle C with card C > 1 in K,(x). There exists the least nonnegative integer n
such that s/(f"(z)) = co. Put f"(z) = u. If f(u) = u = z, then 2.5 implies that
f~'(z) = {z} and that K(z) = {z}, which is a contradiction with the assumption.
Hence f(u) = u = z or f(u) + u. In both cases there exists x" & u such that f"'(x’) +
* f*(z) = f"(x’) #* f"(z) for each n’ e N U {0}, n’ < n, and s/(x") = oo. According
to 2.7 we obtain that x" € D, and then according to 2.5 the relation f ~*(x') — {x'} =
= 0 is valid. This is a contradiction, since s (x’) = oo and f(x) + x'.

3. ALGEBRAS OF SOME SPECIAL TYPES

As above, let (4, f) and (4, g) be partial monounary algebras with End (4, f) =
= End (4, g). In this section we shall study algebras of some special types, e.g.
7, T, d,y, and we shall also prove some results concerning components of partial
monounary algebras.

3.1. Lemma. Let x € A, f(x) = x and s,(t) * o for each t € K (x) — {x}. Further
let K (x) n D, + 0. Then

(i) (A, f) and (A, g) is of type T and m, respectively, with the end x,
or

(ii) (A, f) and (A, g) is of type 6 and y, respectively.

Proof. Choose an arbitrary element z € K (x) n D,. First assume that x ¢ D,.
Then 2.0 implies that g(x) = x. Since K (x) S 4, we obtain that f(z) exists; denote
f(z) = .

Suppose that y # x. Put
t, if teKjz),

x otherwise .

H(1) = {
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Then H € End (4, g), thus H € End (4, f). If y ¢ K(z), then
x = H(y) = H(f(z)) = /(H(2)) = f(z) = y + x,

which is a contradiction. Hence y € K(z) and there is i € N such that g'(y) = z.
Since z + x, there exists the least positive integer n such that f"(z) = x. Put

n—1 :
H,y(1) = {f (1), ‘1f te K (x),
t otherwise .

We have n > 1, thus the mapping H, is correctly defined and H, € End (4, f).
Then H, € End (4, g) and we get

x # f""z) = Hy(z) = Hi(9')) = g'(H\(y)) = ¢'(/""'(») =
= 9(/"(?) = g'(x) = x,
a contradiction. Therefore f(z) = y = x. From 2.7 it follows that if z’ € K /(x) — {x}
and f(z') = f(z) = x, then z’ € D,. Further, 2.5 implies that f~*(z’) = 0. Hence
(1) K/x) —{x} € D, and f(1) = x = g(x) foreach teK/x).

Now let 2’ € K (x) — {x} and assume that g~ '(z') + 0, u € g~ '(z'). Then u ¢ K /(x)
in virtue of (1). Put
i (
Hyt) = {x, if t.erl\x),
t otherwise .
Then H, € End (4, f), thus H, € End (4, g) and we get
x = Hy(z) = Hy(g(u) = g(H(u)) = glu) = 2,

which is a contradiction. Hence K,(z') = {2} for each z’ € K(x) — {x}. Further
let ve A — K,(x). Then 0 = s,(z) < s,{v) and (T1) implies that there is H, e
€ End (4, g) such that Hs(z) = Hy(v) = v, Hs(x) = x, which is a contradiction,
since

x = Hy(x) = Hy(f(2)) = f(H3(2)) = f(v) ¢ K(x) .
Hence A — K (x) = 0 and by (1) we obtain that (i) is valid.

Now assume that x € D,. Then 2.0 implies that 4 = D,. If 4 = {x}, then (ii)
holds. Let we 4 — {x}. Put

Gy(r) = {
Evidently G, € End (4, g), hence G, € End (4, f),

w = Gi(x) = Gy(f(x)) = f(Gi(x)) = f(w)

and the condition (ii) is valid.

w, if t=x,

t otherwise .
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3.2. Lemma. (a) If (A, f) is of type t with the end x and g + f, then (4, g) =
= (4, /)~

(b) If (A, f) is of type m with the end x and g + f, then (A, g) = (A4, f)".

(c) If (A, f) is of type 6 and g =+ f, then (A4, g) = (A, f)".

(d) If (A, f) is of type y and g = f, then (A, g) = (A. f)’.

Proof. (a) If (A, f) is of type t with the end x and D, = K(x) n D, # 0, then in
view of 3.1, (4, g) is o type m with the end x. Now let D, = 0. Then 2.0 implies that
g(x) = x. Let ze A — {x} and put

H(1) = {"’

t otherwise .

it 1=2z2,

The mapping H belongs to End (4, f) and H™'(x) = {x, z}. Thus H € End (4, g)
and we obtain

H(g(z)) = g{H(z)) = 9.x) = x,
which implies g(z) € {x, z}. From 2.0 it follows that g(z) # z, thus g(z) = x = f(z),
g = f — a contradiction.

