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I. INTRODUCTION

The Euclidean Darboux motion in E; has the following properties:

a) All trajectories are plane curves.

b) All trajectories are ellipses or straight line segments.

c) All trajectories are affinely equivalent.

d) It is cylindrical (it splits into a product of a plane motion with a translation).
e) It has infinitely many straight trajectories.

It is easy to show that the condition a) implies all the others, but only b) is equi-
valent to it. Therefore if we want to generalize the concept of Darboux motion to
the n-dimensional space and to more general groups, it is not apparent which of the
conditions a), cees e) should be preserved, because the condition a) does not imply
the others in a more general situation. In the present paper we define the affine
Darboux motions as those having the properties a) and c) because in this case we
may describe Darboux motions by a rather simple analytic condition. There are
examples of affine Darboux motions with no conical section as a trajectory, which
are not cylindrical.

There are also affine Darboux motions with only plane trajectories such that the
trajectories are not affinely equivalent. Concerning e) we shall show later that affine
Darboux motions have as many straight trajectories as possible, but this property
is not characteristic. This will be seen from examples given in the second part of the
paper.

II. GENERAL PROPERTIES OF AFFINE DARBOUX MOTIONS

Let G be a Lie subgroup of the general affine group G4, in an n-dimensional affine
space, let g(f) be a one-parametric motion from G of the moving affine space 4,
in the fixed affine space A,, tel. Let us fix a base Ry = {4, fy, ..., f,} or Ry =
= {Aq, f1, ..., f,} in 4, or A, respectively. By a frame in A, or A, we mean any base
of the form R=R,.g or R =R,.g in A, or A,, respectively, for any ge G .
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A moving frame of the motion g(1) is any pair of frames (R, R) such that 9(t) [R(1)] =
= R(t) with the action g[Rogo] = Reggo, where g, g, e G. (In what follows, all
functions are supposed to be sufficiently differentiable.)

If (R, R) is a moving frame of the motion g(), denote R = Rp,R" = Ry, ¢ — ¢ =
= w, ¢ + ¥ = n. Then ¢,y € G, where G is the Lie algebra of G. Further denote
by , the operator of the k-th derivative of the trajectory of a point X € 4, at X =
=g(1) X, so X = Q,X. Then (see [3])

(1) Q =0, Q=0 — QY + Q.

Definition 1. A motion g(f) from G is called a D, motion (a motion having the
Darboux property of degree r) if there exist unique functions o,(f), ..., o(f) such
that
2 Qq = Z“igz .

Remark. The number r is the least number with the property (2) because €+, =
= ) B;Q; with k < r contradicts the unicity of o,.

Remark. The D, property is a geometrical property of the motion as it does not
depend on the choice of the parameter ¢ or of the moving frame. To see this consider
a parameter change t = #(r) with df/dt # 0. Let us denote by tilda operators
obtained with respect to T and by a prime the derivative with respect to 7. Then we

get (zl = Q, . 1. Further, let J, = Qk(t ¥+ ZQ - Then Gy = @ ()" +
+ Z(Qjﬂty, + Q) + Q k()" 1" So Q,H = ZocQ implies (£')"*! Q4 =

= .glﬂi‘gi'

Similarly, if h = h(r) is a change of the moving frame, (ﬁ R) = (Rh, Rh), we get
@=h"roh+ h *h, § = h""Yh + h™'h’' and Ql = h™'Q,h. Further, let 3, =
=h7'Qh. Then 9,y = ¢3, — G + 8, = (h™'oh + h~ 1h)(h 1Qkh)

— (W' Qh) (W™ 'h + ™ R + (WY Qi+ h™'Qh + R = h'Q,, b,
where we have used (h™') = —h~'h'h™ 1.

Let us denote by M(G) the associative algebra generated by G in the associative
algebra M, , ; of matrices of degree n + 1.

Theorem 1. Every motion in G is a D, motion for some r, where r < dim M(G) <
<n®+n

Remark. The statement of the theorem is to be understood locally in the following
sense: Let g(¢) be defined on an open interval I. Then there is a number r and an
open interval J < I such that the statement holds on J.

Lemma 1. Let x,(1), ..., x,(t), ... be vector functions in R" defined on an open

interval I. Then there exist me N U {0}, m < n and an open interval J = I such
m

that Xmy1 = ), %;x;, where o; are uniquely defined (differentiable) functions.
i=1

356



Proof. Denote by m the maximal natural number or zero such that all sub-
determinants of order m 4 1 of vectors xy, ..., X,,;; equal zero on I and at least one
subdeterminant of order m of vectors X, ..., x,, is different from zero at some
tel. Then m < n. Let us further suppose that the nonzero subdeterminant is the
determinant consisting of the first m coordinates, det |x/(to)| * 0, i,j = 1,..., m.
Then this determinant is different from zero on an open interval J < I.

