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Czechoslovak Mathematical Journal, 35 (110) 1985, Praha 

A NON ABSOLUTELY CONVERGENT INTEGRAL 
WHICH ADMITS TRANSFORMATION AND CAN BE USED 

FOR INTEGRATION ON MANIFOLDS 

JiRf JARNIK and JAROSLAV KURZWEIL, Praha 

(Received January 10, 1984) 

' ' Which is the most profound and most difficult mathematical 
theorem that admits a concrete and unquestionable physical 
interpretation? 
For me, Stokes^ theorem is the number one candidate..." 

R. Thom, in: La Science malgré tout, Encyclopaedia Univer­
salis Organum, p. 7 

0. INTRODUCTION 

J. Mawhin in [l] introduced the notion of the generalized Perron integral (GP-
integral) in the n-dimensional Euchdean space R", using a Riemann-type definition 
but restricting the class of "admissible" partitions of the domain of integration. 
He proved that the divergence theorem holds for the GP-integral for any diflferentiable 
function provided the integration domain is an interval. Modifying his results 
a little, we can assert the following two properties of the GP-integral: 

L Let L = [öĵ , bj] X [«2, ^2] X ... X [a,„ b„] с jR", L^ = [«2? ^2] x ... 
••• X K , b j ciR!'-\ let g:L-^R^ be diflferentiable on L, Then dgjdx^ is GP-
integrable on L and 

(GP) - — d x = réf(bi,X2, ...,x„) - 0̂ (0̂ 1, X2,... ,xJ]dx2...dx„ . 

л ... л dx„ then 

(GP) j dcü = j 
J L JÔÏ 

2. If, moreover, со = g dx2 л ... л dx„ then 

CO , 

JdL 

where ôL stands for the boundary of L. 

On the other hand, the GP-integral has some not so nice properties. Firstly, it is 
not additive with respect to the integration domain, in the following sense: 
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If Ü, Û Cl i?", n ^ 2, are compact non-overlapping intervais, 
interval, f: L-^ R^ GP-integrable on L', i = 1, 2, then / need not be GP-integrable 
on L(for a counterexample, see [2]). 

Secondly, the GP-integral (like the Perron integral) strongly depends on the co­
ordinate system, so that no comprehensive transformation theorem is available. 
For example, i f / i s GP-integrable and ф is a rotation of the coordinate system, then 
fo(p = h need not be GP-integrable. (Cf. [З], 11.4 w i t h / = Q 

The first disadvantage was removed in [2] by modifying the class of admissible 
partitions (moreover, a dominated convergence theorem was established). The other 
drawback was dealt with in [4] for n ~ 2. 

In the present paper we give a definition of an integral in R'' based on partition of 
unity. We shall establish a transformation theorem and a divergence theorem. Further, 
we shall prove that the integral is an extension of the Lebesgue integral. Since the 
divergence theorem implies that partial derivatives of differentiable functions are 
integrable, our integral exists for some non absolutely integrable functions, thus 
being a true extension of the Lebesgue integral. As concerns the relationship between 
our and the Perron integral, let us mention that a partial derivative of a differentiable 
function need not be Perron integrable, while the function ( from [3], 11.4 is Perron 
integrable but our integral of ^ does not exist. 

1. PU-PARTITIONS 

Let R' denote the n-dimensional EucHdean space, R^ = R, R^ = (0, +oo). For 
M cz R", the symbols CI M, Int M, дМ stand for the closure, interior and boundary 
of M, respectively. If M is Lebesgue measurable, then m„{M) denotes its fi-dimensional 
measure (the index is omitted if there is no danger of misunderstanding). If y e R", 
r > 0, we denote 

diam M = sup {||y — x|| ; x, j ; e M) , 

dist(y, M) = inf{||>; - x||; XEM} , 

B{y,r) = {xeR"; \\y ~ x\\ < r] , 

Q{M, r) = {x e R"; dist (x, M) < r} . 

For a function f: M -^ R V^Q denote 

s u p p / = CI {x e R ' ; / (x ) Ф 0} 

(the support o f / ) . Any function ô: M -^ R^ is called a gauge (on M). 

Definition 1.1. Let M cz R" be bounded. A family 

(1.1) A ={{t\Sj);j= 1 , . . . , ^ } , 

where fc is a positive integer, t-' e M, Sf-. R" -> [O, 1] are C^ functions with compact 
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supports, 

(1.2) 

(1.3) 

O ^ X ^ J W ^ I for xeR", 
y = i 

Int (x 6 R", ^ 9j{x) = 1} =) Cl M 
j=i 

is called a PU-partition of M (the letters PU stand for "partition of unity"). 
If ^ is a gauge on M, then a PU-partition ( l . l ) of M is said to be S-fine if 

(1.4) supp &j cz B{tJ, ô{tJ)) , j =l,...,k. 

For any PU-partition ( l . l ) of M we define 

139,. 
(1.5) 1(А) 

к 

= E 
y = i J 

I^- ' IE ÔX: 
dx . 

(Notice that in fact we integrate over supp Sj. In similar situations we shall often 
omit the index indicating the integration domain.) 

Proposition 1.1. Let M a R" be compact. Then there exists К > 0 such that for 
every gauge ô on M there is a ô-fine PU-partition A of M with l(A) S К. 

Proof. Let us introduce an auxiliary function co:R-^R of class C°° suchthat 
œ{s) = О for s g — 1 , o){s) = 1 for s ^ 1, dco/ds ^ 0, œ{ — s) + co(s) = 1 for s G Ä. 
Set 

5̂ — a\ fb — s^ 
(1.6) K,b,a{^) = CO CO 

provided a < b. If J = [a^, Ь J x .. . x [a„, b j is a compact «-dimensional 
interval, put „ 

where xeR'^, x = (x^, ...,x„). Then we have, for te J: • ^ 

lim X ^Xj,a 

dX; 
dx 

J ÔJ 

t\\ dS„_i S diam J mn-i{dJ) . 