(b) Let (A, f) be of type m with the end x. If 4 = D,, then there is H € End (4, g)
with Hix) # x, which is a contradiction with the fact that H € End (4, f). Therefore
A % D, and thus 2.0 implies that g(x) = x. Then D, < D, and D, # D, since
g + f. Now let ye D, — D, and put

H "t) x, if t=y,
1 = .
b t otherwise .

We have H, € End (4, f), hence H, € End (4, g) and

X = g(x) = g(Hl(y)) = Hl(g(y)) >

which yields that g(y) € {x, y}. If g(y) = y, then 2.0 implies that f(y) = y, a contra-
diction. Thus g(y) = x. Assume that D, & @, z € D,. Then there is G € End (4, f)
such that G(y) = z, and this is a contradiction, since G e End (4, g). Therefore
(4, 9) = (4. 1)

(c) Let(A, f)be of type d and let (A, g) be not of type y, i.e. A # D,. Since f(y) = y
for each y € 4, 2.0 implies that g(y) = y for each y € 4, thus g = f.

(d) Suppose that (4, f) is of type y and (4, g) is not of type J, f # g. Then there
is xe A — D, with g(x) = y + x. Put

H(t) _Jr if t.=x,
t otherwise .

Obviously H € End (A4, f), hence H e End (4, g) and we have
y = H(y) = H(g(x)) = g(H(x)) = g(y) -
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Using 2.0 we obtain that f(y) = y, a contradiction with the relation y € D-

3.3. Lemma. Suppose that (A, f) fails to be of type m. Let y € AT, xeg'l(y) N
N (A — Af). Then f(y) = g(y) = v and x € Dy.

Proof. Put H,(t) = f(1) for each te K(y), H,(t) = t for each te A — K/(y).
Then H, € End (4, f), thus H, € End (4, g), which implies that

f(J’) = Hx()’) = Hl(g(x)) = g(Hl(x)) = g(x) =)y.

According to 2.0 the relation g(y) = y is valid. Since x ¢ A7, there exists z € K{x)n
N Dy. Let z = f(x)for some i e N U {0}. First assume that i > 0. We have g(x) =y,
g(y) = y and ze D,, thus z ¢ K,(x). Put Hy(t) = y for each e K,(y), H,(t) =t
for each te 4 — K_,,(y) Then H, € End (4, g), H, € End (4, f) and

= Hy(z) = Hy(f1(x)) = f(Ha(x)) = S (3) =y,
which is a contradiction. Hence i = 0 and x € D,.

3.4. Lemma. Suppose that (A, f) fails to be of type m and let y € A, xe g '(y) 0
N (A — Af). Denote Cy = {y}, C, =f"'(y) — Co and C, = f~*(C,_,) for each
neN,n> 1.IfueC, neNu{0}, then g(u) = f(u).

Proof. We shall proceed by induction. Lemma 3.3 implies that f(y) = g(y) = y,
xe D;. Nowlet ne N, u € C,. Since f(u) + u, we obtain from 3.3 (for u instead of y)
that g~ '(u) < AJ. According to 2.1 (for the elements belonging to g~ '(u) instead of
the element x) the relation g~ '(u) = K (u) is valid, hence ¢~ '(u) < K (y). Assume
that u € D,. From 2.9 it follows that s(f) + oo for each t € K(y) — {y}. Then 3.1
implies that (4, g) is of type m with the end y, but this is a contradiction with x * y,
g(x) = y. Therefore u ¢ D,, C,n D, = @. Denote u, = g(u) and put

H(t) = flo). if teUkeworop /5" (1)),
t otherwise .

Then H € End (4, f), hence H € End (4, g) and we obtain
H(u,) = H(g(u)) = g(H(u)) = g(f(u)) .

Since f(u) € C,-, we have g(f(u)) = f(f(u)), hence

(1) H(u,) = f¥(u), uy € H'(f*(u)).
This implies that

(2) if n =1, then u, € {y, u},

(3) if n =2, then u, e {y} L Cy,

(4) if n > 2, then u; e C,_,.

First let n = 1. If u; = u, i.e. g(u) = u, then 2.0 implies that f(u) = u, a contra-
diction. Therefore g(u) = u; = b = f(u).
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Now let n = 2 and u; = y. Denote v = f(u). Then f(v) = g(v), hence v # g(v) =
= g(u) # u. Since there exists no H, € End (4, f) with H,(v) = H,(u) = u, we infer
from (T2) that s,(u) < s,(v) and there is H, € End (4, g) with H,(u) = H,(v) = v.
Then

y # v = Hy(v) = Hy(f(u)) = f(Hy(u)) = f(v) = »,
which is a contradiction.

Further let n > 2 and u, € C,_,. Suppose that g(u) + f(u) and denote v = f(u).
From (1) and from the definition of H it follows that

(5) Uy *f(lh) = H(“x) = fz(”) =f(v) + 0.

Since uy, ve C,_, the induction hypothesis implies

(6) f(uy) = g(uy), f(v) = g(v).