Let us write

S
Zi

xi:(y{), ihj=1,...m; s=m+1,..,n

To prove our lemma we have to solve the system of linear equations

()= ()

for the unknown column («;). The Equations (y;)(«;) = y,+; have a unique (dif-
ferentiable) solution (;). Further,

= ‘ Vis -+ ’ym’zay‘ - yl" >}ma0

!‘Z Zk Zk E o;Z
s 2o “m> “m+ 1 Z]’ e “m’ m+1
i=1

0= 'yb' o VYms Ym+1
k k
|Zl s eees Yo Zntd

for every k,m + 1 <k <n and so z,,, =) az{ and X,y = Y o;x; with o,
unique. =1

Proof of Theorem 1. We have Q, € M(G), because Q; = we G. Further, if
Q. € M(G), then Q,,.; = 0Q, — QW + Q€ M(G), as ¢, ¥ € G. So we apply Lemma
1. Finally, M(G) = M{GA,) and dim M(G4,) = n*> + n.

Remark. For some subgroups of G4, we really get dim M(G) < n* + n. For
instance, if G is the group of Euclidean motions in E,, we have dim M(G) = 4 and
n? 4+ n=6.

The geometric characterization of the D, property is given in the following

Theorem 2. A motion in G has the D, property iff there exists a regular curve
in A, such that the trajectory of any point is an affine image of this curve and r is
the least number with this property. If a motion has the D, property, then the
trajectory of any point lies in a subspace of A, of dimension at most r.

Remark. The last statement of Theorem 2 is void for r = n. The detailed formula-
tion of the statement from Theorem 2 which is equivalent to the D, property is as
follows: There exists a curve V(f) in A, such that for each point X € 4, there exists
an affine mapping f: A, — A, such that f(V(1)) = g(t)X for all ¢t el. Here f is not
supposed to be regular as the trajectories may lie in subspaces of different dimensions.
By a regular curve we mean a curve X(t) such that the r-th osculating space has
dimension r at each 1(X’, ..., X® are linearly independent for each ?).

Remark. Theorem 2 shows that the D, property is an affine property of a motion
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in G. This means that the D, property is preserved if the group G is imbedded in GA,,.
It follows that if we find all D, motions in GA,, we also know all D, motions for a]l
subgroups of GA,,.

Proof of Theorem 2. We have XU*D — % 4 XV = 0 and so the trajectory
ri=1

of X € 4, can be expressed as X(t) = 4, + Y m{t) f;, where A4, is a point and f;
i=1
are constant vectors (not necessarily independent) and functions 1, m (1), ..., m\t)

.
form a fundamental system of solutions of the equation y**" — 3 a;y(” = 0.
i=1

Hence we see that if the motion has the D, property, all trajectories lie in sub-
spaces of dimension at most r. Each trajectory is an affine image of the curve V(t) =
= B, + Z m(t) e;, where {By, e, ..., ¢} is a base in A4,. The curve V(1) is regular

i=1

in our sense, as the Wronski determinant of functions m(r), ..., m/(t) is different
from zero, because they come from the fundamental system of solutions of a dif-
ferential equation. s

Conversely, let V(1) = B, + Z m(t) e; be a regular curve in A, such that each

trajectory is its affine image. Consnder the system of linear equations m/,,, =
= Z am$D, j =1, ..., s, for unknowns a;. As det m{"” =+ 0, this system has a unique

solutlon and so the functions 1, m,(z), ..., m(t) form a fundamental system of solutions

s
6D — % ;0 = 0 and each trajectory satisfies this equation. Finally, s < r

i=1

contradicts the unicity of the functions «;.

of y

Remark. Theorem 2 is a generalization of the known fact that cycloids (as tra-
jectories of a cycloidal motion in plane) are affine images (projections) of a helix.
In another words, a cycloidal plane motion is a D5 motion. It is not the only Euclidean
D, plane motion; the D5 plane motions are characterized as motions with one straight
trajectory (see [6]).

Theorem 3. A motion g(t)e G has the D, property iff g{t) can be expressed as

(1) = m (1) M,, where M; are constant matrices, my = 1, det |m{’| = 0 and
g(t) e G.

Proof. If g(t) is a motion then X(r) = g(t) X is the trajectory of X. The operator
of the k-th derivative of the trajectory of X is therefore expressed by @, = g® in
a fixed frame in A,. So the D, property also means that g(¢) satisfies the differential
equation

gty — Y ag® =0
i=1
and the statement follows.
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Definition 2. A motion g(f) = G is called an F, motion, if the trajectory of any point
lies in a subspace of dimension s and s is the least number with this property.

