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Congruence lattices of semigroups have been studied extensively (see the recent
survey article [7]). For the class of completely (0 —) simple semigroups, Lallement
[6] has given a characterization of the congruences in terms of the Rees matrix
representation. In [4], the author used this characterization to determine necessary
and sufficient conditions for a modular lattice to be the congruence lattice of a Rees
matrix semigroup. In addition, it was shown there that these conditions were not
sufficient in the non-modular case.

As was pointed out by Jones in [5], even a characterization of arbitrary con-
gruence lattices of completely simple semigroups is unknown. One hindrance to their
study is lack of knowledge of congruence lattices of groups. In this paper we will
present some necessary conditions on a (non-modular) lattice of congruences of
a Rees matrix semigroup which do not follow from those given in [4], and give
some sufficient conditions which apply to certain classes of Rees matrix semigroups.

1. INTRODUCTION

The terminology and notation will mainly be that of [4]. Additional information
on semigroups may be found in [1, 3], and on lattice theory in [2].

For any set A, we will denote by IT(A) the lattice of equivalence relations on A.
Also, ¢4 and w, will denote the least and greatest elements of IT(A), respectively.
Where there is no chance of confusion, we will omit the subscript. If G is a group,
A7(G) will denote the lattice of normal subgroups of G. For any lattice L, if x, ye L
and x 2 y, let x/y = {zeL:x 2 z 2 y}. 4

Let S =.#°1,G, M; P) be a regular Rees matrix semigroup, and define the
equivalence relation r on I and the equivalence relation = on M by:

(1.1) i rjif and only if for every ue M, p,; = 0 if and only if p,; = 0,
(1.2) pnvif and only if for every i €I, p,; = 0 if and only if py; = 0.
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The sandwich matrix P is said to be normalized if for each r-class K thereisa ye M
such that p,; = efor all i € K; and for each 7n-class A there is a j € [ such that p,; = e
for all v e A. The following theorem of Tamura [9] will be useful later.

Theorem 1.1. A semigroup is completely O-simple (completely simple) if and only
if it is isomorphic to a Rees matrix semigroup with normalized sandwich matrix.

Theorem 1.1 allows us to simplify somewhat Lallement’s characterization of con-
gruences on a Rees matrix semigroup. In what follows, we will assume that the sand-
wich matrix of any Rees matrix semigroup is normalized.

Definition. Let s be an equivalence relation on I, N a normal subgroup of G,
and ¢ an equivalence relation on M. Then (s, N, 0) is an admissible triple on S if the
following conditions are satisfied:

A. If isj, then for all ue M,

1. p,; # 0 if and only if p,; + 0;
2. If p,; # 0, then p,;p,;' €N.

B. If uov, then forall iel,

1. p,; # 0 if and only if p,; # 0;
2. if p,; # 0, then p,“-p‘,',.l eN.

We will call a congruence on S proper if it is not the universal congruence. Let

C(S) denote the lattice of congruences of S, and C'(S) = C(S)\ {w,}. The following

result due to Lallement [6] shows the relationship between admissible triples and
proper congruences on S.

Theorem 1.2. Let S = .#°(I, G, M; P) with P normalized. If (s,N,¢) is an
admissible triple, then the relation 0 = 0(s, N, ¢) on S defined by 000,
(i,a, W) 0(j,b,v) if a0, b=*0
isj, pwov, and ab 'eN
is a proper congruence on S. Conversely, every proper congruence on S can be
written in the form 0(s, N, @) for some admissible triple (s, N, ).
The following results will be needed in the sequel.

Lemma 1.3. [4; Lemma 4] Let I and M be sets, and G a group. Let L be a subset
of I(I) x A(G) x I(M) satisfying the following:
L If {(rys Np» )} aea S L, then A(r,, N,, 7,) = (Ares AN, AT,) € L, and dually.
2.If (s,K ¢)eL s' <5, K' 2K, o <o, then (s, K', ¢') e L.
3. (&, {e}, e) e L.
Then L is a subdirect product of rle x N(G) x ne for some re II(I), n e II(M).
Theorem 1.4. [4; Theorem 5] If S = .#°, G, M; P), then C'(S) is a subdirect
product of rle x N(G) x nfe for some r e II(I), n € IT(M).
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If Lis a lattice satisfying the hypothesis of Lemma 1.3, we will say that Lsatisfies (x).
For the remainder of this section, we will assume that Lis a lattice satisfying ().

Lemma 1.5. [4; Lemma 6] Ifse r/a, Q€ n/s, then there is a unique minimal normal
subgroup N of G such that (s, N, ¢) € L.

We shall denote by N(s, ¢) the minimal normal subgroup of G associated with
serle and ¢ € nfe. Where there is no danger of confusion, we will use N, = N(s, ¢),
and N, = N(g, g).

Lemma 1.6. [4; Lemma 7]Ifs; < rand g, < nforalliel, then N(V s;, V @;) =
-V N(sq, ). iel el
iEfIA is any set and S < A, we will define [S] € IT(A) by
i[S]j iff i,jeS, or i=j.
By [iy, i3, ..., i,] we will mean [{iy, iz, ..., i,}]-

Lemma 1.7. [4; Lemma 10]If i, j and k are all in the same r-class, then Ny; 3 <
= NpiwaNijwe

2. SUFFICIENT CONDITIONS

Before exhibiting sufficient conditions for a lattice to be the proper congruence
lattice of a Rees matrix semigroup, we present here some technical results which will
make subsequent proofs easier.