If s{u;) < s/v), then by (5) and (T2) there is H;eEnd (4, f) with Hi(u;) =
= H,(v) = v, Hy(u) = u. Then H; € End (4, g) and

uy = g(u) = g(Hy(u)) = Hy(g(u)) = Hy(u,) = v,
which is a contradiction. Hence s,(u;) > s,(v) and there is no H, € End (4, f) such
that Hy(u;) = Hy(v) = v. Thus (T2) implies that s,(u,) > s,(v) and that there
exists Hs € End (4, g) with Hs(u,) = Hs(v) = u;, Hs(u) =u. Since Hs € End (4, f),
we obtain

uy = Hs(v) = Hs(f(u)) = f(Hs(w)) = f(u) = v,
a contradiction.

3.5. Lemma. Suppose that (A, f) fails to be of type n and let y e A], xe g~ '(y) n

N (A — Af). Further let y + uef~'(y). Then g(v) = f(v) for eachve K (x) — {x}.

Proof. From 3.3 we have f(y) = g(y) = y, x € D, and in view of 3.4, g(u’) = f(u')
for each u’ € K(y). Further, x # g(x) = y = g(u) + u. If s,(x) = s,(u), then (T2)
implies that there is H € End (4, g) with H(x) = H(u) = x, which is a contradiction
with the fact that H € End (4, f), since x € Dy, u ¢ D,. Hence

(0) s,(x) < s,(u)
and there exists G, € End (4, g) such that

(1) Gy(x) = G4(u) = u, Gy(g™"(x)) = g "(u) for each neN, G,(f) = t for each
te A — K,x).

Let ve f7/(x), je N. Since G, € End (4, f), we get
u = Gy(x) = Gy(f/(v)) = f(Gy(v))

and thus there exists v’ € f /() with G(v) = . Then v’ € g ~(u) (according to 3.4),
G4(v) = v' + v and (1) implies that

(2) veg™i(x).
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Hence v ¢ D,. Further we have

(3) Gi(g(v)) = 9(G(v)) = g(v') = /(v)-
We shall prove the relation g(v) = f(v) by induction with respect to j. If j = 1,
then (2) implies g(v) = x = f(v). Now let j > 1 and suppose that g(v;) = f(v;)
for each v, € f~I*!(x). Denote v, = f(v), v} = Gy(vy). In virtue of (3) we obtain

vi = Gi(v1) = G(f(v) = f(G4(v)) = f(v') = Gi(9(v)),
hence g(v) € G '(v}) = {v;} U g~/*!(x). The induction hypothesis yields
g(v) e {vi} uf Tt Y(x).

If we assume that g(v) = v}, then we get a contradiction with 3.3, since v} € Af,
veg ! (v))n (4 — Af) and f(v}) + v;. Hence

@ o) e+ ().
Put g(v) = v, and let v; = v,. Further let i be the least positive integer such that
fi(vy) = fi(v,) (since vy, v, €f~7**(x), such i does exist and i < j). Denote a =
= f"Y(vy), b = f""*(vy). Then {a, b} = f7/"(x) and using the induction hypo-
thesis we get

(5) 9(a) = f(a), g(b) = f(b), g(v1) = f(v1), g(v2) = f(v2).
This implies

(6) (a) = 1(6). a(a) = o).
If s (b) < s/{(a), then (T2) implies that there exists G, € End (4, f) such that G,(a) =
= G,(b) = a, G5(v) = v, Gy(v,) * v,, hence G, € End (4, g) and

vy F Gy(v,) = G2(9(v)) = 9(Ga(v)) = g(v) = v,,

which is a contradiction. Thus s/(b) > s/a) and there is no H, € End (4, f) with
H,(a) = Hy(b) = a.From this and from (T2) we obtain that s,(b) > s,(a) and that
there exists G; € End (4, g) such that G;(a) = G4(b) = b, G3(v) = v, G;(vy) * v,.
Hence G, € End (4, f) and

v # Gs(vy) = Gs(f(v)) = f(Gs(v)) = f(v) = vy »
a contradiction.
3.6. Lemma. Suppose that (A, f) fails to be of type n and let y € Af, x € g™ *(y) N
N (A — A)). Then K(y) = {y}.

Proof. According to 3.3 we have f(y) = g(y) = y, x € D;. Assume that there is
uef~Y(y) — {y}. The assumption of 3.5 is satisfied, hence g(v) = f(v) for each
veK(x) — {x}. Further, 3.4 implies that g(f) = f(t) for each t € K{y). Thus we
obtain

(1) 5,02) 2 s,(x).
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Since f(u) + u, 3.3 implies that g~*(u) = 4{ and from 2.1 we get that ¢~ '(u) =
< K (u). Then f(g~'(u)) = g(9~'(u)) = u, therefore g~ *(u) < f~'(u). Moreover,
from 3.4 we obtain f~'(u) = g~ *(u), hence

(2) £ (u) = g7 (u).
It can be shown by induction that f ~"(u) = g ~"(u) for each n e N and thus

(3) s/iu) = s,(u).
Similarly as in the proof of 3.5 we have

(0) 5,{x) < s,(u).
From (1), (0) and (3) it follows that

$5(3) = 53) < (u) = ,(0)

is valid and hence there is u’ € f~*(u) with the property

(4) s/{x) = s {w).
Then (T1) and (4) imply that there exists H € End (4, f) such that H(x) = H(u') =
=u', H(y) = y. Hence H € End (4, g) and

y = H(y) = H(g(x)) = g(H(x)) = g(u') = (') = u % y,
which is a contradiction.