Let us proceed to the proof proper of our proposition. Let / с i?" be a compact 
interval, M cz In t / . Given a, gauge ô on M, we can put ô(x) = ^dis t (x , M) for 
X eI\M, thus extending ô to the whole of/. It was shown in [2] that there exists 
KQ > 0 (generally depending on / ) such that for every gauge ÔQ on / there is a <5o-fine 
P-partition П (i.e. a family П = {(t\ J^'); j = 1 , , . . , fc) such that J^ are compact 

к 
intervals, t^ e J\ JJ с B{t\ ôo{t'))) with 2;о(Я) = ^ diam J'' m„^^{dJJ) g i^o- (Such 

i = i 
a P-partition is constructed by repeatedly halving the edges of / , thus obtaining --
after a finite number of steps — subintervals with the required properties. For 
a more precise result see Lemma 6.1 belov/.) 
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For the given gauge ô (extended to / in the way mentioned above) construct 
a (^/2)-fine P-partition Я = {{t\ JJ); 7 = 1, ..., /c] with 1о{П) ^ KQ. Then 

^ ={{t'\Xjj,.);j = l , . . . , /c , tJeM} 

is a PU-partition of M if a is sufficiently small; moreover, it is (5-fine provided 
СГ g I min {S(t^); j = 1 , . . . , k}. If we take a so small that 

X - t-' /II \^y^J'\<^ 

R" dX; 
dx S diam J^' m„_^(ôJ-^') + - , 

к 
we obtain 

I{A) й E diam J'm,^^{dJ') + - ^ i^o + 1 . 

Moreover, the PU-partition A fulfils ^ Z/̂ ,cr(-̂ ) = ^ f̂ ^ -̂  ̂  ^"s which proves our 
proposition. •'"^ 

R e m a r k 1.1. It is clear from the above proof that the constant i^ from the proposi­
tion can be chosen the same for all sets M which are subsets of a fixed compact 
interval. 

2. DEFINITION AND ELEMENTARY PROPERTIES OF THE PU-INTEGRAL 

Definition 2.1. Let / : i?" -> i? be a function with compact support. For a PU-
partition Л of s u p p / defined by (1.1) put 

(2.1) â / x ) dx . 

Let y eR satisfy the following condition: 
for every e > 0, К > 0 there is a gauge ô on s u p p / such that 

(2.2) |7 - S(/ , A)\ ^ 8 

provided zl is a (5-fine PU-partition of s u p p / with l(A) ^ K. 

T h e n / i s said to be PU-integrable and we write 

(2.3) y ̂  (PU) f/(x) dx ; 

y is called the PU-integral of f. 

R e m a r k 2.1. The above definition is a modification of the definitions of the 
Riemann and Perron integrals (cf. [3]). If we delete the requirement on l{Ä) and also 
that on the smoothness of the functions 5^, then, taking öj to be the characteristic 
functions of (semiclosed) intervals J^ = {a\ b-'] = (a{, b{] x .. . x {al, ЬД and 
assuming t^ e CI J\ we obtain the Perron integral. If, moreover, we admit only 
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constant gauges 5, we arrive at the Riemann integral. (Evidently, S{f, Л) = 

Let us notice that the PU-integral has the elementary properties usually required 
of the concept of an integral, namely, monotonicity and linearity. Monotonicity is 
immediately seen from the definition if we observe that for a nonnegative function 
the integral sums, and hence also the integral itself, are nonnegative. The property 
of hnearity can be formulated as follows: If/^ri?" ->i2 are PU-integrable, CieRy 
i ~ 1,2, then / : x h-̂  Cifi(x) + Ci/aW ^̂  PU-integrable and 

(PU) f /dx = c, (PU) Гл àx + C2 (PU) Гл dx. 

Indeed, it is evident that if/̂  is PU-integrable and CIGR, then cj, is PU-integrable 
and 

(PU)jc, / ,dx = Ci(PU) / , d x . 

The additivity of the PU-integral immediately follows from an alternative equivalent 
definition of the PU-integral: 

Definition 2.2. Let / be a compact interval in R", let / : i?" -> R, supp/ с /. Let 
ye J? satisfy the following condition: 

for every e > 0, К > 0 there is a gauge ô on I such that (2.2) holds provided A 
is a <5-fine PU-partition of/ with l[A) ^ K. 

Then/is said to be PUI-integrable^ y is its PUI-integral and we write 

(PUI)f/dx. 

Theorem 2.1. Let f: R'^ -> i? have a compact support, let I cz R" be a compact 
interval, I з supp/. Then f is PU-integrable if and only if it is PUI-integrable; 
the identity 

(2.4) (PU) f /dx = (PUI) f /dx 

holds provided one of the integrals exists. 
Proof. L Let/be PU-integrable, e > 0, K> 0. Find a gauge è on supp/such that 

S(/,zl)-(PU)J / d x ^ e 

whenever J is a (5-fine PU-partition of supp/ with l{A) ^ K, Let dçy be a gauge on / 
satisfying 

(i) 8^{x) = й(х) for X G supp/; 
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(ii) ôo{x) = i dist (x, supp/ ) for xel\ supp/ . Let 

Ao -{(т^Су); J = 1, . . .Д} 

be a ^o-fii^^ PU-partition of/ with I{AQ) ^ iC and denote 

ß = ( j ; T^'esupp/} , 

^ = { ( T ^ O ) ; J ^ Ô } . 

It follows from (ii) that z1 is a PU-partition of s u p p / (in particular, ^ Cĵ -"̂ ) = 1 

for X e 0(supp/ , ^) n {x; ̂  ^X-̂ ) = 1} where r} = min Ц dist (т-'', supp/ ) ; j = 

= 1, ...,kj Ф Q]). Further, (i) implies that A is ^-fine and, finally, 1(A) ^ ^(А^) g 
g К. Evidently, 

S(/, Jo) = 5(/, J) , 
which proves that (PUI) J / dx exists and (2.4) holds. 

2. Let / be PUI-integrable, г > 0, i^ > 0. Find a gauge ô on I such that 

(2.5) 5(/;zi)-(pui)f/dx < s 

for every (5-fine PU-partition A of / with l(A) ^ К + KQ + 1, where i^o is such 
a constant that for any gauge ô on / there exists a 5-fine PU-partition Л̂  of / with 
1(1) ^ Xo (cf. Proposition LI). Let 

A ={{tJ,&^);j = {,..., k] 

be a (5-fine (more precisely, ô\^^,ppf-une) PU-partition of s u p p / with l(A) S К, 
к 

and set i9(x) = ^ ,9/x) for x ei?". Then S: R" -> [O, 1] is of class C\ has a compact 
i = i 

support, Int {x; ̂ (x) = 1] => s u p p / and |^.9/^x^| g С for / = ! , . . . , « , where 
С > 0 is a constant. 

Let (5* be a gauge on / fulfilling 
(i) ^*(x) S c5(x) for X G / ; 

(ii) Б(х, 2^*(x)) с Int {x; 5(x) == 1} for x G sUpp/; 
(iii) 5*(x) g [2...(/) Си]-^ for X G / ; 
(iv) m{ и Б(х, й*(х))) ^ 2...(/). 