Remark. Each F, motion is also (locally) a D, motion for some r, where of course
s < r. A natural question to ask at this moment is how large r may be for a given s
in a given group G. For instance, we shall show later that for G = GA4,, s = 1 the
answer is | < r < n + 1. If the group G is a proper subgroup of G4, we may get
stronger results. For instance, for Euclidean motions we get for n = 3 and s = 2
that either » = 2 or the motion is a plane motion (and r=< 4). The problem of
generalization of this particular result to any n is still open (see [3]).

Definition 3. We say that the motion g(f) in G splits, if there exist nontrivial sub-
groups G, and G, of G such that G, n G, = {e}, 9,9, = g,9, for all g, € G,,
g2 € Gy and g(1) = g,(t) g,(1) with g,(t) € G, g,(1) € G, for all te 1.

Remark. The basic problem concerning Darboux motions is to describe how D,
motions split inte D, factors and to find all these factors in a given group for small r.
(For large r we are near to the general motion and the problems become complicated.)

For instance, it is known that all F, similarity motions in E; split into the product
of a plane motion with a motion in a straight line (see [4]). Only partial results are
known about splitting of F, or D, affine motions (see [5]). All non-splitting
Euclidean D, motions in E, are found in [3]. Some examples are also given below
in this paper.

We shall now investigate some other geometric properties of Darboux motions.

Definition 4. Let vy, ..., v, be vectors in A4,, let X,, ..., X, be columns of their
coordinates in some base R, = {4y, e;}, so v; = RoX,(the first coordinate of a vector

is zero and is omitted). Let | X, ..., X,
of order r of columns X, ..., X,.

Lji=1,.., (Z) denote all subdeterminants

Lemma 2. Let A be a matrix of order n. Then there exist numbers oy, such that
':
©)

Xy ooy AX s X, = Y apf Xy, o X[
k=1
for all columns X ;.
Proof. Y |X,,...,AX; ..., X[/ is a skew-symmetric r-linear function of X,.
i=1

Let f be any skew-symmetric r-linear function of vectors, let e, ..., e, be a base.
Then X; = afe,, a = 1,...,n; i =1,...,r with the summation omitted. Further,

Xy, X,) = flale,, ..., dire,) = ai' ... a} fle,,, ..., e,) =
= Y fleg,.-e,) Y sgnllai ... ay =
ay <...<ap 1

= Z f‘(ea]’-n, ear) le,'_.’Xr|¢1<‘..<a,'

) <...<da,
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Let g(¢) be a motion in G, let X € A be a fixed point. For the coordinates X of X
in the frame R we have

(3) X = —yX.
(We have X = RX and so X' = 0 = R'’X + RX' = R(yX -+ X))
If F(x, 1), i = 1,...,nis a function of n + 1 variables, denote
d_F—-(f———t//X where 6_F= ?E,,, 6F>
dy o ox Ox 0x4 ox
Lemmg 3.

n

r,
4 X', XOP = Yo () [ X, X+ XL XD, XD
i=1

Where X® denotes the k-th derivative of the trajectory of X at X.

Proof.

I

4 X, X0 = d |2.X, ..., Qx|
! dy

Il

= Zr; ‘QIX9 ey Q;X - Q,’l//X, veey gerlJ

- Z 10,X, .., Qi X — 0QX, ... QX| =

B

= QX, .., 2 X, QX[ = Y |2X, ..., 02X, ..., QX|
i=1
because Q) — Qf = Q,,.1 — ¢Q,. The statement follows now from Lemma 2.

Lemma 4. Let a system of linear differential equations (3) be given. Let F{(X, 1)
be functions of n + 1 variables and let y;{t) i,j = 1, ..., k be functions such that

d k

4 — F, = Y wF;
4 dy i,;zl s
Sor all X. Then, if a solution of (3) satisfies FX(t,), t,) = 0 at some to, the identity
F{X(t), ) = 0 holds for all t.

Proof. Throughout the proof we shall use the matrix notation, so (d/dy) F = yF.
Consider the system of ordinary differential equations Y’ = yY. Denote by f the
matrix whose columns form a fundamental system of solutions of this equations.

Then f is a regular matrix and
d , _, d d d _
—— F)=—(f YWYF+f1—F= LF+f W =0
g = U E+ST ” 5 7t
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because (d/dy) F = yF and f' = yf implies () =~/

This shows that the functions £~ 'F are the first integrals of (3). So if X(¢) is a solu-
tion of (3), we have f () F(X(1), ) = C, where C are constants. If now F(X(t,), to) =
= 0, we have C = 0 and F(X(z), t) = 0 for all 1.

