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SEMIGROUPS WHOSE PROPER SUBSEMIGROUPS ARE DUO¥)

A. CHERUBINI and A. VARIsco, Milano

{Received October 4, 1983)

Duo semigroups have been studied in the last years by a number of mathematicians:
Pondélicek in [10] and [11], Anjaneyulu in [1], [2] and [ 3] with particular attention
to ideal theory, and the authors in [6], where duo semigroups whose congruences
are pairwise permutable are completely described.

The idea of studying semigroups whose proper subsemigroups are duo (hereafter
called subduo) was inspired by the fact that quasi hamiltonian semigroups, studied
by the authors in [5], have this property (see Th. 1.9). We observe that problems of
this nature have already been studied in several papers, for instance in [12], where
Rédei and Trachtman described semigroups whose proper subsemigroups are com-
mutative, and in [4] where the authors examined semigroups whose proper sub-
semigroups are quasicommutative.

The main results of this paper are a characterization of subduo semigroups in
general (Th. 3.2), and further characterizations of the following particular -cases:
subduo semigroups without idempotents (Th. 3.3), archimedean subduo semigroups
(Th. 2.10 and Th. 2.12) and, finally, subduo groups (Th. 2.6).

Terminology and notation not defined here may be found in [7] and [9].

1. PRELIMINARIES

Definition 1.1. A semigroup S is called duo if every one-sided ideal of S is two-
sided (see [11], p. 20).

It is well-known that a sefnigroup S is duo if and only if, for every a, b e S, there
exist x, y € S' such that ab = bx = ya.

Definition 1.2. A semigroup S is called subduo if every proper subsemigroup of S
(or equivalently every proper subsemigroup of S generated by two elements) is duo.

1t will be shown below (Remarks 2.8 and 2.10) that neither of the conditions “duo”
and ‘‘subduo” implies the other.

*) This paper was written under the auspices of the Italian M.P.L.
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Definition 1.3. A semigroup S is quasi hamiltonian if for every a,be S there
exist two positive integers h, k such that ab = b"a* (see [5], p. 131).

Definition 1.4. A semigroup S is subcommutative if S is not commutative and
every proper subsemigroup of S is commutative (see [4], p. 35 and [12]).

At this point we list several properties of archimedean, duo, quasi hamiltonian, and
subcommutative semigroups, which will be utilized in what follows, and whichare
either well-known or easily verifiable.

o) An archimedean semigroup whose idempotents are in the center is t-archimedean
(i.e. lett and right archimedean).
B) Let S be a t-archimedean semigroup, and a an element of S. If a = xay for some

x, y € S' with xy € S, then a lies in a subgroup of S. Consequently, S has an idem-
potent.

Y) A simple t-archimedean semigroup is a group.

3) A semigroup is t-archimedean with idempotent if and only if it is an ideal extension
of a group by a nilsemigroup.

¢) The idempotents of a duo semigroup (if there are any) are in the center.

) An archimedean duo semigroup is f-archimedean.

n) A simple duo semigroup is a group.

0) A duo semigroup is a semilattice of z-archimedean semigroups.

t) A group is a duo semigroup.

k) A subduo semigroup is either duo or is generated by two elements.

A) Every homomorphic image of a duo semigroup is duo.

p) Every homomorphic image of a subduo semigroup is subduo.

v) A quasi hamiltonian semigroup is duo and subduo.

£) A subcommutative semigroup of order greater than two is a semilattice of -
archimedean semigroups (see [4], Lemma 2.4 and [12], p. 16).

0) A subcommutative semigroup is subduo but not necessarily duo (see [12]).

The aim of this section is to prove that subduo semigroups are semilattices of archi-
medean semigroups. To this end we need to establish certain preliminary facts.

Lemma 1.5. The idempotents (if any) of a subduo semigroup S of order greater
than two are permutable.

Proof. Let e and f be two idempotents of S with ef + fe. Let us examine the
subsemigroups {e, ef ) and (e, fe). We may note that {e, ef ) < S implies ef = efe,
while <e,ef) = S implies f = ex (for some x e S), whence ef = f. Similarly,
{e,fe) = S yields fe = efe, and {e, fe) = S yields fe = f. Since ef + fe, either
ef = f or fe = f. Now, exchanging e with f, we find that either fe = e or ef = e.
The possible cases are that either ef = f and fe = e or e¢f = ¢ and fe = f. But,

since <e, f> = S by Proposition ¢, in each of these cases we have fSI = 2, a con-
tradiction.

631



‘Theorem 1.6. The idempotents (if any) of a subduo semigroup which is not
subcommutative are in the center.

Proof. Let a be an element and e anf idempotent of S with ae + ea. Then
Proposition € implies {a, e) = S. Since {e, ea) < S implies ea = eae and {e, ae) <
< S implies ae = eae, we may suppose <e, eay = S. Thus a = ey for some y € S,
whence ea = a. Now consider the subsemigroup (e, a?>. If <e, a®?) = S, then
a’e = ea®? = a® and the elements of S are e, a, a?, a3, ..., ae. It is immediate that
the only non permutable elements of S are e and a which generate S, thus we have
that S is subcommutative, a contradiction. Therefoie {e, a®>) = S, which yields
either a = a*" or a= a*e (h a positive integer). But a = a*e implies ae = a,
a contradiction. Thus a = a?" and a?"~! is an idempotent. Now, in v.ew of Lemma
1.5 we have that ae = a*’e = a(a*""'e) = aea® ! = a*" = a, another contradic-
tion. We conclude that ae = ea.

