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0. Introduction. A groupoid (G, -) is called a rectangular (right) groupoid if it
satisfies the following two laws

(1) x?=x,
(2) (xy)z = xz.
It is clear that every rectangular band is a rectangular groupoid.
A rectangular groupoid is called a near-rectangular (right) groupoid if it satisfies
(3) xX(yx) = x.
We shall also deal with the following two identities:
(4) xX(yzx)) = x(z(yx)) ,
() xX(p(zu)) = x(z(yu)) .
Denote by V; the variety of groupoids satisfying (1), (2), (3) and (4), and by V,
the variety of groupoids satisfying (1), (2) and (5).

By p, (%) we denote the number of all essentially n-ary polynomials over an
algebra U ([2]).

In this paper we prove the following:
Theorem 1. For any rectangular groupoid (G, +) which is not a semigroup we have
pl(G, ")) = n* for nz3.

Theorem 2. Let (G, ) be a rectangular groupoid. Then the following conditions
are equivalent:

(i) (G, +) is not a semigroup and (G, *) satisfies x(y(zu)) = x(z(yu));

(i) Pa((G. ) = 16; |

(ii)) p((G, *)) = n* for all n.

Before formulating the next theorem we need some notations.

Let V be a variety of algebras. Then, by (V) we denote the lattice of all subvarieties
of V. :
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Theorem 3. The lattice £(V,) has the following diagram:
1

Cc

0

where a is the variety of left zero semigroups, b is the variety or right zero semi-
groups and c is the variety of all rectangular bands. 0 is the variety of one-element
groupoids and 1 is the variety V,.

1. Examples. In this section we give some examples of rectangular groupoids which
are not semigroups and belong to V; and or V,.

1.1 Let G, = {1,2,3} and G, = {0,1,2,3,4}. On G, and G, we define binary
operations -, * by Cayley’s tables

123
1133
21222
31133
x 01234
0,01331
1701331
2124224
3/01331
424224

Then (G, -) and (G, *) are not semigroups since in the first case we have 1 = 31 =
=(32)1 # 3(21) =32 =3 and in the other we have 3 = 0(40) # (04)0 = 0.
Nonetheless, both groupoids belong to V,. It is easy to see (and useful in checking
all identities of V,) that ({1, 2, 3, 4}, *) is a rectangular band. The groupoid (G,, *)
is the smallest rectangular groupoid which is not a semigroup. Let us mention that
(G,, *) is a subgroupoid of the free groupoid in ¥, with two free generators.

1.2. Here we also give examples of two groupoids from V; which are not semi-
groups. If

Il

G, {1, 2,3,4,5, 6}
and

G,

Il

{1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18},
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then on the set G; and G, we define operations O and ® by the tables

Ol123456

11133113

21422424

30133113

41422424

5]556656

61556656

(Notice that ({1,2, 3,4}, 0) and ({5, 6}, O) are rectangular bands but (Gs, O) is

not a semigroup since 6 = 6(12) = (61)2 = 5.)
®il23456789101112]3141516!718
1] 1 23 45 6 2 1 43 6 5 31 52 6 4
21 23 45621 43653 152¢6 4
3/ 1 2345621436531 526 4
4! 1 2345621 436531526 4
5!123456214365315264
6, 1 23 456 2 1436531526 4
7,8 710 91211 7 8 9101112 91t 712 810
8;871091211789]01112911712 8 10
9| 8 710 91211 7 8 9101112 911 712 810
10 8 710 91211 7 8 9101112 911 712 810
11 8 710 91211 7 8 9101112 911 712 810
12 8§ 710 91211 7 8 9101112 911 712 810

13 1 14 16 13 18 15 17 15 17 13 18 14 16 13 14 15 16 17 18
14 | 14 16 13 18 15 17 15 17 13 18 14 16 13 14 15 16 17 18
15| 14 16 13 18 15 17 15 17 13 18 14 16 13 14 15 16 17 18
16 | 14 16 13 18 15 17 15 17 13 18 14 16 13 14 15 16 17 18
17 | 14 16 13 18 15 17 15 17 13 18 14 16 13 14 15 16 17 18
18 | 14 16 13 18 15 17 15 17 13 18 14 16 13 14 15 16 17 18

3=213=(17)13+1(713)=19=4.
It can be checked that (G;, O) and (G,, ®) belong to V; and (G,, ®) is isomorphic
to the free groupoid in V; with three free generators.