Theorem 4. Let g(t) be a motion in G with the property that |X', ..., X=1, X"+
is a consequence of |X',...,XV| (|X',.., X", X(’+”|’ =Y Bi1) [X’, e X(’)|j).
Let the trajectory of any point X at some t, satisfy |X', ..., X®|" =< 0 for all i and
|X', ... X" D) + 0 for some j. Then the trajectory of X lies in a subspace of A,
of dimension r — 1.

Proof. According to Lemma 4 we have |X', ..., X”|" = 0 for the whole trajectory

r—1
of X. From the assumptions we get X = )" #,X in an interval around ¢, and the
trajectory is an r — 1 dimensional curve. ‘=!

Corollary. Let g(t) be a D, motion. Then the trajectory of any point satisfying
[X', .., XD =0 for all i at some t, and |X',...,X"" V| + 0 for some j and all
tel, lies in a subspace of dimension r — 1 and in no subspace of smaller dimension

onl.
r—1 .
Proof. We have X =Y o, X" on I with X', ..., X"~ ! linearly independent.
i=1
A similar corollary of Theorem 4 may be expressed as follows: If g{1) is a D,
motion and the r-th osculating space of the trajectory of a point X has dimension
less then r at t, and the (r — 1)-st osculating space at t, has dimension r — 1,
then at least a piece of the trajectory of X around t, is an r — 1 dimensional
curve.

Remark. From Corollary of Theorem 4 we get for instance that if a D, motion
has an instantaneous pole, then this pole remains fixed during the motion. Similarly,
D, motions have the property that any point of the set of inflextion points, which is
not a pole, has a straight trajectory.

Remark. The necessary condition from Theorem 4 is not sufficient to characterize
the D, motions in general, because there exist motions with the property that all
points of |X’, ..., X®)| = 0 have trajectories in subspaces of dimension less than r,
which are not D, motions. An example will be given later.

Similarly, the condition that |X’, ..., X®’| = 0 implies [X’, ..., X"V, X"*D| =0
does not yield that (d/dy) |X’, ..., X”| is a consequence of |X’, ..., X| as the set
|X’, ..., X®| = 0 may be empty.

The condition that [X’, ..., X\”| = 0 implies |X’, ...; XV, X** V| = 0 is a neces-
sary condition for all points of this set to have its trajectory in a subspace of dimension
less then r. In many cases this condition is also sufficient. Let for instance
|X’, ..., X®|" = 0 be given by a single equation and let the solution set have suf-
ficiently many points to determine its equation (it is an algebraic equation). This
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means that if F(X) =0 for all points of |X’,...,X®| =0 with F(X) algebraic,
then F(X) = |X',...,X"”|. G(X, 1), where G(X, ) is a polynomial in x;’s with its
coefficients being functions of t. If this is the case and |X’,..., X®| = 0 implies
| X7, XD, XD =0, we get d|dy X, ..., XV = oft) X, ..., X,

as (d/dy) |X’,...,X®| is a polynomial of degree not higher than the degree of
|X’, ..., X®| and the necessary condition becomes also sufficient.

Such situation occurs for instance for r = n,n odd and |X’,...,X®| =0 ir-
reducible.

Similarly, let M be a set given as a solution of some algebraic equations G,(X, 1) =
= 0 such that all points of M satisfy |X’, ..., X®”| = 0. Then the necessary condition
for all points of M to have trajectories in subspaces of dimension less than r is
(d/dy) G{X) = 0 on M. This condition is also sufficient, if it implies (d/dy/) G; =
= Y a;;G; for all X. Such situation occurs in the case of [X’, ..., X®| = 0 reducible.

Theorem 5. Let g(t) be a D, motion in G. Further, let X(1) be an isolated solution
of IX’, X"‘)I =0,k =2,..,r for each t, with X" 0. Then if X is not a singular
point of all conditions |X', X®| = 0, it has a siraight trajectory.

Proof. Let us denote by F{(X) = 0, i = 1,..., s all the equations |X', X®| = 0.

Then we have for the rank
( oF (X)) -,
0x;

J
because if

0<r(—a£i(X))<n,
Ox

j

it is possible to express some of the variables as functions of the others and X is not

an isolated solution. If
OF; (X) ~o0,
6x,

X is a singular point for all equations F{X) = 0. Further, we have F{X(1),1) = 0
and so

o OF; OF ;
'x’- + i
Yo oxt

i=10x;

=0.
Now
5/! X', x®| = i |2,X, 0.X| = |21X — Q¥X, QX| + |2,X, QX — QX| =
= |2,X — 00X, QX| + |2, X, Q1 X — 0QX| =
= [2,X, .X| + |2,X, Q. X| — |0Q,X, QX| — [2:X, 02,X] .
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As X" = oX" at X, we have
4 |X', X®| =0
dy

at X which means
0F; _ OF,

—! X =0.
ot axl//

Both the conditions together give
F;
OF (X' —yX)=0
O0x
and so X' = —yX.