Theorem 2.1. Let S = J[O(I, G, M; P). Then there is a Rees matrix semigroup
T = #%I',G,M’'; Q) such that C'(S) = C(T), and C'(T) < r'[e x #/(G) x ¢&fe,
where re I(I').

Proof. Assume I and M are disjoint, and without loss of generality ]I[ > 1,
since C'(.#°(1, G, M; P)) = C'(#°(M, G, I; P")) by theorem 1.2. Let B be a set
disjoint from both I and M having cardinality I @ M, and let f: B — I w M be a one-
to-one correspondence. Let I’ = v M v B,M' =1w M. SetT = M°(I', G, M’; Q)
with the entries of Q: M’ x I' — G° as follows:

0 pel, ael

P, pel, aeM
dpe = Py, BeM, ael

0 peM, aeM

0 weB, f(f)=n«

le BeB, f(B) =+«

Suppose C'(S) < rfe x N(G) x nfe for re II(I), melII(M). For serfe, define
Sonl' by
isj iff i,jel and isj, or i=j.
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Similarly, for ¢ € nfe, define g on I’ by
uov iff pyoveM and peov, or u=v.

Clearly, § and g are equivalence relations on I'.

Let (s,K,0)e C'(S). Then (5v g,K,¢)elI(l') x #(G) x II(M'). The proof
that (5 v @, K, ¢) is an admissible triple for T is straightforward and will be omitted.
It is routine to verify that the matrix Q is normalized.

Now define ®: C'(S) > C'(T) by (s, K, 0) ® = (5 v ¢, K, ¢).

First we will show that if (7, K, ¢) € C'(T), then 0 = ¢. For if 0 = ¢, there are y, v e
€M’ so that pov and pu =% v. Pick ie B such that f(i) = v. Then g,; = 0, and
since v # p and f is one-to-one, f(i) * v, yielding q,, = e. This contradicts the admis-
sibility conditions for (t, K, a), hence we must have ¢ = &.

Next we show that t = § v ¢ for some s € rfe, ¢ € ¢fe. Define s € II(I), ¢ € IT\M)
by s =1, ¢ =ty Clearly, s <t and ¢ <1, s0 §v ¢ =t Suppose atf, for
a, fel’. If o = B, then {5 v @) B, so assume « + f. We have several cases.

Case 1. One of « or B is in B, say a€ B. Then f(a) = 6elw M, so ¢q,, = 0.
By the admissibility conditions, g,; = 0, and hence we must have f, o€, or f, o€
e M. If B, o €1, pick y €I such that y & ¢. Then ¢q,, = e, q,; = 0, which contradicts
the admissibility conditions. In a similar manner, we can eliminate the case f§, 0 € M.
Hence neither of «, f is in B, and thus o, fe I w M.

Case 2. ael, e M. In this case there exists a o €I such that py, + 0. Thus
4y = 0, and q,5 = py, * 0, which contradicts the admissibility conditions.

Case 3. «, fel. Then u(t))p, or as B, which implies o5 p, and therefore
a (5 v 0) B, as desired.

Case 4. o, € M. Then « (1)) B, hence « ¢ B and so « (5 v g) B.

In all cases, o t B implies « (5 v @) B, which shows t <5 v g, and thus t = § v 0.
With this result we now have (1, K, 6) = (5 v g, K, ¢) = (s, K, 0) ¢, proving that ¢
18 onto.

It is easy to see that ¢ is one-to-one, and that ¢ is order-preserving. We wish to
shown that ¢~' is order-preserving, so assume that (5 v g, K,¢) < (7 v 7, H, ¢).
It follows that K < Hand 5 v 'S v 7.

Suppose that i, jel and isj. Then i (5 v @)/, and hence i (7 v @) j. There must
be a sequence i = iy, iy, ..., i, =j of elements of I’ such that i, 7i,7i, ... i, Since
ip = i€l and iy i, we must have iy t iy, and i; € I. From i, 7 i, and i, eI we get
i; = i,. Continuing in this manner, we see that iy #i, ¢ i, ... ti,, and hence i t j. Thus
s < t,and in a similar manner, ¢ <, giving us (s,K, ) < (¢, H, #) and ¢~ ! is order-
preserving. It is now evident that ¢ is an isomorphism. :

Let I be any set, G a group, and r € I1{I). We will say the function a: rfe —A"(G)
represents the lattice L < rfe x A(G) provided that (s, K) € Lif and only if sz £ K.
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Theorem 2.2. A4 lattice satisfies (x) if and only if it is isomorphic to a lattice L
represented by a function «: rle - A'(G) having the properties

(2.1) o is a complete join homomorphism

(2.2) ea = {e}.

Proof. Let L' £ ITI) x A(G) x IT{M) be a lattice satisfying (+). By Lemma 1.3,
L is a subdirect product of s/e x A°(G) x ae for some s € I11), o € IT(M).

