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I. INTRODUCTION

The most general form of a pointwise transformation that converts any linear
homogeneous differential equation of the nth order, n = 2, into an equation of the
same type was derived by P. Stickel in 1893 [12]. It consists in a change of the in-
dependent variable and in multiplying the dependent variable by a variable non-
vanishing factor. When these transformations transform equations on their whole
intervals of definition, we say that they are global.

Global transformations of the second order equations y” + p(x) y = 0 including
those that convert a given second order equation into itself (“‘dispersions’) were deeply
studied and completely described by O. Bortivka. He summarized his original
methods and results till 1967 in the monograph [2].

For arbitrary n, n = 2, the structure of global transformations was described,
mainly by algebraic means, in [7]. Some results about stationary groups, i.e. groups
formed by all global transformations of a linear differential equation of the nth
order into itself, were obtained in [8] by using methods of the theory of functional
equations.

In [11] J. Posluszny and L. A. Rubel characterized those transformations (“‘mo-
tions”) of a linear differential equation of the nth order into itself that consist in
a change of the independent variable only.

Here we give a complete list of possible groups of global transformations (in the
most general form involving both the change of the dependent and independent
variables) of a linear homogeneous differential equation of an arbitrary order n,
n 2 2, into itself (in Theorem 1) and for each type of the group we characterize the
corresponding equations (in Theorem 2). Examples of equations of each type are
introduced in Theorem 3 and a brief account of possible groups with respect to the
number of parameters, as announced in [10], is given in Theorem 4.
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The method is based on the criterion of global equivalence [9] using also some
ideas of G. H. Halphen [4], which restricts all stationary groups to subgroups of
a 3-parameter group conjugated to the group of dispersions of a linear differential
equation of the second order. Then the strong results of O. Borivka [2] can be
used together with some recent results of his [3] and of G. Blanton and J. A. Baker
[1], including methods and results from algebra, topology and the theory of functional
equations [7], [8]. An important role in the present characterization is played by
Proposition 5 stating that only an iterative equation may admit a global transforma-
tion into itself whose increasing change of the independent variable intersects the
identity.

Acknowledgement. I thank Academician Otakar Bortuvka for many discussions on
this and other problems, for his cordial attention and constant encouragement lasting
for many years.

II. NOTATION AND DEFINITIONS

Let
Py, x;I)=y™ + p,_y(x) y*™V 4+ ...+ po(x)y =0 on I
and
0.z, t;J) =2 + q,4() 2"V + ...+ qo(t)z=0 on J

be linear differential equations of the nth order, n = 2, with real continuous coef-
ficients defined on open intervals I and J < R, respectively, always considered with
the leading coefficient equal to one.

In accordance with the most general form of (local) pointwise transformations due
to P. Stickel [12], and with respect to our requirement on global transformations
that transform solutions on their whole intervals of definition, we say [10] that the
equation P,(y, x; I)is globally transformable into Q,(z, t; J) if there exist functions f
and h,

fiJ->R, feCc(J), f()*0 on J,
h:J > I, h(J)=1, heC"(J), dh(t)ldt +0 on J

such that
2(f) = £(1) . (h(r), ted

is a solution of Q,(z, t; J) whenever y is a solution of P,(y, x;I).

We denote such a transformation by T = (f, h) and write T * P,,(y, x; 1) =
= Q,(z, t; J), or briefly T+ P, = Q,. The equations P, and Q, will be called globally
equivalent, since “‘global transformability” is an equivalence relation.

For n 2 2, let L, denote the set of all equations P,(y, x;I) having the coefficient
Pn-1 identically zero on I and the coefficient p,_, from the class C"~ ().
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Consider a linear differential equation of the second order
(1) u’ + p(x)u=0 on I,

peC" ¥(I), n 2 2, and two of its linearly independent solutions u;, u,. Define

yir=umtul, i=1,..,n.
We have y; € C(I), the n-tuple yy, ..., y, having a nonvanishing Wronskian. Hence
the y;’s can be considered as solutions of a (unique) linear differential equation of
the nth order, called the iterative equation. We shall denote this equation by

[pl. (v, x;I) =0, orbriefly [p],=0,

to express its dependence on the coefficient p in (1). The left hand side of the equation
(with the unit leading coefficient) is called the iterative operator of the nth order
iterated from (1) and has the form

1
[p. (v, x5 1) = y™ + (n;— 1) p(x) y"=? + 2(" : )p’(x) yooD

see, e.g., [6].

According to O. Bortivka [2], the differential equation (1) is of a finite type m,
m integer, m = 1, if it possesses solutions with m zeros on the interval I but none
with m + 1 zeros. In this case (1) is of the general kind if there are two linearly
independent solutions with m — 1 zeros on I, otherwise (1) is of the special kind.
If (1) is not of a finite type then it is either one-side oscillatory or both-side oscillatory
onl.