3.7. Lemma. Suppose that (4, f) fails to be of type m and let y € A{, xe g~ (y) n
N (A — Af). Then K (x) = {x}.
Proof. The assertions of 3.3, 3.4 and 3.6 are valid. Assume that w ef#’(x). Put

G(1) = {g(t) , If 1eK/y),

t otherwise.
Obviously G € End (4, g), hence G € End (4, f) and
y = G(x) = G(f(w)) = f(G(w)),
thus G(w)ef!(y) = {y}, i.e. G(w) = y. Since w + y and g*(w) = y, weK,(y),
we get G(w) = g(w). Therefore
weg '(y)n (A — 4]), wé¢D,

and this is a contradiction with 3.3.

3.8. Lemma. Suppose that (A, f) fails to be of type n. Then g~ *(4}) = Af.
Proof. Assume that there are elements ye Af, xe g~ *(y) n (4 — Af). Hence
the assertions of 3.3, 3.6 and 3.7 hold. Since (4, f) is not of type =, we obtain that
A # {x, y} and there is se A — ({x, y} U D;). Then there exists H € End (4, f)
such that H(x) = s, H(y) = y. Thus H € End (4, g) and
y = H(y) = H(g(x)) = g(H(x)) = g(s) -
We have
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(1) seg™'(y)n (4 — AY),
since for s € A, 2.1 implies that s € K (), a contradiction. Then (1) and 3.3 imply
that s € D, and this is a contradiction as well.

3.9. Lemma. Let xo € A| n D, and s/t) + oo for each t € K (x,). Then

(i) there is x € K(xo) — D,;

(ii) there is the least integer ne N u {0} with f"(x) = f™(g(x)) for some me
eNuU {0};

(iii) n < m.

Proof. Since s/{f) + oo for each t € K (x,), there exists no cycle in K (x,) and
hence 2.4 implies that K (x,) — D, + 0. Let x € K (x,) — D,. According to 2.1
we get g(x) € K (x) and then (ii) is valid. Let us suppose that n = m. Then n > 0,

since in the opposite case m = n = 0, g(x) = x and hence f(x) = x with respect
to 2.0, s/(x) = oo, which is a contradiction. Thus f~*(f"(x)) # 0 and 2.5 implies
that

(1) f%(x) ¢ D, for each o = n.
Put

H(1) = {f(l) , I 1e K (x),

t otherwise .
Then H € End (4, f), thus H € End (4, g) and we obtain
2 9(f"(x)) = g(H"(x)) = H'(g(x)) = /"(9(x)) = /"""(f"(9(x))) =
= /),
g(/" " (x)) = g(H""'(x)) = H""(g(x)) = f""*(g(x)) =

= )
Denote iy = n — m, z = f(x), 2/ = f"*(x). Thus we have g(z) = f"(z), g(z') =
= f"(z'). By (1) and (2) the relations g(z) ¢ D,, g(z') ¢ D, are valid and the induction
with respect to k yields that
(3) g"(z) = f*(z), ¢4z') = f*"(z') foreach keN u {0}

holds. Then K,(z)n D, =0 and K,(z')n D, = 0. Since ze A{ — D,, z' = f(z),
Lemma 2.1 (for z, 2, g instead of x, g(x), f) implies that z’ € K (z). Thus there are
ky, k; € N U {0} such that g*'(z) = ¢**(z’) and then

PRE) = () = SE) = 6(E) = 642 =
= P = PR ) = ()
There is no cycle in K(x), therefore
kiiy + n=kyi; +n+1,
(ky — ky) iy =1,
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which implies that i; = 1. In virtue of (3) we get that z € 4%, g(z) = f¥(z) for each
keN v {0}. Since x, € K/(x) n D,, we obtain that K (x,) N K,(z) = 0. From the
fact that {f%(z): ke N U {0}} = K,(z) we infer that in the system of components
{K,(1): t e K/(x)} there is a component K,(z'), z’ € K(x) such that

(4) Ky(z) nK,(z') = 0 and f(z') e K(2).
Because (4, f) is not of type 7, hence (according to 3.2) (4, g) is not of type 7 and 3.8
implies

(5) £71(49) = 41.
Then (4) and (5) imply that z’ € f (K (z)) S Af, which is a contradiction with 2.1,
since z' € 4] — Dy, f(2') e K,(z) & K,(2').

3.10. Lemma. Suppose that the assumption of 3.9 is satisfied and let x, n, m be as

in 3.9. Then *

) m—-n=1,
(ii) there are ay, a,, ..., a, such that if je N, j < k, then g(a;) = a;,, € f~*(a;),
aye D,

Proof. Denote i = m — n. Put a = f"(g(x)), b = f*(x). If n =0, then x =
= f™(g(x)), m > 0, hence for each n e N U {0} we have f~*(b) & 0 and 2.5 implies
that b ¢ D,. Put

t otherwise .