For any 1 € s, define the relation 7 on [ v M by

itj iff i,jel and itj, or i=j
In a similar manner, for 7 € /e, define 7 on I v M by
utv iff poveM and prtv, or p=v.

Let r e ITJ w M) be the relation r =
of theorem 2.1, we have L'~ L <
- (1 v 7, K). .

Now define a: rfe > A(G) as follows: ta = N(v, ¢), where & v g = 1 for v e sfe,
0 € ole. That o is a complete join homomorphism follows directly from lemma 1.6.
Condition (3) of (*) insures that ¢x = e. That « represents Lis an immediate conse-
quence of (+) and the definition of N(v, 0).

To prove the inverse implication, let L be a lattice represented by a: rfe — A7(G),
r e ITd), with o satisfying (2.1) and (2.2). Let L' = L x {e}. We will show L
satisfies (). .

Note first that since « is a join homomorphism, « is order-preserving. Suppose that
{(rp, Ng, €)}ges = L. Since L' is a sub/lattice of a complete lattice, it suffices to show
that (Ary, ANy, €) and (Vrg, VN, €) are in L. Since Ary < r, for each e B, and «
is order-preserving, (/\r,;) o < rpofor all B e B. But rpo £ N, because o represents L,
whence (Arg) « < Ny for all §, and therefore (Ary) @ < AN,. By the definition of «
representing L, this implies (Arg, ANy) € L, and (Ary, ANy, €) € L as desired.

Now consider (\/r,,,VN,,, ¢). Since o represents L, we know rgo < N for each
B e B, and hence (ryo) <V Ny The fact that is a complete join homomorphism
implies V/(rpo) = (Vrp) @ £ VN, which gives us (Vrg, VNg) € L, and (Vry, VN, €)€
€ L. Thus part (1) of (x) is satisfied.

Suppose (s, K, a) eL,t < s,and H = K. As was noted earlier, o is order-preserving,
so ta < s < K £ H, and since o represents L, (t, H) € L. It follows that (t,H,e)e
€ L', and part (2) of () is proved. Part(3) of (x) is immediate from condition (2.2).

The next theorem shows it suffices to know [ i, j] « for each [i, j] < r to get a com-
plete join homomorphism.

§ v &. By the same argument as in the proof
rle x A7(G) under the mapping (¢, K, ) —

Theorem 2.3. Suppose the function oy: {[i,j]:irj} = A(G), reII{I), has the
property that if [i,k] < rand [j, k] < r,

(2.3) [i,j] oo < [i, k] oo v [, k] otg .

Then o, can be extended to a complete join-homomorphism on r/s.
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Proof. For s e rfe, suppose s = V [ig, jz]. Define sa to be V [ig, jz] #o. We must
PeB PeB

show « is well-defined, so assume also s =V [i,, j;]. For each fe B, [ij, j,] <
yeC

<V [i,, j,]- There must be elements iz = iy, iy, ..., i, = j; of I such that
yeC

ili,, ] ix+1 for some 7, € C and each ke n. Without loss of generality we may
assume i, + i,y q. Thus [y, ixsq] = (i) Jy-

Now we may calculate using (2.3),
Ligs i) %0 = Lios in] %o < [ios iv] %o v [its in] 2% <
< lios i oo v ([igs ia] o0 v [ia, iy] #o S ... = [igs ig] 0 Vv

v iy i) og v oo v [igmy, i) 0 S \/C[iy,jy] g -
ye

I\

Since this inequality holds for each f e B, it follows that \/ [ iy, jsz] %o < V [i}s j,] %o»
peB yeC
and by symmetry we get equality. Hence o is well defined.

That o is a complete join-homomorphism now follows immediately from definition
of a.

The next theorem shows that if a lattice is a certain type of sublattice of a proper
congruence lattice in a class of Rees matrix semigroups, then it is itself a proper
congruence lattice. Recall that a group is Hamiltonian if all of its subgroups are
normal. In particular, abelian groups are Hamiltonian.

Theorem 2.4. If Lis the lattice of proper congruences of a Rees matrix semigroup
over a Hamiltonian group, then any principal ideal of L is also the lattice of proper
congruences of a Rees matrix semigroup.

Proof. From Theorem 2.1, we may assume L = C'(S) where S = ./#/°(1, G, M; P),
and Lis a complete sublattice of r/e x A(G) x &fe for some r € II(I). Let (s, K, ¢) €
e L, and we will show (s, K, ¢)/(, {e}, ¢) is isomorphic to a proper congruence
lattice of a Rees matrix semigroup.

Index the set of s-classes by A where M n A = @ and I n A = 0. Pick a represen-
tative from each s-class, and for i eI, let f(i) be the representative from the s-class
containing i. Define a matrix A: M w A x I v A —» G° as follows:

[P,ul’;fl(i) ueM, iel
e neA, ies,
0 HeA, ié¢s,

o

neAd, ieAdA, u=*i
neAd, ied, u=i
neM, ieA.

[s=]

q,,f=i
l

Note that Q is normalized.