Two linear differential equations, (1) and

2 v +¢g(t)v=0 on J

are of the same character if either

(i) both are of the same finite type m, and of the same kind (therefore both general
or both special), or
(ii) both are one-side oscillatory, or
(iii) each is both-side oscillatory.

The Kummer equation associated with two linear differential equations (1) and (2)
is the third order nonlinear equation

(p; 9) {h. 1} + p(h(t)) . B2 (1) = a(1), teJ,
where {h, t} is the Schwarzian derivative of h at ¢, i.e.,

{h,t};zlﬂ_éw

2 K(8) AR
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Again in accordance with O. Boriivka [2] we introduce the fundamental group F
as the set of all functions f: R — R, f € C°(R), satisfying

tanf(t) _ Cu1 tant + ¢y,

cyptant + ¢y;

on R whenever the relation is defined, where c;y, ¢y, €51, ¢, € R and |c“c22 —
— €1,¢54| = 1, with composition as the group operation.

Let G, and G, be two groups whose elements are (some) bijections of intervals I,
and I, onto themselves, respectively. We say that the groups G, and G, are C"-
conjugate, if there exists a bijection ¢ of I, onto I, ¢ € C"(I,), such that

G, = {‘Pf‘l’_1§ fe Go} .

Necessarily dg(x)/dx % 0 on I, if n 2 1.

III. FORMER RESULTS

Let us recall some of the earlier results of O. Bortivka [2], and also some from [7],

[8] and [9].

Lemma 1 ([7]). The set of all global transformations between every pair of
equations from a class of globally equivalent equations forms a Brandt groupoid
with respect to the composition rule.

The set of all global transformations of a linear differential equation P, into itself,
ie.,
{T; TxP,=P,},

forms a group, G(P,), called the stationary group of P,.
Lemma 2 ([7]). Let T+ P, = Q,. Then
G(P,) = TG(Q,) T !,

in other words: Stationary groups of any pair of globally equivalent equations are
conjugate.

Lemma 3 ([9]). Each equation Q,(z,t;J) = 0 with q,_; e C""'(J) and q,_, €
€ C""*(J) can be globally transformed onto an equation from L,, written in the
form

) (01,0055 1) + 7y 4 o+ rex)y =0 o 1,
where pe C"~*(I), r,e C°(I) for i = 0,1, ...,n — 3.
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Lemma 4 ([9]). Let p,-1 =0 in P(y,x;I) and T*P,(y,x;I) = Q,z,1;J),
T = {f, h). Then q,_, = 0in Q,(z,t; J) if and only if

f(1) = ¢ |dh(r)/de|* /2
¢ being a nonzero constant and h e C"*'(J).
Lemma 5 ([9]). Let an iterative equation [p], (v, x;I) = O be transformed by
T={c.|W|*"™2 b, ¢ = const. +0, into an equation Q. Then Q is again an
iterative equation, [q],(z, t; J) = 0, where q is the coefficient in the second order

equation v + g(t) v = 0 on J obtained from u" + p(x)u = 0 on I by the trans-
Sormation (|h’|~/2, h).

Lemma 6 ([9]). If the equation
P, = [pl.(y,x; 1) + Faea(X) "D + .+ 1ro(x)y =0 on I
can be globally transformed by a transformation T = {f, h) into
Qn=1[4]s(z,6;7) + 5,5(1) 2" + ... + s() 2=0 on J,

then there exists a function h e C"*(J), dh(1)/dt % 0 on J, such that the following
three conditions are satisfied:

A f(t)=c. |dh(‘)/d‘|(1—")/2, ¢ = const. * 0.

B. The equation u” + p(x)u = 0 on I is globally transformed by the transforma-
tion

<|dh(z)[dt| =172, )
into the equation v + g(t)v = 0 on J.
C. ru-a(h(t)) . B3(t) = s5,-4(t) on J,
Fa-a(H(2) . h4(1) = 5,_4(t) on {te J; 5,_4(f) = 0},
Tu=s(h(1)) . h3(1) = s,-5() on {te J; 5,_3(t) = s,-a(t) = 0},

etc.

Lemma 7 ([2]). Let tye J, hy €1, ho(#0), hy be arbitrary. Then there is precisely
one maximal solution h of the Kummer equation (p; q) defined on the interval J* <
< J with the Cauchy initial conditions

h(to) = hq , b (o) = hy, h(t,) = hg ;

where maximal is used in the sense that every solution of (p; q) satisfying the same
initial conditions is a portion of h.
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Moreover, the transformation <|h'|””2, h) globally transforms the equation

u' + p(x)u=0 on I*=h(J*)cI
onto
v +q(t)v=0 on J*.

Lemma 8 ([2]). Let <‘h'l_ 12, b globally transform (1) into (2). Then the function
h is a solution of the Kummer equation (p; q), h is a bijection of J onto I and
dh(t)/dt % 0 on J. If pe C'(I) and q € C"(J), then h € C"*3(J).