Lemma 1.7. A simple subduo semigroup has at least one idempotent.

Proof. Let S be a simple subduo semigroup. If S is left and right simple, it is
a group, and the statement is true. Otherwise, there is an element a € S for which
we may suppose Sa = S. Sa°S = S implies a = xa’y for some x, ye S. Hence
a® = xaa*a®’ya with xa, a?, ya e Sa. Since Sa is duo, we have a? = a?uva® for
some u, ve S', and S has an idempotent.

Theorem 1.8. A simple subduo semigroup S of order greater than two is a group.

Proof. By Lemma 1.7, S has an idempotent. If all the idempotents of S are in the
center, S is a group in view of Propositions a and y. Otherwise, there exist an idem-
potent e and an element d of S such that ed + de, and therefore {e, d) = S, by
Proposition €. Since eS < S implies ed = ede and Se < S implies de = ede, we
may suppose Se = S, whence

(1) d=de.

Moreover, since S is simple, we have e = xdy for some x, y € S, and from (1) and
the fact that {e, d) = S, it follows that

(2 e = ed"

for some positive integer k.

If k = 1, we have ed = e, d*> = dede = de = d, whence S has order two, a con-
tradiction.

If k > 1, then (1) and (2) yield d = de = ded* = ded*”'d. Hence ded*™' is an
idempotent and, by Lemma 1.5, we have d = ded*™'d = ded" 'ed = eded"~'d =
= ed, a contradiction. Thus S is a group.

Lemma 1.9. An archimedean subduo semigroup S of order greater than two
is t-archimedean.
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Proof. If S is simple, the statement follows from Theorem 1.8. Otherwise, S is
a nilextension of a proper ideal I. Since I is an archimedean duo semigroup, it is
t-archimedean by Proposition {. At this point it is easily verifiable that S itself is
t-archimedean.

Remark. A left (right)-zero semigroup of order two is an archimedean subduo
semigroup which is not t-archimedean.

Lemma 1.10. A subduo semigroup S is a semilattice of archimedean semigroups.

Proof. If S is subcommutative, the statement follows from Proposition &. Then we
may suppose S not to be subcommutative. Let a, be S with a = xby for some
x, yeS'. If (b, yxbyx) < S, it results that b(yxbyx) = zb for some z e S', and
therefore a® = xb(yxbyx) by = xzb®y. If, on the contrary, <{b, yxbyx) = S, we
have three different cases:

1) yx e bS' | S'b. In this case it is immediate that b* | a2,

2) yx = yxbyx. Then yxb is idempotent and, by Theorem 1.6, we have a’> =

= xbyxby = xyxb?y.

3) yx = yxbyxwyxbyx with we S'. In this case, putting v = yxbyxwyx, the
element vb is idempotent, ad we have a? = xbyxby = xbvbyxby = xvb*yxby.

Thus, in any case, b? divides a power of a, and the statement is proved in view of
the well-known characterization of a semilattice of archimedean semigroups due
to Putcha.

Theorem 1.11. A subduo semigroup S of order greater than two is a semilattice
of t-archimedean semigroups.

Proof. S is a semilattice of archimedean semigroups by Lemma 1.10. Now, if S
itself is archimedean, the statement follows from Lemma 1.9; otherwise the statement
follows ftom Proposition {.

We conclude this section with a property of duo semigroups which shall be utilized
in the sequel.

Theorem 1.12. Let H = {a, b) be a duo semigroup. If ab + bPa? for every pair
of positive integers p, q, then ba lies in a subgroup of H. Moreover, if H is not
archimedean, ab also belongs to a subgroup of H.

Proof. Since H is duo, we have ab € bH!, whence either
(3) ab=10"
for some positive integer r, or
4) ab = bax + b

for some x € H.

633



Analogously we conclude that either
(5) ba = b°
for some positive integer s, or
(6) ba = yab + b*
for some y e H.

The relations (3) and (6) lead to the contradiction ba = yab = yb"e (b).
Analogously (4) and (5) lead to a contradiction. If (3) and (5) hold, then r = s
cannot be valid since it should follow ab = b"**!a, a contradiction. Then it must
be either

(7) ab=1>b", ba=0b" with r<s
or
(8) ab = bax, ba = yab with x¢<{a).

Now it is convenient to distinguish two cases:

A. H is t-archimedean. Then (7) implies ba = b* "ab = b*~""!(ba) b. From (8) it
follows that ba = ybax. In both cases ba lies in a subgroup in view of Proposi-
tion B.

B. H is not t-archimedean. In this case, we observe that from the relations ab e H'a
and ba € aH' we may deduce in the same way as above that either

9) ab=a", ba=a" with O <m<n
or
(10) ab = zba, ba = abw with z,weH, z¢<b).