Q
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We claim that all the non-zero entries of Q are in K. The only (fase ‘ive nefed o
check is pe M and iel. If q,; + 0, then p,; & 0 and puscn + 0. Since Isf(l)’ the
admissibility of (s, K, £) gives us piPur(y = dui € K. )

Define the Rees matrix semigroup T = //i"(l w A, K, M A4; Q). If te H(I),
define the relation 7 on I w A by ifjiff i,jel and itj, or i = j. We claim that if
(1, F,e) e (s, k, £)|(e, {e}, &), then (1, F, &) € C'(T). Assume i7j and let pe M v A.
The admissibility conditions hold if i = j, so assume i # j. In this case, i 7 j implies
i,jelanditj. If pe Aandq, =+ 0, then ies, Since itjandt < s, we have also
jes,, and thus q,; = e + 0.

If ge M and q,; # 0, then p,; & 0. The admissibility of (¢, F, ¢) gives us P,; = 0,
and because j s f( i) we also know P, # 0. Hence q,; = p,;p,/(;, * 0.

For the second part of the admissibility conditions, notice that since i ¢ j, f(i) =
= f(j). It follows that if weM, q,4q,;" = (PuiPrjin) (PuiPari) " = Puily; € F.
If u e A and we assume ¢,; + 0, then i es,, and so g,; = e. Since also j€5,, q,; = e,
and therefore q,,4,;' = ¢€F.

Now define the mapping ¢: (s, K, 0)/(e, {e}, &) = C'(T) by (1, F,¢) ¢ = (i, F, ¢).
That ¢ is one to one is obvious. To prove ¢ is onto, let (v, F, o) € C'(T). First we
must show ¢ = ¢, so suppose o v for some u, ve M w A, and p =+ v.

Case 1. Both p, ve M. Since C'(S) < rle x A(G) x ¢f¢, there must be an i el
such that one of p,;, p,; is zero and the other is not. For otherwise we would have
(r, G, [ v]) an admissible triple for S, a contradiction.

Case 2. Atleast one of u, ve A,say ve A. Then q,, = eand q,, = 0, contradicting
the admissibility of (v, F, o).

In both cases we get a contradiction, so we must have y = v, and therefore o = ¢.

Define teH(I) by t = v),. Clearly, 7 < v, so to prove the reverse conclusion,
suppose i, jelw A and (i, j)¢7. It must be that i # j, and that one of i or j is notin I,
say i¢l. Then ie A, and we have q;; =0 and q;; = e %= 0, and thus (i, j) ¢ v
because (v, F, s) is admissible. We now have i = v.

We need to show that ¢ < s. Suppose (i, j) ¢ s. Let s,, ue A, be the s-class con-
taining i. Then j ¢ s,, whence g,; = 0 and ¢,; = e # 0. From this it follows that
(i,)) ¢ v = isince (v, F, ¢) is admissible, and thus (i, j) ¢ 1, and we have ¢ < s.

Since (t, F, ¢) < (s, K, ¢), G is Hamiltonian and 7 = v, (v, F, &) = (1, F, &) ¢, and ¢
is onto. Clearly, ¢ and ¢ ' are order-preserving, and it follows that ¢ is an iso-
morhism. The proof that (s, K, ¢)/(¢, {e}, &) = C'(T) is now complete.

Aplying the Third Isomorphism Theorem to Theorem 2.4 we get the following
corollary.

Corollary 2.5. If L is the lattice of proper congruences of a Rees matrix semi-
group over a Hamiltonian group, then any interval sublattice of Lis also the lattice
of proper congruences of a Rees matrix semigroup.

We will need the following lemma.
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Lemma 2.6. [4, Corollary 9] Suppose ¢ + se rle and K e #(G). If N, £ K,
then there are elements i, j of I such that (i,j) e€sand N; ; < K.

Suppose that s € IT(A) for some set A, and let a € A. We will denote by s{a) the
equivalence class of s containing a. Thus [s(a)] identifies all the members of the
s-class containing a, but no other elements.

Theorem 2.7. Suppose that L is a lattice satisfying (*), and for each iel and
e M, Ny, iy and Ny, are either minimal normal subgroups of G, or {e}. Then L
is isomorphic to the proper congruence lattice of a Rees matrix semigroup.

Proof. If |I[r|  [M]x|, say |I[r| < |M|x|, then we can add |M/r| — |I/r| elements
to I and make them singleton r-classes without disturbing the hypotheses. So we may
assume that |I/r| = |M/[n|. Denote by I, M,, 2€ A the elements of I/r and M;n
respectively.

Let B be the set of symbols {i,;} where ¢ + ¢ e ne and H % N,. Let C be the set
{1} wheree % serfeand K 2 N,. Assume |C| < |B], and let T'be a set of cardinality
|B| — |C|- If |B] = |C|, set T=0.Let =IwB, M =MuwCuwT.

For each non-trivial s € rf¢ and each K % N, by lemma 2.6 we may choose an i
and j in I such that i s j and Ny; ;7 £ K. Let a € Np; ;7\ K. For k eI, define

agc if Ny +1{e} and ksi,
pu,.,(k = .
e otherwise .

Similarly, for each non-trivial ¢ € n/s and each H 2 N, we may choose u,ve M
such that g o v and Ny, ., £ H. Let y,,€ N, ,y\ H. For o € M, define

po'iE,H

_ [ veu i Ny o # {e} and pov,
e otherwise .