Lemma 9 ([2]). The second order linear differential equations (1) and (2) are
globally equivalent if and only if they are of the same character.

Lemma 10 ([2]). There are precisely the following classes of globally equivalent

second order linear differential equations (1):

both-side oscillatory equations;
one-side oscillatory equations;
equations of the finite type m and of special kind,

m=12...;
equations of the finite type m and of general kind,
m=12,...

In the corresponding order here is the list of possible representations (canonical
equations) for each of the above classes:

u'+u=0 on (—o0, ),

u+u=0 on (0,0), »

w+u=0 on (O,mn), m=1,2,...;

w+u=0 on (0,mn—=x/2), m=1,2..;
Lemma 11 ([2]). The stationary group of the equation

' +u=0 on (—oo,c0)

is formed by the transformations {c . [f'l"”z,f), ¢ = const. 0, where f belongs
to the fundamental group F. All elements of F are prectsely all the maximal
solutions of the Kummer equation (+1; +1), i.e.,

(+1; +1) {f.x} +f*(x)=1.

Lemma 12 ([7] and [8]). Let T P(y.x;I) = Py, x;I), where T = {f, h)
with h(x) & x for each x eI. Then the equation P (v, ;1) is globally equivalent
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to a linear nth order differential equation with periodic coefficients of the same
period defined on the whole interval (— o, o).

The stationary group of a second order linear differential equation of the form (1)
is formed by (some of the) transformations

e [W|7V2, By, ¢ = const. #0.

The set of all these h’s forms again a group with respect to composition, which was
introduced by O. Borivka [2] as the group of dispersions (of the first kind) of the
equation (1).

The stationary group G(P,) of an equation P, from L, is formed by (some of the)
transformations of the form

e AW|A"2 by | ¢ = const. %0,

see Lemma 4. The set of all the h’s forms again a group with respect to composition
of functions, which will be denoted by Gy(P,).

IV. PREPARATORY RESULTS

Proposition 1. Let T+ P, = P,ec L,, where P,(y, x;1) is written in the form (3),
i.e., as

[p]s (7, X5 1) + 1p3(x) YO + Lo+ 1(x) y =0 on I,
with pe C"~*(I), r,e C°(I) for i = 0,1,...,n — 3.
Then T = {c. lh'l(l"")/z, hy, he C"*!(I), and h satisfies the Kummer equation
(p; p):
{h,x} + p(h(x)). W"*(x) = p(x), xel.

Proof follows from Lemma 6 (conditions A and B) and from Lemma 8, where
p=qgeC¥I).

Proposition 2. Up to conjugacy there are the following groups of dispersions of
the second order linear differential equations of the form (1):

1. All functions f: R — R of the form

atanx + b

x) = Arctan B
f( ) ctanx + d

xeR,

where a,b,c,deR, ad — bc = +1, that is a three-parameter group both with
increasing and decreasing functions, called the “‘fundamental group” in Boruvka’s
terminology.
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2a. All functions f: (0, ©) — (0, ©) of the form

atan x

x) = Arctan —MM— |
&) ctanx + 1/a

x € (0, ),

a,ceR, a * 0, forming a two-parameter group of increasing functions.
2b. All functions f: (0, mn) — (0, mn), m being a positive integer,

atan x

f(x) = Arctan , xe(0, mn),

ctanx + 1/a
a,ceR, a0, that is a two-parameter group with both increasing and decreasing
functions.

3a. All functions f: (0, mn — n/2) > (0, mn — n/2), m being a positive integer,
of either the form
f(x) = Arctan (ktanx), xe(0, mn — 7/2),

or of the form
f(x) = Arctan (kcot x), xe(0, mn — n[2),

keR, k > 0, forming a one-parameter group of both increasing and decreasing
functions.

Remark. The group operation is always the composition of functions. The function
Arctan means the branch of arctan x + mn that makes the function f continuous.
It was proved in [2] that this is always possible and f is then even analytic.

Proof (see also [2]). Due to Lemmae 2 and 10, it is sufficient to consider groups
of dispersions of the equation u” + u = 0 on the following intervals:

L. (— 0, ). According to [2], the corresponding group of dispersions is called
the fundamental group and the explicit formula of its elements is given in the
Proposition under 1. Each of the elements is a bijection of (— o0, ) onto (— 0, o)
and satisfies the Kummer equation (+1, +1) on (— o0, o).