1.3. Here we give some examples of infinite rectangular groupoids. Let X be
a set with card X = 2. Take G = X™°. On the set G we define “multiplication”
as follows. If x = (x, X5,...), y = (¥, ¥, ...) and x, y € G, then we put

_ {(xn V2, V3 ) if x; =y,
Xy = .
(xl,yn.)’p-n) if x; %y,
It can be easily checked that this groupoid is a rectangular groupoid which is not
a semigroup. Similarly, an infinite groupoid can be constructed in the following

manner. Take a set 4 such that card 4 = 2. For the underlying set G we put |J 4"
If x = (Xg, X2, s Xp) @and y = (¥1, V2, -+, 3,), then we put n=1

(Xla Vi Vas ey y”) lf X4 :1: Yy
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Analogously as in the previous case, one can verify that (G, -) satisfies the required
identities (1) and (2) and does not satisfy the identity (3). It should be mentioned that
there exist nonidempotent groupoids satisfying (xy)z = xz. For example, take
G = XM, where card X = 2, and define

Xy = (xh XZ, )(.V]a y2’ ) = (xb yl: y2;--')'

2. Polynomials in rectangular groupoids. The main aim of this section is to present
all lemmas we need for the proof of Theorem 1.

Lemma 2.1. If (G, *) is a rectangular groupoid, then (G, *) satisfies the identities

(xy)x =x, (xy)y=xp
and

xy = x(xy).
The proof is obvious.
An idempotent algebra of a fixed type is called proper if all fundamental polyno-
mials are mutually different and depend on all variables (for a groupoid (G, *) this
means that xy is essentially binary).

Lemma 2.2. If (G, ) is a proper rectangular groupoid, then

x(vx) € {y, xy, yx} .
Proof. Let x(yx) = y. Then by the identity (2) we get y = yy = (x[yx)) y = xy —
a contradiction since (G, *) is proper. Assuming xy = x(yx) and putting xy for y
in this identity, we get, by the previous lemma,
xy = x(xy) = x((xy) x) = xx = x
which is impossible. If x(yx) = yx, then

y=(yx)y = (x(yx)) y = xy (by(2))
which is also a contradiction.
Lemma 2.3. Let (G, *) be a proper rectangular groupoid. Then (G, *) satisfies
the identity (3) if and only if p,((G, *)) = 2.

Proof. If (G, ) is a proper rectangular groupoid satisfying (3), then using
Marczewski’s description of the set A“(2I) of a given algebra 2 ([6]) we infer that
xy, yx are the only essentially binary and distinct polynomials over (G, *) (This fact
can be verified directly.) The converse follows from Lemma 2.2.

Lemma 2.4. If (G, *) is a proper rectangular groupoid, then the polynomial
X oy = x(yx) is not commutative.

Proof. If x(yx) = y(xy), then xy = (x(yx)) y = (y(xy)) y = y and hence y(xy) =
= y which proves x = y.
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Lemma 2.5. If (G, *) is a rectangular groupoid, then (G, o), where x o y = x(yx),
satisfies the identities
XoX =X, Xol(yoz)=xo0y.
Proof. We have

xo(yoz)=x0(¥(zy)) = x(¥(zy)) X) = x(yx) = xoy.

Note that idempotent groupoids satisfying x o ( Voz)=Xxoy were considered
by J. Ptonka ([8]).

Further on, we shall consider two sequences of n-ary polynomials over a (proper
rectangular) groupoid (G, *), namely

Gu = Gu(X1s X2s evos Xy gy X%,) = X1(%5(-0 . (X,21%,)) )
and
g:T = gr(-xl’ Xy veey X1 X)) = gu+1(x19 X2 eoes Xp—15 Xp> xl) =

= Xy(X5(.. (%= 1(x,x4))) ...

for all n = 2.
Lemma 2.6. If (G, *) is a rectangular groupoid which is not a semigroup, then the
polynomial g, is essentially n-ary for all n = 2.