H(z):{f(t)’ if teK/(x),

Then H e End (4, f), H € End (4, g) and
fi(a) = m7"(f"(9(x))) = f"(9(x)) = f'(x) = b,
g(b) = 9(f"(x)) = g(H'(x)) = H'(g9(x)) = f"(9(x)) = a.

Denote a; = g(b). Thus a, € f~(b). If a, ¢ D,, then put a, = g(a,). By induction,
if a; is defined and a; ¢ D, j € N, then put a;,, = g(a;). The induction yields that

(1) if jeN, a; ¢ D,, then a;,, €f *(a)).
Therefore

o * sfay) > sfay) > ...,

which is a decreasing sequence of ordinals. Thus there is k € N such that a, € D,.
According to 2.5 we have f~'(a,) = 0 and (1) implies that a, € f ~*{(b).

Now pur b’ = f'~*(a). Then either i = 1 or i > 1 and f~*(b’) % 0. Consider the
case i > 1. It follows from 2.5 that b’ ¢ D, and we obtain

g(b') = g(f'~(a)) = g(H'"(a)) = H'"(g(a)) =
=f"Yg(ay) = f"Y(az) -
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Put g(b") = a}. Hence
ai = fHaz) e /TN @) = £ @) = 7Ha) =
< (00 = £
By induction, if a} is defined, a; ¢ D, j € N, then we denote aj,; = g(aj). The in-
duction with respect to j € N yields that
(2) if jeN, a}¢ D, then aj., €f (a;).
Thus
o F sa)) > slay) > ...

and analogously as above there is k' € N such that a;. € D,. According to 2.5 we get
fYa) = 0 and in view of (2) we have a;, e f *"(b"). Hence

SHa) = b =1(b) = f(/* (@) = 1 Hape) »

thus 2.6 yields that ik = ik’ + 1, i(k — k') = 1, a contradiction. Therefore i = 1.
Then (1) can be expressed as follows:

if jeN, a;¢D,, then a;.,ef '(a;),
and the proof is complete.

3.11. Lemma. Suppose that the assumption of 3.9 is satisfied and let a, a,, ..., a;
be as in 3.10. Denote x, = a, and x;.,; = f(x;) for each je N. Then

(i) g(x;) = x;—, for each jeN, j > 1, and x, € D,.

Proof. Since there is no cycle in K/(x), the elefents x; are mutually distinct.
From 3.10 (i) we obtain that x, € D,, x; = a; = g(a,-4), X, = f(a) = a4, ...
..., X = f(a,) = a,, which implies

(1) x; € Dy, g(x2) = Xq, o0 g(Xe) = Xp— 1.

Further we have

(2) g(xk+1) = g(f(xk)) = g(f(‘h)) =4y = X
Since f~(x;) #+ 0 for each jeN, j > 1, Lemma 2.5 implies that x; ¢ D,. Hence
{x;:jeN, j > 1} n D, = 0. By induction for j € N, j = k, we obtain

(3) 9(xj+1) = x;.

From (1)—(3) we get that (i) is valid.

3.12. Lemma. Suppose that the assumption of 3.9 is satisfied and let {xj:j e N}
be as in 3.11. Denote B, =f”1(x:+1) - {xj} for each je N, j > 1. Then

(i) Ky(x) = K,(x),
(i) (KAx),f)€o(xy, X, ..., By, B, ...),
(i) (K,(x), 9) € o(x1, X3, ..., B,, B, ...).
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Proof. Let p,geN, p =g > 1l and let yef~ "*‘l(x) Assume y € Dy. Then 2.7
implies that there is « € N such that f%(x,) = f*(y). Hence

Xe+1 = (XI) =fa(y) efz‘lﬁq(xp) ’

therefore X1 =f""""%x,) = Xopig4, = X,44 This yields that ¢ = 1, a con-
tradiction, thus

(1) y ¢ D,
Further, assume that s (y) = ¢, i.e. that f “%(y) =% 0. Then there are V1- Y2 € A such
that y, € f~%y), y» = f(y,). We obtain

JPHx) = x, = 770) = L7 () = f(ys) = 177 (02) s
and from 2.7 (because of x, € D,) we infer that y, € D,. Then £ (y2) = 0 by 2.5,
which is a contradiction. Thus

(2) sy) <aq.
Further, since x, € f ~@™(x,), we have

(3) sx) z a - L.
Let seN, s > 1, ce f~'(x,41) — {x,}. By (1) and (2) (for s + 1, s, ¢ instead of
P, g, y) we have c¢ D, and s(c) < s — 1. Put

H(t):{f(t)’ if 1eK/(x),

t otherwise .
Obviously H € End (4, f), thus H € End (4, g). Then

1(g(0)) = H(g(c)) = g(H(c)) = g(f()) = g(x,41) = x,,
g(c) e f7!(x,). Suppose that d = g(c) # x,_,. According to (2) we have s(d) <
< s — 2, and by (3) the relation s/(x,_;) = s — 2 is valid, hence s/(d) < s/{x,_,).
Moreover, f(d) = f(x,-,), thus (T2) implies that there exists H, € End(4,f) such that
H(d) = H\(x,-;) = x,—y, Hy(c) = c¢. Then H, € End (4, g), which implies