2a. (0, o0). According to [2], all elements of the group of dispersions in this case
satisfy the Kummer equation (+1; +1) on (0, ) and, at the same time, they are
bijections of (0, c0) onto (0, v). Hence the elements are the restrictions of the
functions . ' ‘
f(x) = ArctanM, ad — bc = +1,
ctanx + d

on (0, c0), for which f(0) = 0 and lim f(x) = oo, or lim f(x) = oo and lim f(x) = 0.
X=© x=04 X0

The first case implies b = 0 and ad — bc = 1, the second case is impossible. Hence
b =0and d = 1]a for a # O gives exactly the functions introduced under 24 in the
Proposition.
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2b. (0, mn), m = 1,2, .... The same argument as in the case 2a leads to consider-
ing restrictions of elements of the fundamental group to the interval (0, mmn) that are
bijections of the interval onto itself. For increasing dispersions we get

b=0 and d=1/a for a#0,
for decreasing dispersions
b=0 and d= —1fa for a+0,

exactly the functions given in 2b of the Proposition.

3a. (0, mn — mf2), m = 1,2,.... Analogous argument as above gives for
increasing dispersions
atan x

b=0 and lim Arctan— — =mn — 72,
x->mn—mn/2 ctan x + 1/a

or

. asin x
lim Arctan—————— =mn—mn/2, or ¢=0;

x—mnrn—mn/2 . 1 ’
csimx + —Cos x
a

hence f(x) = Arctan a_;z;ﬁc = Arctan (k tan x), x € (0, mn — n/2), k = a*> > 0.
a

For decreasing dispersions we obtain

d=0 and a=0,
or

flx) = Arctg—b—

= Arctan (kcotx), k>0,
1/b tan x

which completes the proof of the Proposition.
Proposition 3. The group Go(P,) of each equation P,e L, is C"*'-conjugate to
a subgroup of one of the groups listed in Proposition 2.

Proof. Due to Lemmae 5, 6 and Proposition 2 we know that the functions h in
Proposition 3 form a group which is conjugate to a subgroup of a group listed in
Proposition 2 under 1, 2a, 2b, and 3a. Since :

Pn(ys X;I) = [p]n (y, X;I) + rn—3(x)y(n—3) + ..+ "o(x)y =0 on [

with pe C""%(I), Lemmae 2 and 8 guarantee that this conjugacy is also a C"*!-
conjugacy.

Remark. In Proposition 3 we have mentioned subgroups of groups listed in
Proposition 2, since the condition B in Lemma 6 is generally only sufficient for global
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transformations. To facilitate a classification of these subgroups we introduce the
following notions.

Each element of the fundamental group F is uniquely determined as a solution f
of the Kummer equation (+1; +1) on (— o, o) satisfying at a (fixed) point t,
the Cauchy conditions

f(t) =1o, f(to) =fo+0, f'(to))=15-

To the solution we assign the point (fo, fg, f5) in the 3-dimensional euclidean
space R3. The topology of this space induces a topology in the fundamental group F
that becomes a topological group due to the continuous dependence of solutions of
(+1; +1) on initial values. This topology induces also a topology of each group
listed in Proposition 2.

Proposition 4. Each Gy(P,) is C"*!-conjugate to a closed subgroup of a group
listed in Proposition 2.

Proof. According to Proposition 3, Go(P,) is C"*'-conjugate to a subgroup of
a group listed in Proposition 2. This subgroup is determined by a finite number of
restrictions involving continuous functions of the parameters a, b, c, d in the case that
u” + p(x)u = 0 on I is not both-side oscillatory. If not all (continuous) r; of P,
written in the form (3) are identically zero, we have (a finite number of) further
conditions involving continuous functions, caused by the fact that not only [p],=0
must be transformed into itself, but the whole P, is globally transformed into itself
and the coefficients by y, ', ..., ¥~ in the original and in the transformed equation
must coincide. Due to the continuity of the functions in each of the finite number of
the equations, the subgroup determined by these restrictions is closed.

Proposition 5. Consider P,(y, x;I)e L, written in the form (3). Let T = {f, h),
dh(x)/dx > 0 on I, transform P, into itself.

If there exists xq €l such that h(x,) = x, and h # id,, then the equation P,
is an iterative equation, i.e., 1,3 = ... = ry = 0.

Proof. Due to Lemma 4, f = c. 'h’l“'")/z, he C"*!(I). According to our sup-
positions, the set S := {x eI; h(x) % x} is open. Hence S is the union of at most
denumerable number of open disjoint intervals. Because h(x,) = x, for x, €I and
h # id,, each of the intervals has at least one finite end-point in I. Denote by (a, b)
one of the intervals. Without loss of generality, let a € I. Then h(a) = a.

Applying Lemma 6, the condition C gives

rea(h(x)) . H3(x) = ro_5(x) on I,

Ry_s(H(3) = Rys(h(@)) = Ry-s(x) = Ry-5(a)

or

for
R,_3(x) :=j |ra-3(0)|"* do e CY(I), x*eI.
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Hence
(4) R,-3(h(x)) = R,_5(x) on I.