Now set S = .#/°(I', G, M’; P) with the entries of P defined as follows:

(1) Ifiel, ueM, then icl,, pe M, forsome Ay, A; € A. If Ay = Ay, set p,; = e;
otherwise, set p,; = 0.

(2) If ie B, pe M, then i = i,y for some ¢ € nfe (¢ + ¢) and some H % N. Define
Pui = Puiyn-

(3) If iel, peC, then pu = py for some s e rfe (s + ¢) and some K £ N. Define
Pui = Pui

(4)Ifiel,peT,let p,; =e.

(5) Since |B| = |Cw T|, there is a one-to-one correspondence Y: B« Cw T. If
ieB, pe Cw T, and Y(i) = g, set p,; = 0; otherwise set p,; = e.

We wish to show that if (s, H, ¢) € L, then it corresponds to an admissible triple
on S. If (s, H, ¢) € L, then s € II(I), ¢ € [T M).

We extend s to an equivalence relation on I’ by making the elements of I’ \[
singleton s-classes. Similarly, we extend ¢ to M’. We will show that (A) of the admis-
sibility conditions holds; that (B) holds will follow by a similar argument. If s = ¢,
then clearly (A) holds, so we may assume s = &.
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Suppose for i, jel’ that isj, and let e M'. Then we must have i, j €I, so only
parts (1), (3) and (4) of the construction apply. Only in (1) is it possible to have any
zeros, so it is sufficient to consider this case. Then if p,; = 0, p,; must be 0 since i s j
and s < r. Hence condition A.1 holds.

Now assume that p,; & 0.

Case 1. If ue M w T, then p,; = p,; = e, hence p,;p,;' = e€eH.

Case 2. If peC, then u = i for some terfe (t +¢) and some K 2 N,. If
Pui = P,; we are done, so assume they are not equal. By construction we must have
one of p,;, p,; equal to oy, and the other to e, say p,; = a,, and p,; = e. We know
o € Npg N K where ht k, and since p,; = a,x, we know Ny, 5 + {e} and hti.
Since t < r, we must have hrk and hri, and by hypothesis we see that {e} <
< Npwgr = Npwiy = Niiy since Np(iypis minimal. That p,; = e implies Ny, j; = {e}.
From lemma 1.7, {e} < Ny, 5 < Ny, )Nii 7 = Npijy- Because i 7 j, Ny j3 = Ny
and the minimality of N, yields N, ;3 = Ny It now follows that Puibp; =
= o,k € Nppyg = Ny = Ny = H.

Hence in both cases, p,;p,;' € H, so condition A.2. holds.

We wish to show that only triples corresponding to elements of L are admissible.
Suppose that (s, H, ¢) ¢ L. Then either s £ r, ¢ £ @ or H % N(s, ). If s £ r, then
there exist i, j €I’ such that i s j but (i, j) ¢ r. If i and j are both elements of /, then
by the construction in (1), we may pick u e M such that p,; = 0 and p,; # 0. In the
case that i, je B, for some pe Cw T we will have p,; = 0 and p,; # 0 from the
construction in (5). If i€ T, je B, then we may pick ue Cw T such that p,; = 0
by (5), and from (3) and (4) it follows that p,; #+ 0. Hence there is always a pe M
so that exactly one of p,,, p,; is zero, and hence (s, H, ¢) is not admissible. A similar
argument holds if ¢ £ 7.

So assume that s < rand ¢ < 7. Then H % N(s,¢) = N, v N,, so etiher H 2 N,
or H % N, say H % N,. By construction there are elements i, j in I and elements
Puwssis Puurs SUCh that pyipu ;€ Npp g\ H. Let u = pgy. Then PuiPn; ¢ H, and we
see that (s, H, ) is not admissible, completing the proof.

Corollary 2.8.If L is a lattice satisfying () and G is simple, then L is isomorphic
to the lattice of proper congruences of a Rees matrix semigroup.

Theorem 2.9. Let L be a lattice satisfying (). Suppose that for each [i,j] e rle
and each [p,v]enfe, Npijy < A{Npy:x £ 1 and x +j} v A{Ny 0y +j and
y*+i, and Ny, s < AN{Ny o0 v and o+ pup v A{Ny,pon + 1 and n + v},

Then L is isomorphic to the congruence lattice of a Rees matrix semigroup.

Proof. As in the proof of theorem 2.7, assume |I/r| = |M/r|, and denote by
I1,,M;, A€ A the elements of I/r and M/rr respectively. Define the sets B, C, T, I’
and M’ as in the proof of theorem 2.7.

For each non-trivial s € rfe and each K e (G) such that K 2 N, choose an i and j
in [ such that isj and Ny j, £ K. Pick o, € Np;,;;\ K. By hypothesis, o = By
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where fix € A{Npiaix # i, x +j} and yyxe A{Nyyy #Jj, v # i}. Define
Puski = Bk Puski = VS_KI’ Pt =eiflel \{i’j}‘

Note that by this construction, if ¢t e r/s and D = N,, and h, [ eI such that ht |,
then pum,,p;t:,, € Ny, ;3- Similarly we can define the entries of P restricted to M x B
so that if C 2 N,, and 6, £ € M such that 6 ¢ &, then ps;_ psi.. € Nis e

The remainder of the proof is exactly like the proof of theorem 2.7.

s‘oc

We will now construct a class of examples of lattices satisfying the hypotheses of
theorem 2.9. Let n be a finite ordinal or w and 2(n) the power set Boolean algebra
on n. Let {p;},, be a set of distinct primes, and set G = ) p,. Then 2(n) = 4(G).