Proof follows from Lemma 3 of [1].

To formulate the next lemma we need some more notations and definitions.

Let f be an n-ary function on a set A. We say that f admits a permutation o € S,,
where S, is the symmetry group of an n-element set, if f = f, where f(xy, ..., x,) =
= f(X515 -+ Xan)- By G(f) we denote the group of all admissible permutations of f

([4]-
Lemma 2.7. The assumption as above. If g, = g; for some n > 2 and some (non-
identical permutation) o € S,, then o(1) = 1 and o(n) = n.

Proof. Assume that g, = g7 and n = 3. Then we have

XX = (gu(X1s oo X)) X = (g0(X 1, -0 X,)) X = XX
Hence o(1) = 1. Suppose that o{n) + n in the identity g, = g7. Putting x,x,.,
for x, in this identity and using (xy) z = xz we infer that
gn(xl’ A xn—-1> xnxn+ 1) = gn+1(x1’ ey X", xn+1) =
= gn(xl, Xa1s vovs XpXpt1s 0o Xa‘n) = gn(xl: cevs Xps Xgks oo os Xon) -

This proves that the polynomial g, . ; does not depend on the variable x, ., {, which
contradicts the previous lemma.

Lemma 2.8. Let (G, ) be a rectangular groupoid. Then the following conditions
are equivalent:
(cy) (G, *) is a rectangular band,

409



(c;) the polynomial x(y(zx)) is not essentially ternary;
(c3) the identity x(y(zx)) = x holds in (G, *).

Proof. Let us remark that if (G, ) is a semigroup of left (right) zeros, then all
these conditions are equivalent. So, further on, we may assume that (G, +) is proper.
The implications (c;) = (c,) and (c;) = (c;) are obvious. Now we prove (c,) = (c3).
First of all observe that xu = (x(y(zx))) u proves that x(y(zx)) depends on x. One
can prove that the polynomial x(y(zx)) does not depend on y if and only if it does
not depend on z. From this fact and (c,) we get x(y(zx)) = x. Now we prove (c3) =
= (cy). First of all, putting x = z in (c;) we have x(yx) = x. Setting uv for x in the
identity x = x()(zx)), we obtain uv = (uv) (y(z(uv))) If z = v, we deduce that

uv = u(y(v(uv))) = u(yv), which proves (c,).
Lemma 2.9. If (G, *) is a proper rectangular groupoid, then the polynomial
gi(xys ..., x,) depends on xy for n=2,3,....
Proof follows from x;u = g;(xy, ..., x,) u.
Lemma 2.10. If (G, ) is a rectangular groupoid which is not a semigroup, then
the polynomials g are essentially n-ary for all n = 3.

Proof. The proof proceeds by induction on n. If n = 3, then using Lemma 2.8(c,),
we infer that g7 is essentially ternary. Assume now that for all k, where 4 < k < n,
gy is essentially k-ary. First of all observe that g depends on x,. Indeed, if g does
not depend on x,, then putting x; = x, in the polynomial g* we deduce that
G (X145 X2, X4y Xgy Xs55 .05 X,) = g (X, X3, X4, X5, ..., X,) does not depend on x,,
either. This contradicts the inductive assumption. Now suppose that g* does not
depend on x,, where 2 < t < n. Then, of course, the polynomial

Gn(X2s Xay coes Xpp oy X)) = G 1(X2, X35 00y Xpy ey X,)

does not depend on x,, where 3 < t < n, which is a contradiction. Thus g* is essen-
tially n-ary for all n = 3.

Lemma 2.11. If (G, ) is a proper rectangular groupoid, then g* = g*° implies
o)=1(n=2,3,..)

Proof follows from the fact that x,x = gix = g°x = x,,x and the fact that
(G, +) is proper.

Lemma 2.12. If (G, *) is a rectangular groupoid which is not a semigroup, then
card (G(g,)) < (n — 2)! and card (G(gy)) < (n — 1)! for every n = 3.