Let Z =: {(T^ Ci); i = U ... , 4 be a ^*-fine PU-partition of/ with r(Z) ^ /^o- P^it 

J* = J u {(T'-, Ц1 - % /. = !,. . . ,5}. 

Then, as a consequence of the identity ^ C,(x) = 1 that holds in a neighbourhood 
1= 1 

of/, zl* is a (5-fine PU-partition of/ since 

Z -9;W + i (1 - 9W) C,W = 9(x) + (1 - 9(x.)) t C.(x) 
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for xeR". (ii) implies that Ci(x)(l - 9(x)) = 0 for xeR" if T;6SUPP.A SO thai 

(2.6) S{f,A*) = S{f,A). 
Moreover, 

д I{A*) = I{Ä) + X 11̂  - 1̂1Z 

^ i{A) + x{z) + 5: 

dxi 
[(l-.9(x))C,.(x)] dx й 

dxi 
dx , 

Each summand in the last term is integrated over supp C; cz В{т\ (5*(т')), hence 
)|x - T'II S [ 2 Ц / ) С П ] ~ ^ by (iii). Using, moreover, the estimate |â /̂ 3x |̂ ^ С we 
obtain 

Щх) 
z 11'̂ --'11 ax) X c'Xj 

dx < z 
2 ;̂;г(/) / - 1 J 

C,(x) dx = 

^ • f Y Г..Г - — I T Ci(̂ ') dx . 

s 

Taking into account that ^ C,(x) ^ 1 for x e R\ we conclude by virtue of (iv) that 

2X̂ 1*) ^K + KQ + \. Hence 
|5( / , J*)~(PUI) f/dxl ^ e 

so that (2.6) implies (2.5). Our theorem is proved. 

3. TRANSFORMATION THEOREM 

Theorem 3.1. Let f\ R" -> R with a compact support be PU-integrable, let G с i?" 
be an open bounded set. Let ф: G -> Ф{G) be a C^-diffeomorphism, supp/ с i//(G). 

Then (/o î ) |det Di//| is PU-integrable and 

(3.1) (PU) / d x = (PU) /{ф{у)) |det D ф{у)\ dy 

Proof proceeds analogously to that of Theorem 1, [4]. Let e > 0, X > 0. Let 
с I, Cj be positive constants to be fixed later. Find a gauge Ô' on supp/ such that for 
every 5'-fine PU-partition A' of supp/ with l{A') ^ X' = Kc-^ we have 

(3.2) |(PU) f/(x) dx - S(/, A')\ < -\г . 

Further, find a gauge д on supp/° Ф ~ i/'"'^(supp/) such that 

(3.3) ф{В{у, ô{y))) с В{ф{у), оЩу))), 
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(3.4) |det D ф{г]) - det D ф{у)\ ^ 
2Ф-^-\ту))\г 

(3.5) \\ф{п) - Ф{у)\\ й (1 + \\Оф{у)\\) \\rj - у\\ 

for у,г]е supp /o ф, Y] G В{у, è{y)). 
Now let Л = {(У, Cj); j = Ij ••., k] be a ^-fine PU-partition of supp /o ф with 

i;(z1) ^ K. Without loss of generality we may suppose supp Cj ^ G. Put x̂ ' = ф{у^'), 
Sj = С]оф'К Then 

zl' = {(x^^, .) ' J = 1 - - Д } 
is a <5'-fine PU-partition of supp/ . Indeed, denote 

Z = {yeR^; iCj{y) = 1} , 6> = {xGÄ"; Е Э Д = 1} . 

Then 6> = ф(Х) since ^^ = Cj °Ф~^' Moreover, since Int Z з supp /o i/̂  and i/̂  is 
a diffeomorphism, we have 

Int 0 ^ i/^(supp/o i//) = s u p p / . 

Secondly, we have to prove supp Sj с В{х\ ö'ix^)). But if x G supp Sj then 
ï/^~^(x) G supp Çj, that is, ф~^{х) e B(y\ ô{y•'')), and hence, in virtue of (3.3), 
хеф{В{у\о{у'')) с: Б(1/^(У), о'{ф{у^))) = B{xJ,ô'{^'))- Finally, for 1{Л') we have 

j = i 
1 И = 1 |х.-х^Е 

3X( 
dx < 

50 # ; 

\ф{у) - ф{уЩ |det D ф{у)\ t 

det D ф{у)\ dy ^ 

sys 

where с is a positive constant. By (3.5) we obtain 

I{A') й с max [1 + | D ф{уЩ'] sup {jdet D ф{у)\; у e Go] 

• i \ Wy-fwt 
J = I J R . . V = 1 

50 
5y. 

dy 

- Kc max [1 + | ö ^(У)| |] sup {|det D ф{у)\; у e Go} , 
к 

where Go = U ŝ P̂P ŷ ^ G is a compact set. 

Thus, choosing 

c, - с max [1 + \\Оф{у'')\\] sup {|det D ф{у)\; у e Go} , 
j 

we have l{A') й ^^i =^ K'. 
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Now we have to estimate the difference 

(PU) \f{x) dx - S{fo\l/\det Пф\, Л) 

(PU) ГДх) dx - S(/, А')\ + |S(/, А') - S(/o ip\ det Вф\, A)\ й 

uis + \S{f, A') - S{fo .A|det Вф\, A)\ 

(cf. (3.2)). The last term is estimated as follows: 

|S(/,zl')-S(/oV'|detZ)iA|,^)| = 

= I i \f{^') f 4^) ax - m/)) |det D xP{yJ)\ [ ф) dyl й 

^ i | / И | I [ 4^) ax - |det 0.ф{^)\ ! Cj{y) dy\ й 

^ E 1/И1 I [ ЧФ{У)) |det ß (̂y)! - Ф) |det D ^(У) |dj;| й 

^ E | / И | f 0(y) |det D ф{у) - det D ф{у^)\ dy ^ 

i=l 2C2[1 + |/(X^)|] JK" i^ljR" 

(cf. (3.4)). By choosing the constant C2 suitably (notice that 0 ^ I] C/j) ^ 1 ^^^ ^^ 

have assumed supp Cj c; G for j = 1,..., /c) we conclude that the estimated dif­
ference is less than -J-e. Consequently, 

(PU) f/(x) dx - S(/o i/̂ |det i)i//|, A < s. 

which proves (3.1). 

4. STOKES' THEOREM 

Theorem 4.1. LetgiR" ~^R with a compact support have the differential Dg at every 
X ei?". Put fp = dgjdXp, p = 1,..., n. Then fp is PU-integrable and 

(4.1) (PU) Adx = o. 