Lemma 5. Let g(t) be a D, motion in G. Then Q,, = Y 0,,,Q2; for all m > r.
i=1

Proof. The lemma is easily proved by.induction.

Theorem 6. Let g(1) be a real analytic D, motion in G. Let for a point X € 4,
and 1l S k=r

X', XO] = X7, L, X0, X0 = XL, XD, X0 = 0

at t =ty with X9 = (g{t) X)". Then the trajectory of X lies in a subspace of
dimension less then k.

r
Proof. According to Lemma 5 we have X" = Y a?X® for m > r. Let s = 0 be

i=1
the maximal number such that [X’, ..., X®’| & 0 at #,. Then s < k. The trajectory
of the point X in the base {X, X', ..., X, Y,,,, ..., ¥,} (¥, arbitrary) will have the
following Taylor expansion (put 7, = 0):

o0 1 @0 t"l r ‘ X L @0 tm R
X(1) = X(0) + Y —X"0) " =3 —(YapXxW) =Y (Y ar—)X7,
m=1 m! m=1 m! i=1 =i \m=1 m!
where a = 67 for 1 £ m < r and X” may be expressed by X', ..., X). This proves
the statement.

Remark. In some groups all D, motions are real analytic for some r. This is always
the case when there are no arbitrary functions in the expression of a general D,
motion. Such motions are solutions of an autonomous system of differential equations
with algebraic (and therefore analytic) right hand sides and hence they are given by
analytic functions. For instance, all D, motions in E, are analytic. In the general
case, if the above mentioned arbitrary functions are analytic, the D, motion is analytic
as well. A D, motion is analytic also in the case when the functions «; in Q,.; =

r
= Y a,9; are analytic (sec Theorem 3).
i=1
The author does not know whether Theorem 6 remains valid with the analyticity
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condition removed. In the differentiable case we are able to prove only a wekaer
theorem, which is presented below.

IL.emma 6.

(-:7, |X”", ...,X“-‘)l" = Z\ lX“",...,X““*”,...,X”“'[i + ia,j[X‘i", o, XU
a=1 j=1
Proof.

d ; .
B Ix(u), '..,X('.s) i

= Z X0, (@ — ) X, X =
a=1

ﬁ:lx(ln) . .,X(ia+])’..',X(i.s)|i _ ilx(l’n)’.“’ (PX(i“),...,X‘i“)li —
a= a=1
n

i |X(n) (rm+n o, X(i")li _ iaij’X(il)’ o X(is)lj
a= j=1

according to Lemma 1.

Theorem 7. Let g{t) be a Dy motion in G. Then the points satisfying |X', X"| = 0,
[X', X" =0, X" % 0 have straight trajectories.

Proof. Denote [X', X"/ = F, | X', X" = G,,

X", X"J = H;. Then
0 )

— F; = G; + YouFy,

W

d
0A¢G’=(1+73)H + o, F; "‘Xﬁjkck’

0
— H; = —a,F; + o3H; + Y y;H,,

o
3
where Q, =) «,Q; and o, B, v are functions. If now F; = 0 and G; = 0 at
i=1
some X and X' = 0, then X" and X" are linearly dependent and so H; = 0. From
Lemma 4 we get that ]X’, X”[ = 0 around ?, and the trajectory is on a straight line.

ITI. EXAMPLES

Example 1. Let us consider an affine motion ¢(¢) in the affine plane, which is not
centroaffine. Let us suppose that the condition | X', X"| = F,(X) for g(t) is nontrivial
and that all points satisfying F,(X) = 0 have straight trajectories. We shall investigate
conditions under which g{1) is a D, motion.

A necessary condition for all points of F,(X) = 0 to have straight trajectories is
that F,(X) = 0 implies F3(X) = | X', X"| =0
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If F,(X) = 0 has infinitely many points and is not a twice counted straight line,
this condition implies that F4(X) = «(f) F,(X) and this latter condition is also suf-
ficient. The remaining cases where FZ(X) = 0 is empty, a one point set or a twice
counted straight line, must be treated separately.

Let us also remark that F,(X) = 0 contains all instantaneous poles of g(t). So if
F,(X) = 0 has only one point and the motion has a pole, the motion is a centroaffine
motion.

CaseI).

/

w=/0,0 1Y,
(07('01

where w, is a regular 2 x 2 matrix and F,(X) = 0 has at least two points and is not
a straight line. (F5(X) = 0 is nonempty as the motion has a pole.) Denote

a, = (o, 0), Q,=/0, 0.