Define the function «, from the atoms of IT(n + 1) to A#°(G) by [i,j] oo = Z,, x
if i, jen, and [i, n] ay = Z,,. Also let oy = {e}.

We claim that o, satisfies (2.3). Let i, j, k € n.

Case 1. k = n; jen.

Then [i, k] ag v [, k] @ = [i,n] o Vv [j, nloag=2,vZ, =2,x2,=
= [i, j] «.

Case2. j=mn, k=mn, ien.

In this case, [j, k] oy = e0tg = {e}, and [i, k] oy = [i,n]oy = Z,. Thus
[i,/]] oo =[i,n]ag =2, =2, x {e} =[i,k]og v [Jj, k] .

Case 3. i,j, ken.

Then we have [i, koo v [j, k] =2, % Z, v Z, % Z, =2, X Z,, x
XZ, 22, xZ, =[ij]o.

Thus we see that o, satisfies (2.3), so by Theorem 2.3, o, can be extended to
a complete join-homomorphism a: IT(n + 1) > A7(G). By definition of «,, we also
have o = {e}, so that (2.2) is satisfied. Hence by Theorem 2.2, if we let L' be the
lattice represented by o, and L = L' x gfe, then L < IT(n + 1) x A(G) x II(1)
and L satisfies (x). Also, [i, ] & = Np;, ;-

To show that L satisfies the hypotheses of theorem 2.9, let i, jen + 1, i * j.

Zf'i

Case 1. i,jen.

We have A{Npq:X #Jj, x + i} = Ny A (AN x + 0, x #j, x i) =
=Z, ~n(AZ, x Z,:x+j})=2Z, = Ny, in a similar manner we can show
ANty £ 1,y + j} = N - Since o satisfies (2.3), we know Ny; ;3 < Nyjoy v
% N[j’,,] = A{N[i,x]: X *], X F l} \% A{N[j,y]: y :i:,], y =+ i}, as desired.

Case 2. ien, j = n.

For every xen, x +i, Nyg=2, xZ, 22, =N, Thus N, <
< A{Npia: x #j, x + i}, and we conclude that Ny; ;; < A{Np; i x *+j, x # i} v
vV ANy # 6,y #

Hence, L satisfies the hypotheses of theorem 2.9, and is therefore the lattice of
proper congruences of a Rees matrix semigroup.

Let Lbe a lattice satisfying (). By lemma 1.3, {(s, {e}, 0) e L} = (r,, {€}, .)€ L,
where r, € IT1) and 7, € IT(M).
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Theorem 2.10. If L is a lattice satisfying (), and the lattice interval
(r, G, m)|(r., {€}, m,) is the lattice of proper congruences of M(Ir., G, M|m,; P)
for some P:M|[n, x I|r, - G° then L is the lattice of proper congruences of a
Rees matrix semigroup.

Proof. Forieland pe M,leti = ri)and i = n(p). Define S = .#°(1, G, M; Q)
where the entries of Q: M x I — G° are defined by g,; = p;;. Observe that (s, K, ¢) €
e L implies (s, K, 0) v (r.. {e},m,) = (s v r,, K, 0 v 7,) €(r, G, n)/(re, {e}, m,).

We wish to show L = C'(S). First assume (s, K, ¢) € L, and suppose isj and
peM. If q,; = 0 then p;, = 0. Since i s j, i (s v r[r,)j, and thus p;; = 0, yielding
q,; = 0, and A.1 of the admissibility conditions holds. Since (s v r,, K, 0 Vv 7)€
e(r, G, n)[(re {e}, m,), (s v r.fre, K, 0 v m,[n.)is admissible for .#°(I|r,, G, M|n,; P)
and this along with i (s v r./r,) j implies p,;p;;' = 4,:q,;' € K, and condition A.2.
is satisfied. The proof that B holds proceeds in the same manner. Thus (s, K, 0)e
€ C'(S), and we have L < C'(S).

Now suppose (s, K, ¢) ¢ L. Then either s £ r, 0 £ 7, or K & N(s,0). If s £ r,
then s v r, £ r, so s v r/r, £ r[r,. Thus there must exist (i,j)es v rfr, and
p € M|, such that one of p;, pg; is zero, and the other is not. Hence one of ¢,;,q,;
is zero, and the other is not, and so (s, K, ¢) is not admissible for S, and (s, K, ¢) ¢
¢ C'(S). A similar argument holds if ¢ £ 7.

So suppose s < r, ¢ < m, and K % N(s, 0) = Ny v N,. Then either K % N or
K £ N, say K = N, Note that N, = N,,, since (s, N &) Vv (r,, {e},¢e) =
=(sV r,N,e)eL, and thus K & N v r[r,. It follows from Lemma 2.6 that
there exist i, j € I[r, such that K % Ny, ;;, and so ([i,j], K, &) € L. Therefore there
is a jie M/r, such that p,.p;;' ¢ K, and we have ¢;,4,;' = pup.; ¢ K, showing that
(s, K, @) is not admissible. We have shown C'(S) < L, and finally C'(S) = L, as
desired.