Proof. Let £ > 0, iC > 0. For every tsR" find ô{î) > 0 such that 

(4.2) 
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for xEB{t,ô{t))- Then ô:t^ô{t) is a gauge on R" Let (1.1) be a 5-fine PU-
partition of supp g with l{A) S К. Denote 

(4.3) q^{x) = g{t) + Dg{t){x--t)^ 

Then 
09^ 
dx„ 

dx < 8 

since I(i1) ^ X. Further, since ^ 9j{x) = 1 for x e supp g, we have 

fc 

J=4 ^^p 
hence 

(4.4) < г . 

On the other hand, integration by parts (with respect to Xp) yields 

(4.5) Г q,j{x) ^ (x) dx, = - . 1 ^ (rO f ^ / x ) d x , , 
JR à^p ^^p JR 

hence 

(4.6) [q,j{x) ^ (x) dx = - 1 ^ (r^ f ^Xx) dx . 
J ^^p S^p J 

Combining (4.4) and (4.6) we conclude 

im ̂ 4-) dx us, 

which proves (4.1). 

Corollary. / / g,fp satisfy the assumptions of Theorem 4.1 and h:R"-^R is of 
class C^, then (PU) J/i /pdx exists, p = 1, . . . , п.. 

Proof. By Theorem 4.1 we have 

0 = (PU) 
дх, 

(hg) dx = 
dh^ 
dx. 

gdx + (PU) f /i/pdx 

and the first integral on the right hand side exists since the integrand is continuous. 

Theorem 4.2. Let g:R"-^R with a compact support have the differential Dg at every 
X e R'\ Put again fp = dgjdXp, p = 1 , . . . , n, and 

x w = { ; 1 for Xi è 0 , 
for Xi < 0 
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[of course we write x = (x^, . . . , x„)for x ei?"). Then 

( P U ) f / / ^ d x = 0 for p = 2 , . . . , n , 

(PU) f z z/ i dx = - 0̂ (0, X2, . . . ,x„)dx2. . .dx„ . 
Rn-

Proof. We proceed similarly as in the proof of Theorem 4.1. Let 0 < e < 1, 
iC > 0, ^ > 1, supp g a B(0, Q — 1). Let ô: R" -^ R^ be a gauge found in the same 
way as above so that (4.2) holds. Moreover, let us suppose that ô{t) ^ |^i|/2 provided 
t = (^1, . . . , t„), ti Ф 0, and that the following condition holds: 

(4.7) Let r e supp ^, t = (0, Ẑ , •••, 0 - ^^ ^^^x {j/^,(0|; p = 1, 2 , . . . , n] ^ 1, then 

^(r) ^ 2-^e(2^)-"^i ; if 2"^-^ < max{|/p(r)|; p = 1, 2 , . . . , n} g 2 ^ m = 

= 1,2,.. . , then (5(r)^ 2-2'"-^ г(2^)"" + \ 

Let (1.1) be a ^-fine PU-partition of supp ^ with 1{Ä) ^ K. Let us denote ß+ = 
= ( j ; t[ > 0), Ô0 = {;•; ti = 0] , ô = Ô+ u So. Then 

In the same way as in the proof of Theorem 4.1 we establish an estimate analogous 
to (4.4), namely. 

(4.8) 
JeQ 

yq^j —'- dx 
dXp 

< 8, 

И p ^ 1, we integrate by parts with respect to x ,̂, thus obtaining (4.6), which yields 

Since x^j = ^j-for j e ß + , we have 

% / p , ^ ) - Z / p ( ^ O f yßjax-^Upit^'){ ( 1 - Z ) 5 , c i x , 

SO that 

(4.9) %/p.^)^e + Z № ) | [ 5.d^-

In order to estimate the sum on the right hand side, put 

Ô0O = и e ßo; max {\fp{t'}\; p = 1, 2 , . . . , n} ^ 1} , 

Qom = {j 6 ôo; 2"-» < max {|/Д<^)|; p = 1, 2 , . . . , «} ^ г-"} , m = 1, 2 , . . . 
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Since 
о s s Цх) s 1 , 

JeQon 

supp X; ^j ^ l-l-^"^-^ S{2Q)-"-'^,2--"'-^ £{2дУ"''] x 
jeQom 

X 1-Q,Q] X . . . X i~Q,Q] ciR\ 
we have 

^ > 
л 00 л 00 

^ 1/ДгО| ^y dx â I 2- X h d^ â I 2'". 2-^-"- ' e (2e ) -^ ^ (2e)"- ' =-

which together with (4.9) yields 

\S{yJ,.A)\ ^ 2 e . 

If p = 1, integration by parts yields again 

y{x) q,j{x) -~^ (x) dxj = - / i ( / . ) ^ / x ) dxi 
J R ^ '̂1 J i? 

if; e 0+ (recall that è{î^) ^ |г{|/2 in this case), and 

X{x) q,j{x) --^ (x) dxi = 
J R ^^1 

= - q,j{ù, X2,..., x„) 0 /0 , X2, ..., x„) -/,(r-' ') x(^) H^) ^^i 
J R 

if ; e QQ. This yields 

= - E z(x)M^)'-4^)dx + E/,(f.) (i--x)3,dx 
J^QjRn Ox I JeQo J ЦП 

) dx2 ... dx„ . 
J^QojRn-l 

By (4.8), (4.2) and (4.3) we obtain 

(4.10) \s{xUA)+ f ^ (0 ,X2, . . . ,x„)dx2 . . .dxJ g 

+ ^ ( 0 , X 2 , . . . , x , ) d x 2 . . . d x „ - ^ (?,i(0,X2,...,x„)aX0,X2,...,x„)dx2...dx, 
\jRn-i JeQo J Rn-I 

In the same way as the sum on the right hand side of (4.9) was estimated we obtain 
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that 

JeQo 
Sj dx ^ e. 

We still have to estimate the last term on the right hand side of (4.10). 

Since YJ ^ X ^ ' 2̂> • • •> ^n) = 1 for (0, ^ 2 , . . . , x„) G supp g, we have 
JeQo 

0 (̂0, X2, . . . ,x„)dx2. . .dx„ = ^ ôf(0,X2,...,^>,)'9X0,X2,...,xJdx2...dx„. 