Proof follows from Lemmas 2.6, 2.7, 2.10 and 2.11.

Lemma 2.13. The assumption as above. The polynomials g and g° are distinct
for all 6€ S, and all n = 2.
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Proof. For n = 2, the proof follows from Lemma 2.2. Let now

g:‘(xh RS xn) gu( 0'1’ eoey xo(n—l)» xo'n)

for n = 3 and for a certain ¢ € S,. From this identity, as in the proof of Lemma 2.7,
we infer that ¢(1) = 1. Now, putting xy for x,,, where o(n) = k, in the identity
gy = g and using the identity (xy) z = xz, we infer that

* ) — o* - ) —
gn(xb cees Xp— g5 Xy oney ‘\n) - gn(xls cees X s X5 iy .X") -
= gn(xlﬁ Xg2s oe0s xo'(n—l)> Xy) = gn i—l(xl’ Xg25 -0 0s xa'(n—l)’ X, y)

is not essentially n + 1-ary. This contradicts Lemma 2.6.

Lemma 2.14. Let (G, ) be a rectangular groupoid satisfying x(yx) = x. Then
(G, *) is a rectangular band if and only if (G, +) satisfies

x1(X2(x3%4)) = x4(x3(x5%4)) .

Proof. If (G, ) is a rectangular band, then this statement is obvious. To prove
the converse, observe that

xp(x5%3) = x4(x,(x3x3)) = x{(x3(x2%3)) = x1x3 .

Lemma 2.15. If (G, *) is a rectangular groupoid which is not a semigroup,
then the following conditions are equivalent:

(@) p(G. *) = 16;

(B) the identity x,(x5(x3x4)) = X,(x3(x2x,)) holds in (G, *).

Proof. Assume that p,((G, +)) = 16. Consider the polynomial g,(x;, x5, X3, X;) =
= x(x,(x3x,)). By Lemma 2.6 we infer that g, is essentially 4-ary. If this polynomial
does not admit any nontrivial permutation, then by permuting variables in g, we
get 24 essentially 4-ary polynomials, which contradicts the assumption p,((G, +)) =
= 16. If g, admits a nontrivial permutation of its variables, then according to Lemma
2.7 we get the required result.

Now assume that (G, +) is a rectangular groupoid which is not a semigroup and let
the identity

xi(xa(x3%0)) = i(x3(¥2%)

hold in (G, -). Applying Lemmas 2.6 and 2.10 we deduce that g, and g are essentially
4-ary. By permuting variables in g, we get 12 different essentially 4-ary polynomials
over (G, +). Applying the same for g and Lemma 2.11 we get 4 essentially 4-ary
polynomials. Now, using Lemma 2.13 we get at least 16 mutually different and es-
sentially 4-ary polynomials. Applying Marczewski’s description of A®™(21) for A =
= (G, *) and n = 4 we compute that the only essentially 4-ary polynomials are the
16 polynomials obtained from g, and g} by permuting their variables.

Lemma 2.16. If (G, *) is a rectangular groupoid that is not a semigroup, then
p4(<G’ .)) =16 Implles pn((G: ')) = nzfor all n.
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Proof. According to the previous lemma we may assume that (G, *) satisfies the
identity
xy(x5(x3x4)) = x,(x3(x2xy)) -

Now, using this identity, Lemmas 2.6, 2.7, 2.10 and 2.11 (analogously as in the pre-
vious lemma) and Marczewski’s description of A®™((G, +)) we infer that the only
essentially n-ary polynomials are
X Xp2(X03( o (Xpum1)X0)) -+2))
and
XX 2 (%3(c o (Ko )(XenXs) --2)) 5
where 6€S,_,, 7€ S,_yand t,r = 1,2,...,n.
Thus we have
n! + n! —nt.
(n—=2)" (n—1)

(G, 7)) =

3. Proofs of theorems.

Proof of Theorem 1. Let (G, +) be a rectangular groupoid which is not a semi-
group. Using Lemmas 2.6 and 2.10 we infer that g, and g are essentially n-ary for
every n = 3. Now, applying Lemmas 2.12 and 2.13, we deduce

n! n! n! n! 2
+ . + =
card G(g,) cardG(g,) (n—2)! (n— 1)

The proof of the theorem is completed.

p,,((G, )) 2

v

Proof of Theorem 2. The proof follows from Lemmas 2.15 and 2.16.