Let R,_; be not a constant on (a, b), i.e., there exist a1, by € (a, b) such that
R,_3(a;) * R,_5(b,). Define two sequences {a;}2, and {b;}i<, as follows:

if h(a,) > a, and hence necessarily h(b;) > b,, then

a4y :=h"'(a;) and b, := h_l(b.')
fori=1,2,...;
if h(a,) < ay (hence also h(b,) < b,), then
@iy := h(a;) and b, := h(b;)

fori=1,2,....
Both the sequences {a,} and {b;} are decreasing and converging to a. Due to (4),
Rn—3(ai) = Rn—3(a1) + R,_3(by) = Rn—s(bi) >
which contradicts R,_ 5 € C'(I), since (finite) a e I.

Hence R, _ ; is constant on (a, b) which yields r,,_5(x) = 0O on(a, b). Thus r,_4(x) =
=0onS.
Returning to condition C in Lemma 6, we get

Fuea(h(x)) . K*(x) = r,_4(x) on S.
Since h'(x) > 0 on I, we may write
[ru-a(hG)['* . B (x) = [ra-a(x)['*

and

f Ry-s(h(x)) = Ry-y(h(@)) = R,-(x) = R,-s(a)

R,_4(x):= J-x ‘r,,_4(0)l”4 doe C'(a, b).

The above argument yields R,_, = const. on (a, b), hence
on (a, b).
Analogously we get

r,,_4(x)l =0 =r,_4(x)

r{(x)=0 on S={xel; h(x);kx}

fori=0,1,...,n — 3.

If S is dense in I then the continuity of the r;’s gives r; = Oon I foralli =0, 1, ...
oo — 3.

If S is not dense in I then there exists an interval (¢, d) = I such that h(x) = x
on (¢, d). Take x, € (c, d). Evidently h(x,) = x,, h'(x,) = 1, h"(x,) = 0. Moreover,
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due to Proposition 1, h satisfies the Kummer equation (p; p) on I, whose solutions
are uniquely determined by the Cauchy conditions, Lemma 7. Since id; satisfies the
equation (p; p) and the above initial conditions at x,, we have h = id,, which was
excluded from our considerations.

This completes the proof of Proposition 5.

Proposition 6. Let P, be not an iterative equation and let h € Gyo(P,), where
dh(x)/dx > 0 and h(x) # x on I. Increasing elements of G.(P,) form its subgroup
Gy (P,)

Then either h is an element of an infinite cyclic group generated by a function h
such that h e C**'(I), dh(x)[dx > 0 on I, h(x) + x on I and Gg(P,) is the infinite
cyclic group,

or P, is globally equivalent to an equation from L, with constant coefficients
on (— o, w) and G5 (P,) is C"*'-conjugate to the group whose elements are func-
tions '

feR->R, f()=t+c, ceR.

Proof. If any two different elements of the group G4 (P,), say h and h, intersect each
other somewhere in1, i.e., h(x,)=h(x,) for x,€I, then there is an element of the group,
h~'h, that differs from id, and satisfies h~! /i(x,) = x,. According to Proposition 5,
P, is iterative. However, this was excluded from our considerations. Hence the
elements of the group G (P,) can be naturally ordered. We obtain a fully ordered
Archimedean group, because

lim g(a), ael,
i»to
converges to both ends of the interval I for each element g € G5 (P,), g *id,.

Due to [5], [2] and [1], there exists an order preserving isomorphism of Gg(P,)
onto a subgroup of the additive group R. This subgroup is either the infinite cyclic
group generated by a nonzero number b € R and formed by all numbers

{ib; i=.., —1,0,1,...},

or it is dense in R. In the first case h, is assigned some n,b, h, is assigned some n,b,
and there exists an h € G (P,) to which b is assigned, hence h, =h" and h,=h" for
(positive or negative integers) n; and n,. Since h is obtained by finite compositions
of hy, hy, hi', and hy"', he C"*'(I), dh(x)/dx > 0 and h € G, (P,). Hence G (P,) is
an infinite cyclic group and A is its generator.

In the second case, when the subgroup of the additive group R is dense, the group
G, (P,) is isomorphic to the whole group R, since it is closed (Proposition 4) and no
different elements of G (P,) intersect each other. This isomorphism is order preserving.
Each of the elements of G (P,) is of the class C"*+1(I). Hence Theorem 1 from [1]
guarantees the existence of a bijection of I onto R, ¢ € C"*'(I), such that

Gy (P,) = {¢7 " (@(x) + ¢); ceR};
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in other words, G4 (P,) is C"**-conjugate to the group formed by functions f.: R - R,
ceR,
f()=t+c.
Consider the differential equation Q,, @, = T* P,, where T = (|~ /|1 7"/2,¢ "1},
¢~ ':R - I. The group Gg4(Q,) is, according to Lemma 2, formed by all translations
f., ce R. Hence Q,, defined on R, has only constant coefficients, Q.E.D.

Proposition 7. Let he Go(P,), P, = Py, x;I)eL,, dh(x)/dx < 0. Then either
hh = id,, or P, is an iterative equation.