It follows from (4.7) that max {ô{t-^); j e QQ] ^ 2~^ е{2д)~"^^ and that |x j < t̂  for 
; = 2, 3 , . . . , n provided ^ ö/O, X2,..., x„) > 0. Therefore 

jeQo 

... dx„ -6^(0, X2, . . . , x „ ) d ^ 

- Z ^ti(0> ^ъ . - , л:,,) 9y(0, ^ 2 , . . . , x„) dx2 .. . dx„ 
ieQo J Я" - 1 

1 (̂0, X2, ..., x„) - qtj{0, X2,..., x„)| ^ / 0 , X2,..., x„) dx2 ... dx„ g 

^ Z -^ 11(0' ̂ 2. • • •. /̂1) - ^'IHXO' X2,... , x„) dx2 ... dx„ й 

^ - i max {5((0; 7 e So] [ I 9 /0 , x^, . . . , x„) dx , . . . dx„ й 

g - 2-2 e(2ß)-" + i (2e)"- ' = e2(4K)-i . , -

This completes the proof of Theorem 4.2. 

Let N be an n-manifold of class C^ (without boundary or with a boundary dN). 
Let {(С/я, /гя); л G Л} be а system of charts. Put V^ = hjjj;^) с i?". It may be assumed 
that for Я G Л one of the following conditions is fulfilled: 

(4.11) , 7я is open in R" ; 

(4.12) Кя is relatively open in the half-space [xeR"; x^ ^ 0 ] , the points x = 

= (0, X2,.. . , x„) G V^ being images of points of the boundary dN. 

Let (̂  be a p-form on iV. For Я G Л let us represent (/гя)* ^ in the form 

i i < i 2 < . . . < t p 

<̂  is called differentiable if a-f .̂..,i is differentiable onУя for all Я, i^,..., /p. Assume 
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that ^ is an n-form with a compact support. Let the following conditions be fulfilled: 

(4.13) if Я e Л and if (4.11) holds, then (PU) j'irai,...,„ dx exists for every C^ function 
ij/iR" -^ R such that supp if/ cz V;^; 

(4.14) if Àe Л and if (4.12) holds, then (PU) J^ dx exists provided Q is defined by 

^W = {o' ф(х) ai,...,„(x) for X e V;^, 
otherwise, 

ф:К"-^К being such a C^ function that 

supp ф n (x e R"; x^ ^ 0} c: F^ . 

Then ^ is called PU-integrable. 
Let ^ be PU-integrable. Let cpi'.N -> [0, 1], i = 1 , . . . , m be such C^ functions 

that 
supp ^ с Int {yeN; ^ (Pi{y) = Ц 

1 = 1 

and that for every i there exists such a Я̂  e Л that supp cpi cz [/̂ .̂ Put 

(we put {h^.y [(pi^) (x) = 0 for X G i?" \ F^.). It can be proved that Г is independent 
of c/?i,..., (p^, Я^,.. . , Àjn, so that it is called the PU-integral of ^ and denoted by 

Theorem4.3. (Stokes). Let rj be a differentiable [n — l)-form on N with a compact 
support. Then drj is a PU-integrable n-form and 

(4.15) (PU) \ ârj=( 
I dN 

Theorem 4.3 can be proved in a standard manner from Theorems 4.1 and 4.2 and 
Corollary of Theorem 4.1. The identity (4.15) also holds if iV is replaced by a singular 
chain (cf. [5], [6]). 

5. RELATION TO THE LEBESGUE INTEGRAL 

Theorem 5.1. Let f:R"~->R with a compact support have a convergent Lebesgue 
integral. Then it is PU-integrable and 

(PU)f/dx = (L)|/dx. 

Proof. Let / с 7?" be a compact interval, I n t / з supp/ . Suppose first t h a t / is 
bounded. Then for every a > 0 there exist functions u,v:I ^ R satisfying the fol­
lowing conditions: 
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(i) и is upper semicontinuous, v is lower semicontinuous; 
(ii) u{x) й f{x) S v{x) for X e R"; 

(iii) Ju dx + a ^ J/ dx ^ [v dx — a. 
Moreover, choosing rj > 0 such that Б(х, 2г}) cz / for x e supp/, we may assume 
u(x) == 0 = t;(x) for xeR"\ iß(supp/, rj) => R''\ I. 

Find a gauge 3 on / such that 

^(x) -^Ц for X E / , 
w(x) ^ u(r) + a , г;(х) ^ i?(̂ ) - a for x e jB(r, (5(̂ )) . 

Let Л = {(t-', ^j)\ j = 1, ..., fc} be a 5-fine PU-partition of /. Denote ^̂ (x) = 
к k 

= E / ( ^ O ^ J W - Then, applying the identities ^ 5/x) = 1 for X G / , M(X) = i;(x) = 

= ^(x) = 0 for X e jR'* \ / , we obtain 

u{x) - g{x) = S (̂ W - fit')) 4^) è 
к k 

^ i (4̂ 0 - « .̂-W ^ ^ E 4^) ^ ^ 
for xeR". Consequently, 

\udx--S{f,A)Socm{l), S(/, J) - I t;dx ^ а^Ц/), 

and (iii) implies 

I / d x - S{f, J ) ^ j M dx ~ 5(/, J) + a g a(^(/) + 1), 

S(/, z!) - f / dx й S{f, A) - f ü dx + a g а(Ц/) + 1). 

Thus, given e > 0, we find a gauge ô and a constant a such that 

(5.1) | f / d x - S ( / , J ) | йе 

holds for any ^-fine PU-partition A of /, which proves our theorem provided / is 
bounded. 

Let us now suppose that / is not bounded. For simplicity, assume that / : R" -^ 
-> {0} u [1, oo), (The general case then immediately follows by the linearity property 
of the integrals.) Let again a > 0 and let tji, I = 1, 2, . . . be a sequence of positive 
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reals. Denote 

E,=={xeR"; (1 + « ) ' " ' ^ / ( x ) < (l + «)'] , / = 1 , 2 , . . . , 
00 

EQ = s u p p / \ U El. 
1 = 1 

(Obviously / (x ) = 0 for X e EQ.) Since Ei are measurable, there exist open sets 

Vi, Vi =) El with ^{Vi\Ei) ^ rji, I = 1,2,... . Let ^ be a gauge on / such that 

B{x, ô{x)) cz Vi for xeEi. 

Let again Л = {(r̂ ', ^^.); j = 1, . . . , k} be a (5-fine PU-partition of 7. Denote 
j:f{t')Sj{x) if {r^-e£,} Ф0, 

so that 

Evidently, 

0 otherwise , 

i = l i = l 

U ^ d x g ( l + а У Ц К ^ ) , 

/ d x ^ (1 -I- а ) ^ - ^ Ц £ г ) , 
£г 

hence 

Qi dx g (1 + a) / d x + (1 + a)^ . . (F^\E^) , I 
5(/ , ^) = L dx ^ (1 + a) f / d x + Д ( 1 + a)^ ^u . 

ently yields 

5 ( / , J ) ^ f/dx + e. 