Xs—1 :*: d = g(C) = g( l(c)) = g(c) ( = Xs—1>
a contradiction. Therefore

(4) g(c) = Xs—1-
Now let s > 2 and suppose that f~*(c) % 0, tef~*(c). From (1) it follows that
t ¢ D, and then

S(9(1)) = H(g(1)) = g(H(1)) = g(/(1)) = 9(¢) = X,-1

g(t) € f~(Xs—1). If we assume that u = g(f) # x,_,, we get analogously as above
that s{u) s — 3 < s/(x,_,) and f(u) = x,_; = f(x,-2), thus there is H,e
€ End (4, f) such that H,(u) = H,(x,_,) = X,_,, H,(t) = t, which is a contradic-
tion, since

%oz u = gl) = g(H(0) = Hi(g(0) = Ho(w) = ..
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Therefore g(t) = x,_,. Since s/(c) £ s — 1 £ s/(x,) and f(¢) = x,4y = f(x,), ac-
cording to (T2) there exists H; € End (4, f) such that Hy(c) = Hj(x,) = x,. Then

si(e) = Sg(H3(C)) = sy(xs)

and since g(¢) = x,_; = g(s), we infer from (T2) that there is H, € End (4, g) such
that H,(c) = Hy(x,) = x,, Hy(1) = t. Hence H, € End (4, f) and we obtain

xg = Hilc) = Hy(/(1)) = fiHa(1)) = f(1) = ¢,
¢)

a contradiction. Thus f~!(¢) = 0.

Further let vef~'(x;) — {x,}. From 2.7 it follows that v e D,. If s5,(x,) < s5,(v),
then (T1) yields that there exists Hs e End (4, g) such that Hs(x,) = Hs(v) = o,
H(x,) # x,, which implies

X, *F Hs(«“z) = Hs(f(xx)) =f(H5(x1)) zf(')) = X3

Hence s,(v) < s,{x;). Put He(v) = x;, Hg(w) = w for each we A — {v}. Then
Hg e End (4, f), thus Hge End (A, g). Therefore K,(v) = {v} and there is H, e
€ End (4, g) such that H,(v) = H4(x,) = x,, which is a contradiction, since H, ¢
¢ End (4, f). Thus
ST xa) = {xi)

In particular, we have proved that K/x) = K, (x). Then 3.8 implies that
g™ (K4(x)) € A{ and thus g~ (K {(x) = K,(x) according to 2.1. Hence (i) holds.
The definition of the types o, ¢ immediately implies that (ii) and (iii) are valid.

4. CONNECTED COMPONENTS OF (4, f)

In this section we shall first prove some results of auxiliary character and the
theorems concerning connected components of (4, f) and (A4, g), where End (4, f) =
= End (4, g).

4.1. Lemma. Let v,v' € D,, v+ v'. If ze K (v) and g(z) = z', then z’' ¢ K (v').

Proof. Suppose that z' € K, (v'). If s/(v) = s,{v"), then (T1) implies that there is
H e End (4, f) such that H(z) = z, H(z') € K/{v). Thus H € End (4, g) and

2+ H(z') = H(g(z) = 9(H(2)) = 9(z) = =,

which is a contradiction.

Let s/(v) < s/{v'). There exist i,je N u {0} such that fi(z) =v, fi(z') = v.
According to (T1) there are H, € End (4, f) and y e K {v') such that fi(y) = v’
and H,(z) = y, Hy(z') = z'. Then we have

2 = Hy(2) = Hy(9(2) = o(H,(2) = 9().
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Since 5,(v) < s,{v'), there is v” e f~'(v) such that s,(v) < 5,(v"). According to (T1)
there exist H, € End (4, f) and u € f~/(v") such that H,(z) = u, H,(z') = z’. Then

2’ = Hy\2') = Hy(9(2)) = 9(H,(2)) = g(u) -

Further, g(u) + u and g(y) # y, since in the opposite case we get from 2.0 that
f(u) = u or f(y) = y, which is a contradiction. Thus

(1) v+ g(u) = 2" = g(y) * y.
Hence (T2) implies that thete is H; € End (4, g) such that Hs(z') = z' and either
H(u) = Hy(y) = u or Hs(u) = Hs(y) = y. Then

v = fU2') = fi(Hy(2")) = Hy(f(2)) = Hy(V).
In the former case we have

v = Hy) = Hy(f(y)) = F(H3(y) = f(u) = 0" + o/
and in the latter we get
v = Hy(v') = By (w) = /' (Ho(w) = 75100),
which is a contradiction, too, since fi(y) = v eD,.

4.2. Lemma. Suppose that (A, f) is not of type n and let A’ < A% be a connected
component of (A, f). Then

(i) g(4) < 4',

(i) g~ 1(4) = 4"

Proof. First assume that g(A’) & A, i.e. there are ve A" and y ¢ A" such that
g(v) = y. According to 4.1 the case y € A} yields a contradiction (in 4.1 the possibility
z = v was included). Hence y € 4]. Then 3.8 implies that g~ (K (y)) < 4, which is
a contradiction with v e g ~*(y) n A4. Hence (i) holds.