(50 (6
Then Fy(X) = |w;x, 9, + 02|, F3(X) = |0;x, 95 + O3x|, where x = (x,, x,)T. Let
@x =y, y=(y,y)"- Then Fy(X) = |y, 9, + @r07'y| and Fy(X) =0 is
('92)1 Y1 — (92)1 Y2 + C21)’f + (sz - Cu) YiVa — Cllyg = 0 where @zwfl = (Cij);
i,j = 1,2, and similarly for F3(X). This gives 9; = a9,, O 0;"' = a@,0;"' + SE

for some functions o?), A1) and the motion is a D, motion.

If Fy(X) = 0 is a twice counted straight line, then this line passes through the
origin and so §, = 0. From (1) we get 9, = w Y, for

Y = (0, 0 )
l//0, llll

and so Y, = 0. ¢ — Y = w gives ¢, = 0 and the motion is a centroaffine motion.

If F,{X) = 0is only a straight line (quadratic terms vanish), we have ©@,w; ' = uE
and s0 ©, = uw,. Then O3 = (1* + p') w, and so F3(X) = 0 is also only a straight
line (quadratic terms vanish as well). Then we get 95 = a9,, as 9, & 0 and they must
be linearly dependent. So we may write Q; = aQ, + (u* + ¢’ — ap) 2, and the
motion is a D, motion, as F, is nontrivial (2, and Q, are linearly independent, as
9, * 0 and w, = 0).

Case II). w, is singular. Here we have two different possibilities for the Jordan
normal form of w;:

a) o, =(1,0), b) o =02, A+0.
0,0 0, 0

In these two cases we have to carry out all necessary computations. The details are
left out as uninteresting. As the result we get that if F,(X) = 0 is not empty, the
motion has the D, property. So we have

Theorem 8. Let g(1) be an affine plane motion which is not centroaffine and
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such that Fy(X) is not trivial and Fy(X) = 0 is not empty. Then if each point of
Fy(X) has a straight trajectory, g(t) has the D, property. (If w, is regular, then
Fy(X) = 0 is nonempty.)

Remark. If the assumptions of Theorem 8 are satisfied, then each point of F,(X)
has a straight trajectory iff F,(X) = 0 implies F5(X) = 0. We may also say that if
an affine but not centroaffine motion has infinitely many inflexion points of order
two at each instant, it has infinitely many straight trajectories.

Example 2. We shall describe all affine motions in A4, which have only straight
trajectories (F; motions).
Let g(r) be a motion in A4,. Let us denote

w=[0, 0\, Q,=/0,0).
Wy, 9, Q

Then g(t) has only straight trajectories if the equation |wX, @,X| = 0 is satisfied for
all X e 4,. If we write X = (1, x)T, we get |®, + w;x, $ + @x| = 0 and therefore
|wsx, @x| = 0 must be satisfied for all x.

a) Classification of vector parts
We shall find w,, © for all F,; motions with w, = 0. Let us write

w; = [w,, 0Y,
0, J

where @, is in the normal (real) Jordan form, w, is regular and J corresponds to the
eigenvalue 0. (w; can be given the normal Jordan form in a suitable moving frame.)

x=[{w;" 0\ /y\, ©/w;!, 0\ =/[4, B\.
0, E) \z 0, E C, D

‘We have to solve the equations

Let us denote

‘ y, Ay + Bz| =0 forally,z.

Jz, Cy + Dz

Let us use the indices i, j for y and «, § for z.

First, let rank r(w,) > 1 (this condition implies that if deg w, = 0, then deg J > 2
and if deg w, = 1, deg J > 1). The case r(w,) = 1 will be discussed separately.

i) Deg w, = 1. Consider the subdeterminant

V1> A11y1 + Bypzp| =0 with g =0 or 1.

EqZa+ 1> Calyl + Daﬂzﬁ

Car¥i = €B1pZas12p + Dygy12p — A11V18241 = 0.

We may suppose ¢; = 1, because {J) = 1 and so C,1 = By, = 0.
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ii) Deg w, = 2. From

V1> Ay + Bipzg

=0 weget yz,By, — Bypzpy, =0
Vo Agiy; + By,z,

and so B;, = 0.

From | ys AiYi

=0 weget C,yy;=0 and C,;=0.
EaZa+ 1> Caiyj + Daﬁzﬁ

So we always have B =0, C = 0.

Lemma 7. Let A be regular, ly, Ay‘ = 0 for all y. Then A = JE.
Proof. Consider
Vio Auyi| =0

Vi Ajlyl

for i = j.