A suitable choice of oc, ?7̂  evidently yields 

Since / is bounded from below, the other estimate is obtained as in the first part of 
the proof by approximating the function / from below by an upper semicontinuous 
function. Hence (5.1) again holds and the proof of Theorem 5.1 is complete. 

Observe that the function I was not needed in the proof of Theorem 5.1. Therefore 
an analogous result (Theorem 5.2 below) can be proved in the same way for the fol­
lowing modification of the PU-integral: 

Let M cz J?" be bounded. A family (1.1) is called a PUL-partition of M if t^' e M, 
^j'.R" -^ [0, 1] are measurable functions with compact supports and if (1.2), (1.3) 
hold. If (5 is a gauge on M, then a PUL-partition of M is said to be ô-fine if (1.4) holds. 

Definition 5.1. Le t / : i ? " -> i? have a compact support. Let yeR satisfy the fol­
lowing condition: 
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for every г > 0 there is a gauge ô on s u p p / such that (2.2) holds provided A is 
a ^-fine PUL-partition of supp/ . T h e n / i s said to be PUL-integrable and v̂ e write 

y = (PUL) fdx, 

Theorem 5.2. Let f\R^ -^ R with a compact support he Lebesgue integrable 
with a convergent integral. Then it is PUL-integrable and 

( P U L ) r / d x - ( L ) r / d x . 

Let us introduce SL-partitions, SL-integrable functions and the SL-integral in the 
analogous way as the PUL-partitions etc. with the only change that Sj are charac­
teristic functions of semiclosed intervals (cf. Remark 2.1). 

Let / : R" -> R have a compact support, let / с R" be a compact interval, Int / => 
3 supp/ . The integral (S^) J /dyl was introduced in [3], 7.4 (put A[j) = [b^ — a^). 
. (^2 — «2) . . . (b„ — a„)for J = [a^, bi] x [аз, Ьз] x .. . x [a„, b„Jj. It was proved 
in [3], Theorem 7.6 that (S^) J / /dy l exists if and only if (L) J / / d x exists and is 
finite, and that both the integrals coincide in this case. It is easy to prove that 
(SL) j / dx exists if and only if (S^) jifdA exists and that both the integrals coincide 
in this case. Obviously, (SL) ^fdx exists and is equal to (PUL) J / d x if the latter 
exists. We conclude: 

Theorem 5.3. Letf: R" -> R have a compact support. Then the following conditions 
are equivalent: 

(i) f is PUL-integrable; 
(ii) / is SL-integrable; 

(iii) / is Lebesgue integrable, with a finite integral. 
If one of the above conditions is fulfilled, then 

(PUL) f/dx = (SL) f/dx = (L) I/dx. 

6. SOME RESULTS ON THE M2-TNTEGRAL 

The M2-integral was introduced in [2]. In an equivalent manner it can be described 
as follows: Let / с /?" be a compact interval. A system 

r = {{t\r)\i = 12,...,k} 

is called an L-partition of/, if J^ are nonoverlapping intervals, f e / , i :== 1, 2 , . . . , k, 
k 

и J ' = / . An L-partition Г is called a P-partition, if f e J ' for i ^ 1, 2 , . . . , fc. 
i = i 
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Let (5 be a gauge on / . Г is called ô-fine, if J ' с B{t\ 0(f)) for / = 1, 2, ..., /c. Put 

^„_ i being the (n — l)-dimensional Lebesgue measure. (If n = 1, J ' = [a', b ' ] , 

then I{r) = X d̂ '̂ - « i + |r'' - b'"|).) For / : I -> R put 

/ = 1 

Definition 6.1. Let у eR, f:I -^ R, I a R" being a compact interval. Let the fol­
lowing condition be fulfilled: 

for every г > 0 and К > 0 there exists such a gauge ô on I that 

(6.1) \y-S{f,r)\uB 

provided Г is a ^-fine L-partition of / with Z(r) ^ K. 
T h e n / i s said to be M 2-integrabie and we write 

(6.2) y = (M2) / d x ; 

y is called the M2-integral of f. 

The equivalence of Definition 6.1 and Definition 4 of [2] follows immediately 
from Corollary of Theorem 8 of [2]. 

Theorem 6.1. Let I a R" be a compact interval, f: R" -> R, s u p p / a I. Let f be 
PU-integrabie. Then f is M2-integrable and 

(6.3) (M2) f / d x = (PU) f / d x . 

Proof. Let / = [a, jg] = [ос^, ßi] x . . . x [a„, j5„]. By Theorem 2.1 / is PUI-
integrable. Let s > 0, К > Ù. By Definition 2.2 there is such a gauge ^ o n / and у ER 
that 

\y - S{f, A)\Ss 

for every (2^)-fine PU-partition A of I with l{A) ^ i^ + 1. Let Г be a ^-fine L-
partition of / with 1{Г) ^ K, 

r = {{t\r); г = 1 , 2 , . . . Д } . 

For a fixed i write J^ in the form 

J' = [a j , bi] X [a^, ^2] X ... X [a„, b j 

and for (J > 0, X = (xj, X2,..., x„) e R" put 

(6.4) ед = Пй,„,„ДхО 
( = 1 
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where 

Cl = ai if ai > ai, 

Cl = oci '- 2G if ai = ai, 

di = bi if bi < ßi, 

di = ßi-h 2(7 if bi = ßi, l = 1 , 2 , . . . , « . 

For the definition of ha,b,a> see (L6) and above. Obviously A„ = {{t-^\ Sl); j = 
= 1, 2 , . . . , ic} is a PU-partition of/ for a sufficiently small and 

(6.5) lim S(f, A,) = S(f, Г) . 

Moreover, 

hm t f ||x - t^W \d9ijdxi\ dx = \ \\x - t% аш„_, , 

SO that 

(6.6) lim I(A,) = Z{r) . 

If a is sufficiently small, A„ is 2(5-fine, Z(A^) < К + 1 so that 

\y - S(f, A^)\ й e 
any by (6.5) we obtain 

\y - S(f, r)\Se, 

which makes the proof complete. 
L e t / : / -> i? be M2-integrable. The following assertions are consequences of [2], 

Theorem 1, Corollary and Remark 5. 
(6.7) If Я с / is an interval, then 

(M.)f 
J H 

f dx exists. 