Corollary 2.11. If L is a lattice satisfying (*), and each r-class (respectively
Q-class) contains at most three r,classes (respectively n,-classes), then L is the
proper congruence lattice of a Rees matrix semigroup.

3. NECESSARY CONDITIONS

In this section we will examine some necessary conditions which do not follow
from (x) which must be satisfied by a non-modular lattice of proper congruences
of a Rees matrix semigroup. We will make use of the following lemma, whose proof
is an easy application of the admissibility conditions.

Lemma 3.1. Let Ny, ;€ C'(S) for a Rees matrix semigroup S = #°(1, G, M; P).
Then Ny;,;y is the normal subgroup of G generated by {p”,-p;jlz peM, P, + 0.
We will also make use of the following theorem, which is due to Remark [8].
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Theorem 3.2. Let H be a group having distinct normal subgroups A, B, and C
suchthat ANB=BAC=CArA=1{e} and AvB=BvC=Cv A=H.
Then H is abelian.

If L<rfe x #(G) x nfe is a non-modular congruence lattice of a Ress matrix

semigroup, then one of r and = must have an equivalence class containing at least
four elements.

Theorem 3.3. Let S = .#/°(1,G, M; P) with P normalized. Suppose C'(S) <
< rle x #(G) x nfe, rell{I), ne (M), is non-modular with an r-class con-
taining four elements 0,1,2 and 3. If Ny 1Ny.n A NNy = {€} whenever
{i, j, k, 1} = 4, then either Ny4; = {e} or Ny, is a direct sum of copies of Z,.

Proof. Assume Ny, # e. First note that if {i,j, k,I} =4, by Lemma 1.6,
Ntija vV NpipNoy = Niay.

We claim that if {i,j, k,I} =4, then Ny, ;; = Ny . Let aeNp ;; < Ny gV
V NgiaNpjn = Npap- Then a = cd where ¢ € Ny, and d € Ni; yNy; ;5. Now ¢ la e
€ Nye.nNpijp» and ¢ 'a = d, hence ¢ 'ae Ny 3N ;3 A Ny N = {e} by hypo-
thesis. Thus a = ¢ € Ny, 3, and we have shown Ny; ;; £ Ny, ;. By symmetry we con-
clude Ny ;3 = Ny, np-

From this it follows that if {i,j, k,I} = 4, then {e} = Ny; 3Np.in A NNy =
= Npijy A Npiggs and similarly, {e} = Ny; j; A Npiy = N3 A Ny We also have
Niay = Npiji vV NpiaNeing = Ny vV Npiggs and similarly Nygy = Ny v N =
= Npixg V N Thus by theorem 3.2, we know that Ny, is abelian.

Let u e M be such that p,; = 0 for all i € 4. Let {i, j, k, I} = 4 and define the fol-
lowing elements:

-1
a = p,iP,; €Npij»
b = Pml’u_kl €Niiyy, and
c = p,‘;pu_,l €Ny -

Then we have

-1 _ -1 _

ab™" = pup,; €Ny = Nuas
-1 -1

be = puPu €Nw,n = Npiji> and
-1 _ -1 _

ac™” = pup,; €Npn= Npu-

Thus we can calculate,
(ab™')ce Ny,
a(b”'c) €Ny j;, implying
ab™'c €Ny A Npj;={e}, and hence

(3.1) ab™' =1,

440



In a like manner we compute

(ab ") e ' eNpn>

(ac™)b™' € Np; 4> Whence

ab™'c¢™' €Ny A Ny = {ef, and
(32) ab ' =c.

Combining (3.1) and (3.2), we see that ¢ = ¢, and thus ¢* = e. Likewise we can
obtain a® = b> = e. Thus if e M such that p,; % 0, (p,.p,;')* = e. From Lemma
3.1 we conclude that the generators of Ny; ;;, which are all conjugates of the elements
PuiPy; > all have order two. Since Ny;;; < Np,; which is abelian, every element
of Ni; j; has order two. By a similar argument, so does every element of Ny; ;;. Since
Niay = Ny j3 X Ny, every element of Npyy has order two, and it follows that Ny,
is a direct sum of copies of Z,.
Denote by M, the two-dimensional modular lattice with k atoms.

Lemma 3.4. Let Lbe a subdirect product of II(n) x M,,, x II(1) which satisfies
(%), with n 2 4 and p 2 3. Suppose L = C'(#°(I, G, M; P)). Then L is a subdirect
product of rle x N(G) x n[e for some reII(I), n € II(M), and rle = II(n), G =
~Z, x Z,, and nje = II(1).

The proof of this lemma is essentially the content of section 4 of [4]. It is easy
to verify that the lattice L constructed there satisfied the hypothesies of theorem 3.3.
By lemma 3.4, if Lis the proper congruence lattice of a Rees matrix semigroup
M°(I, G, M; P),then G = N,; = Z; X Z3, contradicting the conclusion of theorem
3.3. Note that this also shows that theorem 3.3 does not follow from the con-
ditions ().