Now suppose that there are u € A’ and x € 4’ such that g(x) = u. According to
2.1 we infer that x ¢ A{ and according to 3.8 we get that x ¢ A5, which is a contra-
diction.

4.3. Lemma. Let the assumption of 4.2 hold. Then A’ is a connected component
of (4, 9).

Proof. It follows from 4.2 that A" is closed with respect to the partial operation g.
Suppose that 4’ is not a connected component of (4, g). Then A4’ is a union of mutual-
ly disjoint sets of the form K (). Thus in the system {K,(t): t € A’} there are two sets
K,(r) and K (w) such that K (r) + K,(w) and f(r;) = w, for some r; e K,(r), w, €
€ K, (w). Denote A" = K,(r). Assume that A" = A{. From 2.2 (interchanging f
and g) we obtain f(4") < A", a contradiction with the fact that w, ¢ A”. Hence
A" = A%.1f we suppose that (A4, g) is of type 7, then 3.2 implies that (4, f) is of type
and there is no component in (4, f) which is a subset of A. Therefore (4, g) is not
of type m, A” = A} is a connected component of (4, g) and then 4.2 implies that
f(A") = A", which is a contradiction.
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4.4. Lemma. Let (A, f) be neither of type t© nor of type m and let A" = A{ be
a connected component of (A, f). Then A’ is a connected component of (4, g).

Proof. From 2.2 it follows that g(4") = A’ and from 3.8 we obtain that g~ '(4') =
< Af. Let ye g7 '(A4), g(y) = xe A’. Since y € A{, we get from 2.1 that g(y) € K (),
hence x € K (), y € A'. Thus

(1) g4y 4, g '(4) = 4.
Suppose that B’ is a connected component of (4, g) such that B = A". If B' < A%,
then 4.3 (f and g interchanged) implies that B’ is a connected component of (4, f),
thus B = A'. If B’ < A9, then from (1) (again with f and g interchanged and for B’
instead of A’) we get

f(Bl) c BI, f—l(Bl) c BI’
which yields that B = A4’.

4.5. Lemma. (a) Let A" be a connected component of (A, f) and let (A',f| A’)
beof typeo. If g' = g| A" + f| A" = [, then (A', g') = (A', f')".

(b) Let A’ be a connected component of (4,f) and let (A, f | A’) be of type o.
Ifg'=g|A £ f|A =f, then (A, g') = (A, f).

Proof. (a) Let (4', f| A’) be of type o. Then 4.4 implies that A4’ is a connected
component of (4, g). Theorem 3 [1] yields that if 4’ D, = 0, then g | A" = f| A".
Suppose that g | A" + f| A’. Hence A'n D, + 0 and in view of 3.12, (4', g') =
= (4, )"

(b) Let (A',f| A’) be of type ¢. From 4.3 we infer that A’ is a connected com-
ponent of (4, g).

First assume that 4" = Af. Hence A" n D, # 0 and 2.9 implies (f and g inter-
changed) that either

(i) s,(t) # oo for each te 4’
or

(ii) there is x € A" such that g(x) = x and s,(t) # oo for each te A" — {x}.

In the case (ii) we get from 2.0 (since 4 # D;) that f(x) = x, which is a contra-
diction with the fact that (4’, ) is of type ¢. Thus (i) is valid and the assumptions
of 3.12 are satisfied (for arbitrary x € A’ and with f and g interchaged). This implies
that (4', g') is of type o, (A’, ) is of type ¢ and (4', g') = (4, f')".

Now assume that A" < A%. Since (A',f’) is of type o, we have (4',f)e
€ o(xy, X2, ..., By, By, ...). Suppose that x, ¢ D, and y = g(x,). Since for each
i € N there is H € End (4, f) such that H(x,) = x;, we get that x; ¢ D, for each i > 1.
Further, if B; n D, & 0, then x; ¢ D, (since 4’ is a connected component of (4, g)),
but there is H, € End (4, f) such that H,(B;) = x;, which is a contradiction with
the relation H, € End (4, g). Therefore x, € D,. Further, there exists G € End (4, f)
such that G(x,) = x,, G(x;) = x3, ... . Then according to (T)

so(x1) = si(G(x,)) = si(X2) = 54(G(x2)) = s4(x3) < ...,
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thus

(1) s,(x,) < s,(x;) for each i e N. '
Moreover, since for i e N, i > 1, the relations x; € K,(x;), x; € D, are valid, (T3)
implies

(2) soxs) < s,(x1) or 5,(x;) = s55(x,) = 0.

From (1) and (2) we obtain that s,(x;) = oo for each i € N. Further, s (b;) + oo for
each b;e B;, ie N, i > 1, since in the opposite case there exists G; € End (A, g)
with G(x;) = b;, a contradiction with G, € End (4, f). Therefore

(3) there exist mutually distinct elements y; for i€ N such that {y;:ieN} <
c {x;:ieN}and x; = y;, g(y;4,) = y; for each ie N.