Proof. Since dh(x)/dx < 0 and h(I) = I, there exists x, € I such that h(x,) = x,.
Then hh(x,) = X, hhe Go(P,) and hh is increasing. If hh % id,, then P, is an
iterative equation due to Proposition 5.

Proposition 8. Let P,e L, and h, € Go(P,) such that dh,(x)/dx < 0. Then each
h e Go(P,) with dh(x)[dx < O can be written in the form
h=hh,
where h, € Go(P,) and dh(x)/dx > 0.
Proof. Put h, := hhy'. Evidently h, e Go(P,) and dh,(x)/dx > 0.

Proposition 9. For he C"*!(I), h(I) = I, dh(x)/dx < 0, hh = id,, consider the
functional equation

wh(x) = —ox), xel,
with an unknown function a:1 — R. There exists a solution of this equation,

ox) = (x = h(x))/2,

which is of the class C"*'(I) and do(x)/dx > 0.

Proof. Since he C**!(I), also ae C"*Y(I) and do(x)/dx = (1 — h'(x))[2 > 0,
because h'(x) < 0. Furthermore,

a(h(x)) = (h(x) — hh(x))[2 = (h(x) = x))2 = —a(x), xel.

Remark. If I = (c, d) in Proposition 9 then «(I) = (3(c — d), 3(d — ¢)).

Proposition 10. If P, = P,(y, x;I) € L, is not an iterative equation and h € Go(P,),
dh(x)/dx < 0 on I, then P, can be globally transformed into Q,(z;1t, J) whose
Go(Q,) contains —id,.

Moreover, if the subgroup of Gy(P,) formed by increasing functions from Gy(P,)
is an infinite cyclic group with the generators x + a, a > 0, a € R, then P, can be
globally transformed into Q, such that —id;e Go(Q,) and t + a are generators
of the subgroup of Go(Q,) formed by increasing functions of Go(Q,).
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Proof. Due to our suppositions, Proposition 7 yields hh = id;. For t = a(x) in
Proposition 9 we have

aha™'(f) = —t on J=oI),

where «(x) = (x — h(x))/2e C"*!(I), d«(x)/dx > 0. Hence the transformation
<|oc“ "|‘1 “MI2 4~ 1) globally transforms P, into Q,(z, t; J). Due to Lemma 2, Go(Q,) 3
sahe™! = —id,.

Moreover, let x + a, a > 0, a € R be the generators of the subgroup of GO(P,,)
with increasing functions. Evidently x i— h(x + a) is a decreasing element of Go(P,).
According to Proposition 8 we may write

h(x + a) = h,(h(x)),
h, € Go(P,) with dh,(x)/dx > 0. However, h, must be one of the generators, x + a.
Because h is decreasing, h.(x) = x — a. Hence
h(x + a) = h(x) — a.
Now
#x +a)=(x+a—h(x+ a)2=(x—hx)2+a=0aox)+a

or
a(a”!(t) + a) =t + ae Go(Q,), Q.E.D.

V. MAIN RESULTS

Theorem 1. Let P, = P,(y, x;I) e L,, n 2 2. The stationary group G(P,) is formed
by all global transformations of the form

|| =2 by

where ¢ = const. + 0, and h(I) = I, he C**'(I), k'(x) = dh(x)[dx # 0 on I, that
globally transform the equation P, into itself. For each group G(P,) the set of all h
occurring in its elements forms the group Go(P,) with respect to composition.
Here is the list of all possible groups Go(P,) up to C"*'-conjugacy:

1. Functions f:R - R,

atanx + b

x) = Arctan R
f( ) ctanx + d

xeR,

a,b,c,deR, ad — bc = +1,

a three-parameter group both with increasing and decreasing analytic functions,
called the fundamental group in [2];
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2a. f:(0, ) - (0, o),
atan x
ctanx + 1/a’

a,ceR, a * 0, a two-parameter group of increasing analytic functions;

f(x) = Arctan x €(0, )

2b. for each positive integer m:
£:(0, mn) - (0, mn),
atan x

f(x) = Arctan —

———, xe(0,mn),
ctanx + 1/a

a,ceR, a * 0, a two-parameter group of both increasing and decreasing analytic
functions;

3a. for each positive integer m:
f:(0, mn — =f2) > (0, mn — n[2),

f(x) = Arctan (ktan x) and f(x) = Arctan (kcotx), xe(0,mn — =n/2),
keR, k > 0, a one-parameter group of both increasing and decreasing analytic
functions;

3b. the functions f.:R —> R and g.:R - R,

fdx)=x+c, glx)=—x+c, forall ceR;
3c. the increasing functions from 3b;

4a. the functions f,: R - R and g,: R - R,

fx)=x+k, go=-x+k,
k ranging over all integers.
4b. the increasing functions from 4a;

Sa. the functions idg, —idp;
5b. only the identity on R, idg.