Theorem 3.5 Suppose L = C(.#°(n,Z, X Z,,M; P)) where L is a subdirect
product of TI(n) x M,., x nlc where nell(M), and n 2 4. Let i,j,k and | be
distinct elements of 4. Then if Ni; 13, Np,n and Nyiyy are distinct atoms of M .4,
and Ny; 4y = Nyjpand Ny jy = Z, x Z,, then Nyjug = Z, X Z,,.

Proof. Since Ny; ; is abelian, by lemma 3.1 Ny; j; = {Puibuj' €M, p,; + 0).
We know Ny, ;; is not cyclic since Ny; ;; = Z, % Z,, so there must be distinct u, ve M
such that <pmp“1> x {pupy;'> = Nujv Smce Nij.n < Npijj, we cannot have both
PuiPy; and p,ipy;t in Nij 5y, so assume p,uP,u Ny

Define the following elements:

a = puipll-fl € Nuij»
b= pubu €Ntinas
¢ = pupi’ €N
d = pwp” '€ Npijp-

We claim that b + e énd ¢ + e FOT if ¢ = ¢ then a = p;j‘p,,, & Niju, con-
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tradicting the assumption that p,p,;' ¢ Ny If b = e then ¢ = Pt Puk € Npys
whence ¢ € Ny; ;3 A Np = {e}, 2 contradiction.

Since Np;x and Ny; ,; are cyclic of order p, we have N, ,; = <b) and N; ; =
= {c). Thus p,p;! = b" and p,:py;' = ¢" for some integers 0 < n, m < p. We
claim that n = m, for we have (be™')" = b"¢™" € Ny, and b"c¢™™ = py'py1 € Ny
and it follows that ¢"~" € Ny y A Ny = {e}-

We now calculate

(3.3) ab™le Nijry, SO a'b™" eN[i,k] .
Also
(3.4) db™" €Ny 1,

and combining (3.3) and (3.4) we get a"d” " € Ny, 1.
Similarly, ac™' € N, ,; and dc™" € Ngj,iy imply
(3:5) a"d ' eN; .

Thus we have a"d™ ! e Nj; i A Ny, i We know that {a) x {d) = Z, x Z,, and
so we cannot have a" = d, whence a"d”~' % e. Therefore Ni; .y A Ny;.p * {e}, and
it must be that Ni; .y = Npj ;3 0f Npj g = Z, X Z,,.

However, by lemma 1.6 we must have Z, x Z, = Np; ;3 £ Npigg V Npjas
whence Ny; 41 + Ny = Nyj g Thus Nijig = Z, x Z,, as desired.
Let Ay, ..., A; denote the atoms of M. Define the mapping «,: {[i,j]: i, j € 4} —
— N(Z3 x Z3) by
[0, 3] oy = Ao >
[2,3] o = 44,
[0, 1] ot = Z3 X Zs5,

[1,2] o = 45,
[0,2] @ = [1,3] 0 = A3, and
ey = {e} .

Let L be the lattice represented by «, the extension of o, to I'[(4). Suppose Lis the
lattice of proper congruences of a Rees matrix semigroup S = .#°(I, G, M; P), so
that L < rfe x A(G) x nfe for some r e II(I), = e II(M). By lemma 3.4 we know
rle = 11(4), G = Z; x Z,, and nfe = I1(1). We will show that the representation
of Lis unique up to a permutation of the atoms of M, or a permutation of 4.

L has four atoms. Since L is a subdirect product of I1(4) x My, x II(1), there
must be a o; € IT1(4) such that (o, 4;,¢) € L for each i € 4.In order for L to satisfy (),
(e, A;, €), i € 4 must be in L, and these elements must then be the four atoms.

Three of the atoms are covered by two elements each, and one atom, say (5, Ay, 8),
is covered by three elements. By (*), (8, 1, ¢)is in L, and it is a cover of all the atoms.
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If i * k, the other atom covering (&, 4i, &) must be of the form (s, 4;, ¢) where
s »—¢. The two other atoms covering (e, Ay, ¢) are of the form (r, 4,, &), and
(t, Ay, €) where r >—> gand t »— ¢, say r = [a, b], t = [c, d], where a, b, ¢, d € 4.
If {a,b}n{c,d} 0, say b=c, then (rs A, &) v (1, Ay, &) = ([a, b, d], Ay, ¢).
The elements (r, Ay, €), ([a, d], 4;, ¢), (1, 4, ¢) are then three covering elements of
(e, Aw €) other than (g, 1, ), a contradiction. Hence (r, A, ¢) v (1, 4y, &) must be
of the form ([a, b] v [c, d], Aw, €), a, b, ¢, d = 4. Now we see that Lis unique up
to any permutation of 4 or any permutation of the atoms of M.

It is now easy to see that L satisfies the hypothesis of Theorem 3.5, with 4, =
= Ny A1 = Ny As = Npiag = Nijy, but Npjuq = 4, = Z3 x Z,. Hence L
is not the proper congruence lattice of a Rees matrix semigroup. It is also evident
that theorem 3.5 does not follow from the conditions (x), nor from Theorem 3.3.
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