It remains to prove that D = 1J. We have to consider separate cases similarly as
above.

i) deg w, = 0. Then deg J > 2, r(J) = 2 and hence J has at least two nonzero
elements; so, let J;, = land J, ., , = 1 for some « > 1. Then

Z2, Dypzg
Zz+ 1> Dayzy

=0’

which is D,,z5z, — DypZ+125 = 0. Because z,z, = Zy+12g oOnly if f =2 and
Y=o+ 1, we get

D,, =0fory =+ a+ 1, Dig=0for f % 2and D, ., = D,,. If J has only zero’s
in the a-th row, we get

Z2,s D1222 = DaﬂZZZ,B =0 and Daﬂ =0 forall ﬂ .
0, Dypzg .

ii) deg w, = 1. Then
V1 Ay1 = yl(Daﬂzﬂ — AeuZas 1) =0

€,2,+1> DagZp
and so D,, = 2,00, , and D = 1J.
This shows that the vector part of Q, satisfies the D; condition.
b) Solution for the translation part

Let us write w, = (a, b)" similarly as in a). We may suppose that a = 0 in a suitable
moving frame. So we have to discuss two cases:

i) wo # 0. Then 9 = pw, for some y, as |wo, 9| = 0.

1) deg w, = 1. Then ,
V1> Ay = baYI(l - l‘) =0
|£aza:+1ban sulza+1 + Hbz

and b, + 0 for some o.
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2) deg w, = 0. Then
z, + by, Az, + ub, =0, a>1,
8yZq+1 T ba’ ealza-rl + “ba
gives b(A — p) = 0 and bye,(l — p) = 0.

As deg J > 2, r(J) = 2, we have either b, # 0 for some « > | or b; + 0 and
¢, = 1 for suitable a. So 4 = p.

ii) @, = 0. In a similar way as in i) we get § = 0.

Theorem 9. Let g(t) be an affine motion with only straight trajectories, such that
the rank r{w,) > 1. Then it is a D, motion.

¢) Cases when g(7) is not a D; motion

i) deg w, = 1. Then

o= /[0, 0,0\, Q,=/0, 0, 0 \,
0, 1,0 a, A, B,
@,, 0, 0, b,, C,, Dy
1y, Ay + Bz, +a | =Cy*+ D,syzs + y(b1 — Aw,) — B,w,z, — aw, = 0

Ewa, C,y + Dyzp + b, |

andso C =0, D = 0. If w, + 0 for some o, we get B=0,a =0, b = Aw, and the
motion has the D, property. So w, = 0 and b, = 0.

In a suitable moving frame we have
n=/0, 0, 0 and Q,=1/2/ 0, 0, 0

bly 07 b12 _bl’ 27 _b12
0, by, O 0, by, O

and therefore b,; = 0. The matrix of the motion can be written in the form

(5) g(1)= (1, 0,0, 0\, i=2,..,k, wheref;, j=1,...,k are
fl’ L fi’O
0, 0, E, 0
0, 0,0, E

arbitrary functions. If W(1, t, f;) * 0, g(¢) has the property Dy, where k < n.

ii) deg w, = 0. Then deg J = 2. Computations similar as in i) show that the only
possibility is

w= 10,000, 75=/0, 000\,
0,0, 1,0 0, 0,0,0
0,0, 0,0 by, 0, 0, bys
0,0,0,0 0, 0,0,0
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where b,; is a row of n — 2 elements;

(6)  gly=/1, 0,0,0\, i=2...k—1 andf;, j=1,....k—1
f15 13 L fi
0, 0,1,0
0, 0,0, E

are arbitrary functions. If W(1,¢,f;) + 0, g(1) has the property D,,,, where k <
<n-1.

Theorem 10. Let g(t) be an affine motion with only straight trajectories and
rank Hw,) = 1. Then g(t) is a D, motion with k < n + 1. All such motions for
k > 1 are given by (5) and (6).

d) Classification of D, motions

Now we shall describe all affine D, motions. They are motions for which Q, = aQ,
for some function «(r). This means that for each trajectory we have X" = off) X'
If we change the parameter 1, t = {s), we get

2 2 2 2 2
Ei_%(..;-x'g’ (}_z(__:X” g) +X’g,l= o g_t +Ej_l X',
ds ds  ds? ds ds? ds ds?
So we may always choose the parameter in such a way that Q, = 0. Such a parameter
is determined up to a linear transformation, t = as + b.

Further, let g(f) be a D, affine motion, g() (Ro) = R, ¢(t) = R(f). 1f we take
a special moving frame (R,, R(1)) of g(1), we get Q, = g™ 'g’, Q, = g~ 'g” and the
equation 2, = 0 means that the D; motions satisfy the equation g” = 0. So each D,
affine motion g(f) can be expressed as follows:

g(t) = (1, 0
Aot + By, At + B

where A, B are constant n x n matrices, Ay, B, are constant columns. We may
further suppose that g(0) = e and so B, = 0 and B = E. Motions equivalent to g(r)
are now g(1) = y~ ' g(t) y, y € GA,. Let

Aot, At + E V1> V2
Then

(7) Ay =7 (4o + AV1) , A= 3 Ay, .