Remark. Arctan x means the branch of arctan x + mn that makes the functions f
in 1—3 continuous; then f is even analytic.

Theorem 2. If the equation P,e L,,n =2, is an iterative equation iterated from the
second order linear differential equation (1): y" + p(x)y = 0, pe C"~%(I), and

if the equation (1) is both-side oscillatory then case 1 in Theorem 1 takes place,

if(l) is one-side oscillatory then 2a is valid,

if (1) is of a finite type m and special then 2b holds, and

if (1) is of a finite type m and general then 3a is true for the group Go(P,).
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Case 3b in Theorem 1 occurs when the equation P, is not an iterative equation and
is globally transformable into an equation Q,,(z, t; R) with constant coefficients
that are zeros by the (n — i)th derivatives with odd i:

Qu-i = 0 .

Case 3c is valid when P, is not an iterative equation and is globally transformable
into an equation Q,(z, t;R) with constant coefficients and there is a coefficient
by (n — i)th derivative with odd i that is not identically zero.

Case 4a is true if P, is not an iterative equation, is not globally transformable
into an equation with constant coefficients on R, and is globally transformable
into an equation Q,(z, t; R) with periodic coefficients of the same period, satisfying

() =i —1) = (=1)" @u-i(1)
forte(—o0, ),i=3,..,n
Case 4b takes place when P, is of the form considered in 4a, but (5) is not satisfied.
Case 5a occurs when neither of the above cases takes place and P, can be globally
transformed into an equation Q,(z,t; R) whose coefficients satisfy (5) on R.

Case 5b takes place when neither of the above cases is satisfied.

Theorem 3. Each of the cases listed in Theorem 1 actually occurs. Go(P,) is

C"*l.conjugate to the group introduced in the case:
1. ifn=2and P,isy" + y =00nR,

or P, is an iterative equation iterated from P, for an arbitrary n > 2,
2a. if n=2and P, is y" + y = 0 on (0, 0),

or any equation iterated from P, for an arbitrary n > 2,
2b. if n =2and P, is y" + y = 0 on (0, mn),

or any equation iterated from P, for an arbitrary n > 2,
3a. if n=2and P, is y" + y = 0 on (0, mn — 7/2),

or any equation iterated from P, for an arbitrary n > 2,
3b. if Py is y"Y + y =0 on(—o0, o),
3c. if Pyisy™ + y = 0on(—o0, ),
da. if Py is y"¥ + (cos 2nx) y = 0 on (— o0, ),
4b. if Py is y"V + ¥ + (cos 2nx) y = 0 on (— o0, o),
Sa. if Psisy¥ + y + (sinhx) y = 0 on (— o0, ),
5b. if P, is y"Y + »' + (sinh x) y = 0 on (— o0, ).

Theorem 4. There are 5 possible types of subgroups of increasing elements
of GO(P,,), P,e L, n =2, with respect to the number of parameters:
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1. A three-parameter group that occurs when P, is iterated from a both-side

n
oscillatory second order equation.

2. A two-parameter group that occurs when P, is iterated from an equation of the
second order which is either one-side oscillatory or of finite type and special.

3. A one-parameter group in the case when P, can be globally transformed into
an equation with constant coefficients, and 1 and 2 do not occur.

4. An inﬁ}zite cyclic group when P, can be globally transformed into an equation
with periodic coefficients of the same period on (— o0, ), and neither of the cases
1-3 is valid.

5. The identity only when neither of the cases 1 —4 takes place.

Remark. Each iterative equation P,, especially each second order equation, has
at least a one-parameter group of increasing elements of Go(P,). With the exception
of the case when P, is iterated from a one-side oscillatory second order equation,
each other iterative equation P, has both increasing and decreasing elements in Go(P,).
The group in 3a for m = 1 is conjugate to the group 3b.

Proof of Theorems 1, 2, 3 and 4.

The form of global transformations of any equation P, e L, into itself follows
from Lemma 4.

First let us consider the increasing elements of GO(P,,)‘

Let he Gy(P,) be such that h + id;, dh(x)/dx > 0 on I, and h(x,) = xo€l.
Then P, is an equation iterated from a linear second order equation according to
Proposition 5. Due to Lemma 5, Go(P,) coincides with the group of dispersions of
the linear second order equation and hence is C"*!-conjugate to one of the groups
introduced under 1, 2a, 2b, 3a according to its type and kind, as follows from
Propositions 2 and 3.

Let P, be not an iterative equation. Applying Proposition 6 we conclude that the
subgroup of increasing elements of G,(P,) is either C**!-conjugate to the group in 3¢
and then P, can be globally transformed into an equation with constant coefficients
on (— o0, o), or it is C**'-conjugate to the group 4b, and then P, can be globally
transformed into an equation with periodic coefficients with the same period on
(— o0, ) due to Lemma 12.