Proof of Theorem 3. It is clear that the varieties of a — left zero semigroups,
b — right zero semigroups and ¢ — the variety of rectangular bands, are subvarieties
of V,. Thus {0, a, b, ¢, 1} = #(V,). To complete the proof it suffices to show that
any subvariety of V¥, belongs to {0, a, b, ¢, 1}. Now, let U be a subvariety of V, and
let (G, *) be a free groupoid in U with N, generators. Then u = v is an identity in
(G, ) if and only if u = v is an identity in U. Assume that u = v is not a consequence
of the identities of V,. Obviously, if u and v are variables, then U = 0. If (G, +) is
a rectangular band, then U € {0, a, b, ¢, 1}. Now assume that (G, *) is a rectangular
groupoid which is not a band and u and v are at least binary. Therefore the identity
u = v is one of the following:

9 =Gns 9u="9n s Gn =G >
where g € S,

If n & m, we infer that g, or g is not essentially n-ary since there is a variable
appearing on only one side of the identity. This contradicts Lemmas 2.6, 2.10 for
n =3 ormz=3. If n and m are less than 3, then applying Lemma 2.14 we have
a contradiction.

If n = m, then using Lemma 2.13 we get a contradiction.
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4. Final remarks. In this section we give two remarks.

Remark 1. Let us note that there exist bands (G, +) for which p,((G, *)) = n*
for all n. Such a band is a medial band, i.e. (G, ) satisfies xyuv = xuyv (abelian law
in [5]). This fact can be proved by applying the method of the proof of Lemma 2.15.
Denote by V; the variety of all medial bands. Then the lattice #(V3) is of the following
form (cf. [7]):

Xyuvsxuyyv

Xyz=xzy XYyZ=yXxz

xX=y

It is clear that the lattice #(V,)is a sublattice of #(V;3)and the free groupoids F (n)
and F, (n) have the same number of elements for all n. It is also worth noticing,
by virtue of Theorem 3, that V, = HSP(Gy, *)), where (Gy, -) is the groupoid con-
sidered in 1.1.

Remark 2. Observe that any nontrivial distributive lattice (L, +, +) satisfies
(L, +, +)) = 2 and pi((L, +, +)) = 9. Groupoids (G, *) from V; which are not
bands also have the same property. The fact that p,{(G, *)) = 2 is obvious. Using
the description of the set A®((G, -}) one can prove that the polynomials

x(yz), ¥(zx), z(xp), ¥(xz), z(yx), x(zy), x(¥(2x)), ¥(z(xy))

and z(x(yz)) are the only essentially ternary polynomials over (G, +) and, of course,
they are all mutually different. It is also clear that such a groupoid (G, -) can be treated
as a proper algebra (G, xy, yx) of type (2,2). Thus we infer that there exists a proper
idempotent algebra B of type (2,2) for which p,(B) = 2 and p,(B) = 9.

We should mention here that this fact is connected with a Plonka’s problem. To
formulate this problem we need a concept of the minimal extension property of
sequences ([3]).

Following Gratzer [3] we say that a sequence a = {(dq, 4y, ..., a,) of cardinals has
the minimal extension property if there exists an algebra 2, such that p,{,) = q,
for k < n and, if any algebra U satisfies p(%) = a, for k < n, then p (W) < p(A)
for all k. ’

Let I, denote p,(3), where J is a two-element lattice.

Recently J. Ptonka has asked whether the sequence (o, [y, ...) is the minimal
extension of the sequence (0, 1, 2, 9). We should also mention here that numbers
l, = p,{1)for n = 8 are unknown ([2]).
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If Plonka’s question has an affirmative answer, then p,({G, +)) = I, for all n and
any (G, +) € V; which is not a semigroup.

We even do not know whether p,((Gs, *)) = I, for all n, where (G, *) is the five-
element groupoid of Section 1.
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