This shows that we can take A in the real Jordan form and 4, = 0 for A regular.
This proves the following theorem:

Theorem 11. Each affine D, motion can be written as a product g(t) =
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= gi(ast + by) ... g{ag + by), where a; % 0 and gi(7) is one of the following:

o ol = ((]) ?T + 1)E + 1J>,
b) g{7) = <1, 0 )

0, (ar + 1) E + 1F + G

¢) gf{t)=(1, 0 ,
atT, E + tJ

where F and G are of even degree, v € R and J = (0,41 p)s
F = Diag (0, =1\, G = (8,424, T=(6,1)
1, O
and we have to use a suitable embedding of GA,, into GA,:
1, 0\- /1,0, 0,0
t, g 0, E, 0,0
t, 0, g,0
0,0, 0, E
Proof. Theorem 11 follows from (7) and the real Jordan forms of n x n matrices.
Example 3. In this example we would like to show how the first part of the paper
may be used in a more specific situation. We shall discuss the problem of straight

trajectories in similarity plane kinematics in the light of theorems of Section 1.
Let us use the complex coordinate z = x + iy in E,. The similarity group G is

then given by matrices
g={(1, 01},
(5. )
where z,,2,€C, z, = 0.
The matrix @ can be given the form

w={0,0)\,
0, a

where we suppose « + 0. Then « represents a regular matrix and from Example 2 we
know that there is only one F, motion (which is D, at the same time). It preserves
a point and may be expressed by the matrix

gt)=(1,0
0, 1+ At
with AeC, A # 0.

All the other motions with a fixed point are D, motions (they depend on two functions
only) and they have no straight trajectory. So we may further suppose, that the
motion has no fixed point. Let us call such motion simply a proper similarity motion.
Then we have the following situation:
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a) There are not proper F,; or D, similarity motions.

b) A proper similarity motion is a D, motion iff it has infinitely many straight
trajectories. (It is known that if a similarity motion has two straight trajectories, it
has infinitely many.) So if a similarity motion has two straight trajectories, then all
trajectories are affinely equivalent.

¢) A proper similarity motion is a D; motion iff it has one straight trajectory.

To prove this statements, we have to introduce some more facts from plane simi-
larity kinematics.

We may choose the parameter t and the moving frame in such a way that

w=,1,01Y\, ¢=/0,0\, ¢¥=/0 0\,
0, e’ 1, » 1, &%

where x — % = ¢'/, and B, x = x, + ix, are invariants of the motion. Using (1) we
compute

Q=w, Q= 0, 0 >
—e'f, &2 1 ipelf

Q,

li

(—& + 2if’) e — e*F, 2“ + 3ip'e*? + ip” — (B')? e“’)'

From the formula F, = |X’, X"| = Im (X' . X”) and similarly for F5 we get

Fy=(p +sinp) (x> + y*) + y,

Fy = (sin2f + 3p cos B+ ') (x* + y?) — x{(%, + sin p + 2B') + y(cos B + x,).
Using now the results from Example 1, we see that if F, = 0 implies F; = 0, then

the motion is a D, motion, as F, is always nontrivial. As the instantaneous pole

cannot have straight trajectory, the existence of two points with straight trajectories
implies that F, = 0 and F; = 0 coincide.

Let now F, = 0 and F; = 0 be different. Then they have two common points.
(We may suppose that x, + sin f + 28’ =+ 0, because %, + sin  + 2" = 0 for D;
motions leads to a D, motion.) The common point different from the origin can
have a straight trajectory only if F,(X) =0 and Fs(X) =0 implies F,(X) =
= |X', X®| = 0. As all the three of them pass through the origin, we get F, =
= o3F5 + a,F, for some functions o,(f) and a3(f). We shall show that this implies

3

Q, =Y 2,2, To show it, we shall use real coordinates x and y in the plane and write

i=1
X =(0,0\/1), @& =(0, 0\, i=234.
0, @y X 9,‘, @i‘

fY=wX,Y= (x, y)T, we get
Fi=1Y%9,+ 007" Y=(x* + y*)d; + xb; — ay,
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with

07! =(c;, —d;\, i =(a\ for i=234.
d; C; b;

So F, = a3F4 + 0,F, implies @07 = a;0,0;" + 0,0,07 " + a,E for some
3

function «,(f) and 9, = 2395 + a,9,. This gives O, = 3 2,0, and therefore Q, =
3 i=1

=) 0,2, We complete the proof by applying Theorem 7.
=1
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