If neither of the above cases occurs then the subgroup of increasing elements
of Go(P,) consists of the identity id, only.

It remains to consider decreasing elements of GO(P,',). For the cases 1, 2a, 2b, 3a
this has already been done. Hence, let P, be not an iterative equation.

Let the subgtoup of increasing elements of Go(P,) be C"*!-conjugate to the group
in 3c, and let h € Gy(P,) be such that dh(x)/dx < 0. We know that P, can be globally
transformed into an equation Q, with constant coefficients on (— oo, o0); the sub-
group of increasing elements of Go(Q,) is exactly the group in 3c. All decreasing ele-
ments of GO(P,,) are transformed by conjugacy into decreasing elements of Go(Qy)
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see Lemma 2. Let g € Go(Q,), dg(7)/dt < 0, g: R —» R. Since @, is not an iterative
equation, the condition C in Lemma 6 gives

ra-i(9(1)) . g"(t) = r,_(t) on (—o0, ),

for the first nonzero constant r,_; = r,_(f) + 0. Hence
,g'(t)] =1 on (-, ).
Because g is decreasing, g(f) = —t + ¢, for a suitable ¢, € R. Since Go(Q,) is a group,

—t + ¢ = g(t) € Go(Q,) for all c € R. Hence, if the subgroup of increasing elements
of Gy(P,) is C"*'-conjugate to the group in 3c, and if Go(P,) contains a decreasing
element, then Go(P,) is C"*'-conjugate to the group in 3b, and P, is globally trans-
formable into an equation with constant coefficients on (— 0, o0) for which —idg e
€ Go(Q,), i.e., g,-; = 0 for odd i.

Let the subgroup of increasing elements of Gy(P,) be C**'-conjugate to the group
in 4b, and let i € Go(P,) be such that dh(x)/dx < 0. We have shown that P, can be
globally transformed into an equation Q, with periodic coefficients of the same period
on (— oo, o). Since Go(P,) contains a decreasing element, the equation P, can be
transformed into an equation Q, with periodic coefficients of the same period on
(— o0, ) such that —idy € Go(Q,), see Proposition 10. Thus (5) must be satisfied
on (— o0, o).

If id; is the only increasing element of Go(P,), and h € Go(P,) with dh(x)/dx < O
on I, then P, can be globally transformed first into an equation P) on R, then into
an equation Q, = Q,(z, t; (— o, o)) such that —id_, € Go(Q,), hence (5) is
satisfied on (—o0, c0). This follows from Propositions 7 and 9 if Q,:= T* Py,
where T = (Ioc“'l“”"’/z, o~ 1.

This completes the proofs of Theorems 1 and 2.

The examples' of equations in cases 1, 2a, 2b and 3a in Theorem 3 are obtained
directly from the corresponding cases in Theorems 1, 2 and Lemma 10.

Due to Theorem 2 case 3b, the group in Theorem 1 case 3b is Go(P,) for P,: y" +
+ y=0on (—oo, oo), since this equation is not iterated and has constant coef-
ficients satisfying py—y = ps-3 = 0.

The equation P3: y" + y = 0 on (— 0, o0) in case 3¢ of Theorem 3 is not iterated
and has constant coefficients on (— o0, ), but p;_3 = po(x) = 1 # 0. According

to Lemma 6,
ro(h(x)) . B3(x) = ro(x)

where 7y = p, = 1 or k’(x) = 1. Hence Gy(P5) has no decreasing element and due to
Theorem 2, Go(P5) is the group in 3c of Theorem 1.

The equations y" + (cos 2nx) y = 0 and " + y' + (cos 2nx) y = 0 on (— o0, )
serve as examples for cases 4a and 4b in Theorem 1, respectively, since neither of
them is iterative, both have periodic coefficients on (— 0, oo), and the relation (5) is
satisfied for the former, while the latter has no decreasing elements in its group
G,. Neither of them can be transformed into an equation with constant coefficients.
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Each h € Go(Ps) for Ps: y¥ + y" + (sinh x) y = 0 on (— oo, o) satisfies (h'(x))* =
= 1. Hence h must be of the form h(x) = +x + c¢. However, only for ¢ = 0 these
functions transform P into itself.

For each he Go(P,), where P,:y" + )’ + (sinhx)y =0 on (—o0, ), the

relation
(h(x)® =1

must be satisfied due to Lemma 6, condition C. Hence h(x) = x + c. Since he
€ Go(P,) only for ¢ = 0, the proof of Theorem 3 is complete.

Theorem 4 summarizes the preceding results with respect to the increasing elements
of the corresponding groups. It is a direct consequence of Theorems 1 and 2 if we
recall that each equation iterated from a linear second order differential equation
(1) of a finite type and general (case 3a) can be globally transformed into an equation
with constant coefficients (not necessarily on (— oo, o0)) since each second order
equation can be globally transformed into an equation with constant coeficients, cf.
Lemma 10.
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