Suppose that {y;:ie N} #+ {x;:ieN}, ie. there exists je N, j > 1, such that
xj¢{yi:ieN}. Since A" is a connected component of (4, g), we have x; e g (y,)
for some k € N. Put .

Gf) = {y,,,, if t.eg_'”(yl), meN v {0},
t otherwise .

Then G, € End (4, g), hence G, € End (4, f) and because G,(x;) = y, # x;, we get
F7Hx) = xi = Go(x;) = Go(f771(x))) = f77(Galx)) = £ () -

Since y, € {x;: i € N}, this implies that y, = x;, which is a contradiction. Hence

(4) {yirieN} = {x;zieN}.
Further, for i e N, i > 1, the following assertion holds:

(5) (VG5 € End (4, /) [(Gs(x;) = x; & {Gi(x;):j e N U {0}} = {x;:jeN}) =

=i=2]

Namely, if k € N and G3(x;) = X 4, then G3(X;4+5) = X1 426 G3(X1226) = X1 130 -0
and from

(6) X2 € {Xy, Xy 440 X1 4200 -}
we get that k = 1. By an analogous method to that applied when proving (5) we obtain
(if we interchange f and g, x; and y,) that the following relation is valid:

(5') (VHy € End (4, 9)) [(H3(yy) = yi & {H)(y,):jeN U {0}} = {y;:jeN}) =

== 2].
Therefore (4) and the relations y; = x, and End (4, f) = End (4, g) imply that
('7) Va2 = X2

holds. Further we have
(8) (VG4 e End (A, ) (Gy(x;) = x, = Gy(x3) = x3),
(8') (VH, € End (4, g)) (Ha(y,) = y2 = Ha(y2) = ¥3),
which implies
(9) V3 = Xa.
The induction on i € N gives
(10) y; = x; for each ieN.
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Now let ie N, i > 1 and b; € B;. Put

Golt) = x;, if t=b;,
S t otherwise .

Obviously G € End (4, f), thus G5 € End (4, g), and (10) implies

Gs(g(bi)) = Q(Gs(bi)) = g(xi) = Xi-1-

Since g(b;) + b;, we get Gs(g(b;)) = g(b;). Hence we have proved that g | A4’ =
= f| A, which is a contradiction with the assumption.

The above results will be summarized in the following Theorems 4.6 and 4.7.
(We shall repeat all the assumptions therein.)

4.6. Theorem. Let (A, f) be a partial monounary algebra which is neither of
type T nor of type m. If (A, g) is a partial monounary algebra with End (4, f) =
= End (4, g), then P, = P,

Proof. The assertion follows from 4.3 and 4.4.

4.7. Theorem. Let (A, f) be a partial monounary algebra which is of none of the
type 7, m,9,y. If (4, g) is a partial monounary algebra such that End (4, f) =
= End (4, g), A’ is a connected component of (A, f) and g' = g| A" + f| 4" = f',
then the following assertions hold:

(a) If A" = A and (A', f') is not of type o, then A’ = Af.

(b) If A" < Af and (A', ") is of type o, then A" = A% and (4, g') = (A', f').

(c) If A" = Af and (A, f") is not of type o, then A’ = AS.

(d) If A" = A% and (A, f") is of type @, then A" < A} and (A',g') = (A, f')".

Proof. 1) Let A" = A{. If A"~ D, = 0, then A" = A{. If A"~ D, + 0, then 2.9

implies that either
(i) s/{(t) & oo for each re A,
or
(ii) there is x € A" such that f(x) = x and s,(r) + oo for each te A" — {x}.

In the case (ii) the assumptions of 3.1 are satisfied and hence (4, f) is either of
type t or of type 6, which is a contradiction. Therefore (i) holds and the assumptions
of 3.12 are fulfilled, which implies that (A’, /*) is of type o.

(a) If A" = Af and (A', f’) fails to be of type o, then we have already proved
that A" D, = 0 and hence A" < Af.

(b) Let A" < Af and let (4", ') be of type . Then 4.5 implies that (4', g') =
= (AL S, A < A8, .

2) Let A" < AL If A" D, + 0, then A" < A%. If A"~ D, = @, then 2.9 (with f
and ¢ interchanged) implies that either
(iii) s,(7) = oo for each re A’,
or
(iv) there is x € A" such that g(x) = x and s,(r) + oo foreach1e A" — {x}.
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If (iv) holds, then the assumptions of 3.1 are satisfied (with f and g interchanged)
and then (4, g)is of type t or § which yields that (4, f)is of type = or y according to
3.2. This is a contradiction, hence (iii) is valid and the assumptions of 3.12 are fulfilled
(if we interchange f and g), thus (4’, g’) is of type o and then 4.5 (a) implies that
(A4, f") is of type @.

(¢) If A" = Af and (4', f”) fails to be of type o, then A" " D, & 0 and A’ = AY.

(d) If A4’ = Af and (4', f”) is of type @, then 4.5 (b) implies that (4’, g") = (4", '),
A < AY.
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