(6.8) Let Я, H\ ...,H' be intervals, [) W -= H a I and let the intervals H\ H^,... 

...,Ш be nonoverlapping. Then 

{M,)\ fdx = t{^ \ /d^-
The following theorem is an analogue of the Saks-Henstock Lemma, which was 

proved in [2], p. 372. 

Theorem 6.2. Let I a R" be a compact interval and letf: I -y R be M2'integrable. 
Let у = (M2) J / / d x , 8 > 0, К > 0 and let ô be such a gauge on I that 

\y-S(f,r)\^s 
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for every ô-fine L-partition Г of I with 

I{r) йК + 4п^ m„{l) . 

Let U, s = 1,2,..., г be nonover lap ping intervals, fel, U cz B(t\ ô(t^)) /^^ 
s = 1,2,... , r, 

(6-9) i f \\x- f 11 ащ,^, s к 
{in case that n = 1, U = \a\ &*] condition (6.9) rea^s 

i ( | f - ö̂ 'l + 1̂ ^̂  Ь'\)йК). 
Then 

(6.10) tf/(f)..,(LO-(M,)r /dx̂  < e. 

The following lemma will be needed in the proof: 

Lemma 6.1. Let I a R" be a compact interval and let ô be a gauge on L Th, 
there exists such a ô-fine P-partition Г = [{t\ J ' ) ; / = 1, 2 , . . . , k} of I that 

en 

(6.11) Zo{r) - Y ^iam (r) ш,^^{дГ) й 4л,' ш,{1) . 
i = i 

Proof. Without loss of generality we may assume that 

(6.12) / = [ 0 , M X [0,b,]x . . . X [0,b„], 

(6.13) 0<b^Sbj for j = 2,3,...,n. 

There are such nonnegative integers Ij that l^^b^^ ^ bj < 2^''^^b^ for; = 2, 3 , . . . , n. 
Let / be the set of such j 6 {2, 3 , . . . , n} that Ij > 0. If ^ / 0, cut / by the hyper-
planes Xj =-- pbj2''^\ p = 1,2^..., 2^^ — 1, je / . Thus / is cut into intervals 

n 

/ ^ / ' , . . . , F with ^ = П ^̂ ^ ^^^ ^^^ lengths of edges of each interval/'" are b^, ^2 2 ~ ' \ 

63 2~^^ ..., b„ 2"^", m = 1, 2 , . . . , ^. If we find (5-fine P-partitions Г^ of intervals I'" 

fulfilling l o (^m) ^ 4n '^„(/ '") , m = 1, 2 , . . . , ^, we may put Г = IJ Г^. Г is a P-
partition of/fulfilling (6.11). '""^ 

Thus we may assume without loss of generality that 

(6.14) bj<2b^ for j = 2,3,...,n. 

If there is such 3, tel that / с B(t, ô(t)), we put Г = {(^^)}- Otherwise we cut / 
by hyperplanes Xj = ^bj, j = 1,2, ..., n; thus / is cut into intervals F, p = 
= 1,2,... , 2". Let P be the set of such p that there is t^ e F fulfilhng F с B{tP, <5(t̂ )). 
Couples (̂ ,̂ F), pe P are elements of Г; intervals F, рф P are cut in an analogous 
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way etc. After a finite number of steps we obtain a (5-fine P-partition 

Г = {{t\r)\i = l,2,...,/c} 

of /. Moreover, there exist such nonnegative integers r̂  that the lengths of edges 
of J^ are 2~''bj, j = 1,2,..., n. We have 

ш,.,{дГ)аштГ = 2^—^f Ь, ... bj.,bj^, ... b,J{bl + ... + b^) й 
j = i 

A 1 ^ 2 . 2--'b,b2 ... b„ E f V(^? + ... + b„') ^ 2 ^ „ ( J O nV(4n) ^ 4n^ ..ф^). 

Hence Io{r) S 4n^ ^̂ n̂(̂ ) which proves the lemma. 
Proof of Theorem 6.2. There are such intervals G\ G ,̂ ..., Ĝ  с / that the in-

intervals G^ G^,..., G ,̂ Ü,!}, ...,E are nonoverlapping and 

/ = (ubOueuoo-
Let f/ > 0. There exist gauges ^̂  on G' such that |S(/, Г,) - (M^) JG. / d x | ^ njp 
for every ^pfine L-partition Г^ of Ĝ ' with i:(Ji) ^ 4n^ /̂̂ „(G% i = 1,2, ...,>. 
Moreover, we can assume that ô^ix) ^ <5(x) for x e G'. Let Г̂  be ^ -̂fine P-partitions 
of G' with XoĈ O ^ 4n^ mjfi^ (cf. Lemma 6.1). Put 

г = u{(^^ьO}uUЛ. 

As every P-partition is simultaneously an L-partition, Г is a (5-fine L-partition of /. 
Moreover, 

Since f i are P-partitions of G\ we have i;(f J g ^o(^i) for i = 1, 2,. . . , p (cf. (6.11)), 
so that p 

I ( r ) ^ iC + 4n2 f ^̂ «(<̂ 0 ^ ^ + 4n^ ^„(i). 

It follows that 
< e. | ( M , ) f / d x - S ( / , r ) 

Simultaneously we have (cf. (6.8)) 

(M,)f/dx = x;(M2)f /dx + E(M,)f /dx, 
J/ »=i JL« ''"^ J с 

S( / , r ) = t / ( f )^„(LO + t s ( / , f O , 

|(M2) f /dx -S( / , f i ) й n p ' 
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It follows that 

|t(M,)f /dx-t/(f)^„(r) 

and (6.10) holds, since ^ > 0 was arbitrary. 

S e -\- f] 

7. EXAMPLES 

A. Let n = 1, a > 0, ̂  > 0. Let œ be defined as before (see (1.6) and above). Put 

p{ \ — Z^'' ^^^ TTx"̂  for X > 0 , 
^^""^"XO for x ^ O , 

^(x) = (̂ (х)ш(З — x) for X ei?. If a > 1, then ц is differentiable and (PU) \ц' dx 
exists by Theorem 4.1, ц' being the derivative of /7, ?/'(x) = ax*~^ cos тгх"^ 4-
+ 7rjßx̂ ~̂ ~i sin nx~^ for 0 < X ̂  2. 

Let A > 0. Put 

. X _ /^~^ sin TTx"̂  for 0 < X ^ 1 , 
^ ^ \ 0 for X g 0 and for x > 1 . 

It is not difficult to conclude that 

(7.1) (PU) I V dx exists if 0 < Я < 1 or if 0 < Я < j? . (PU) j . 

Indeed, for 0 < Я < 1, v is even Lebesgue integrable; the other part of (7.1) follows 
from the fact that the difference v — {nß)~ ^ rj' is absolutely integrable for 0 < Я < ß 
if we put (X = ß — À + 1. 

Our aim is to prove that 

(7.2) (M2) V dx does not exist if Я ^ 1 , 0 < / ? ^ Я . 
J[0,1] 

Observe that (7.2) and Theorem 6.1 imply 

(7.3) (PU) I V dx does not exist if Я ^ 1 , 0 < ß S ^^ 

The zeros CTI of v in (0, 1] are given by (Т| = (/)~^^ ,̂ I = 1,2, ... . Let ;? be a positive 
odd integer and for s = 1, 2, . . . put 

(7.4) ^ L, = [ö-p+2,4-l,^p + 2s] • 

We have v(x) ^ 0 for x e L ,̂ 5 = 1,2,... and there is such a с > 0 that 

(7.5) (M2) f V dx ^~{p + IsJ'-^-'^'ß , 5 = 1, 2, . . . . ^ 
JL, ß 

In order to prove (7.2) assume that Я ̂  1, 0 < /̂  g Я and that (M2) J[o,i] '̂ -̂̂  
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exists. In Theorem 6.2 put К = 1, E = cjAß, у = (M2) j[o,i] '̂ ^^ ^^^ ^̂ ^ ^ ^^ ^^^^ 
a gauge on [0,1] that \y — S(v, Г)| ^ c/4j5 for every 5-fine L-partition of [O, 1] 
with I{r) й 5. 

Let p be so large that cfp < ô(0), сГр < ^. Put ^̂  = О and define L^ by (7.4), s = 
= 1, 2, . . . , r, where r will be chosen later. Observe that (under our choice) the left 

г 

hand side in (6.9) is ^ {(^p+zs + ^p+is+i) ^^^ the left hand side in (6.10) is 

E ( M . ) f V 
^ = 1 JL.S 

dx 

since/(f^) = 0 for 5 = 1,2,..., r. 
Let two cases be treated separately 

1. 1 g j8 ^ Я. Then by (7.5) 

Z(M.)f 
^=1 JL. 

Since ]^ («Тр+г« + /̂7+2s+i) = CO, ap< ^, the number r may be chosen in such a way 
s = 1 г r 

that i < ^(<Tp+2. + «̂ p+2.+ i) ^ 1 so that ^ ( ^ 2 ) ^ vd^ > c/4)S. Thus (6.9) is 
S = l 5 = 1 

fulfilled and (6.10) is not fulfilled, which is a contradiction. 
00 

2. 0 < ß < 1 ^ X, As X!(^p+2s + ^p+2s+i) < 00, p can be chosen so large that 
s = l 

r 

E K + 25 + 0-^+25+l) < 1 for r = 1,2, ... . 
s = l 

00 

On the other hand (M2) Ĵ ^ v dx ^ {cjß) {p + 2s) ~ ^ by (7.5), so that ^ (M2) Ĵ ^ v dx = 00 
and thus (6.10) does not hold for r sufficiently large. "̂̂  

Remark 7.1. Let Я ̂  1. Since v is continuous on (O, 1] and lim jl v(x) dx 
T-*0 + 

exists iff j5 > Я — 1, we may conclude that the Perron integral (P) Jio,!}^ ^^ exists 
i f r i g > A - l . 
B. Let n = 2. Put 

C(x) = d^i, X2) = C{^i) ш(х2 + 1) co(2 - X2), 
^(x) = ^(x^, X2) = ^(xj) a>(x2 + 1) o)(2 — X2) for x = (x^, X2) e R^ . 

If a > 1, then С is diflferentiable and (PU) j^dCjdx^) dx exists by Theorem 6.1. Again 
(cf. Part A) it is not difficult to conclude that 

(7.6) (PU) Q dx exists i f O < A < l o r i f O < 2 < i 5 . 

Analogously to Part A we have 

(7.7) (M2) Q dx does not exist, if Я ̂  1 , 

0 < ^ ^ Я , / = [0,1] X [0,1] 
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and (7.7) and Theorem 6.1 imply 

(7.8) (PU) U dx does not exist, if Я ^ 1 , 0 < jo ^ Я . 

In order to indicate the proof of (7.7) let us start with the following lemma: 

Lemma 7.1. Let x > 0, E a [O, 1], ш^(Е) > ^, ш^(Е) being the outer Lebesgue 
measure of E. Then there are т^, Т2, ..., т̂  e £ such that q ^ 1/8% and that the in­
tervals [TI — %, TJ + к], i = 1,2, ..., q are disjoint. 

Proof. Ti 6 E can be chosen arbitrarily. If r̂  G £ are known, i = 1, 2 , . . . , /c such 
that к < l/8x and that the intervals [TI — X, T̂  + x] are disjoint for i = 1, 2 , . . . , k, 
then 

к к 
E \ ( U [T, - 2%, T, ^-2x1) Ф 0 , T,+ I G £ \ ( | J [T, - 2X, T, + 2x]) 

1 = 1 f = l V ^ 

may be chosen arbitrarily and the intervals Гт; — x, Т; + xl, f = 1, 2, .. , fc + IV« 
are disjoint. '̂  î' 

(7.7) can be proved in an analogous way as (7.2). If (5 is a gauge on / , put g(%) = " 
= (x2 e [0, 1]; (5(0, X2) ^ 2%}. Since Q(x^ ID 0(^2) for ^ < x^ < x^ and IJ ß(x:) -

= [0, 1], there is %o > Ö such that ^e(ô(^o)) > i- Let jp be such an even positive 
integer that u^ < XQ. For every s = 1, 2 , . . . put E = Q{x), x = cr̂ +2s3 ^^^^ define 
T̂ /̂ , 1̂2"̂^ ..., T̂^̂  by Lemma 7.1. Theorem 6.2 can be applied in an analogous way, 
the role of couples (t^, Ц), s = 1, 2 , . . . , г being played by the couples 

((0, T^/0, [(Tp + 2s+U ö-p + 2 j X Ы^ - СГр + 25, - î'̂  + ^p + 2s]) , 

i = 1, 2 , . . . , ^^, s = 1, 2 , . . . , r with a suitable choice of r (and possibly of p). 

R e m a r k 7.2. Again it can be proved that 

(P) I ^ dx exists if Я ^ 1 , ß > À- 1. 
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