Consequently, the relations (7) together with (9) lead to a contradiction since H,
being a semilattice of t-archimedean semigroups (Proposition 8), should be t-archi-
medean. From (7) and (10) it follows that

(11) ba = b*"ab = b*~"zba
From (8) and (9) it follows that
(12) ba = aba"™™ = baxa"™™.

Finally, suppose that (8) and (10) hold. Then ba = yab = ybax; since x ¢ {a),
there exists v € H' such that x = bv. Hence, by (10),

(13) ba = ybabv = ybzbav .

At this point, using the fact that x ¢ {a) and z ¢ <{b), we may deduce from each of
(11), (12), (13) that ba = cbad for some c, d € H', with at least one of them lying in
the t-archimedean component of H which contains ba. Hence it immediately follows
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that ba is in a group. Moreover, by Lemma 1.8 of [5], if H is not archimedean, ab also
is in a group.
The following is an immediate consequence of Theorem 1.12.

Corollary 1.13. Every proper subsemigroup of an idempotent-free subduo semi-
group is quasi hamiltonian.

2. STRUCTURE OF ARCHIMEDEAN SUBDUO SEMIGROUPS

In this section we will provide a description of archimedean subduo semigroups.
To this aim we will preliminarily prove some propositions which will enable us, in
particular, to present a characterization of subduo groups.

Lemma 2.1. Let S be a t-archimedean semigroup. 1f S contains a non commutative
duo subsemigroup H = {a, b), then S has an idempotent.

Proof. By Theorem 1.12, if S is idempotent-free, there are four positive integers
D, 4, i, j such that ab = b”a%, ba = a'b’. Hence it follows that ab = b?~'a'~!(ab).
. b7 1g97 1 and therefore, by Proposition B, we have p = q = 1, that is ab = ba,
a contradiction.

Theorem 2.2. An archimedean subduo semigroup S which is neither commutative
nor subcommutative has an idempotent.

Proof. S necessarily has order greater than two; consequently, by Lemma 1.9,
it is -archimedean. Moreover, S contains a proper non commutative subsemigroup
H = {a, b). Since H is duo, the statement follows from Lemma 2.1.

Corollary 2.3. An archimedean subduo semigroup S which is neither commutative
nor subcommutative is an ideal extension of a subduo group G by a subduo nil-
semigroup N. Moreover, N is duo if and only if S is duo.

Proof. The fact that S is an ideal extension of a subduo group G by a subduo
nilsemigroup N is true by Lemma 1.9, Theorem 2.2 and Propositions & and p. If S
is duo, then N is duo as well by Proposition A. Conversely, let us suppose that N is
duo. If S is not duo, it is generated by two elements a, b (Proposition k) which do
not satisfy both the conditions ab = bc, ab = da for any ¢, d € S'. Consequently,
if ab € G, then denoting by u the identity of G, we conclude that ab = abu. Since
au, bu € G, there exist two elements g, g’ € G such that aubu = bug = bg and
aubu = g'au = g’a. Hence ab = bg = g'a, a contradiction. If abe S\ G, then
denoting by * the operation in N, we obviously have N = {a, b, *) with a x b £ 0.
Since N is duo, there exist ¢, d € N such that a * b = b * ¢ = d * a, whence ab =
= bc = da, a contradiction. Thus S is duo.

Lemma 2.4. Let G be a subduo group. Every subsemigroup H = {a, b) of G is
either commutative or a group.
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Proof. Let us suppose ab =+ ba, and put ¢ = ab, d = aba. It is immediate that
¢d + dc, and therefore the subsemigroup K = {c, d) is not commutative. Since K
is duo, we have ¢d = dz for some z € K\ {d) (z € {d) would imply cd = d’ for a pos-
itive integer ¢, whence ¢ = d'~! and cd = dc, a contradiction). Hence

(14) cd = dex
for some x € K, and analogously
(15) dc = cdy

s

for some y € K. Relations (14) and (15) imply cd = cdyx, whence, denoting by u
the identity of G, we have u = yxe K. Hence u = (ab)" (aba)*' ... (ab)" (aba)*
with h; 2 0, k; 2 0, Y (h; + k;) > 0. Now it is immediate that a~*, b~ € H; con-
sequently H is a group.

Lemma 2.5. Let G be a subduo group and S a proper subsemigroup of G.If ce S
and ¢ '€ G\ 'S, then c is in the center of S.

Proof. If ¢ is not in the center of S, there exists g € S with cg #+ gc. Then the sub-
semigroup L = {¢, g) is not commutative; consequently it is a group, by Lemma 2.4.
Hence ¢ ! € L = S, a contradiction.

Theorem 2.6. A group G is subduo if and only if every subsemigroup of G is either
commutative or a group.

Proof. The “if part” of the theorem is obvious, so let us prove the “‘only if patt”.
Let S be a subsemigroup of G which is neither commutative nor a group. Then S
contains two elements a, b with ab = ba and an element c such that c"'e G\ S.
By Lemma 2.5, ¢ belongs to the center of S. Let us consider the element ac of S.
If ac is in the center of S, it follows that (ab) ¢ = acb = bac = (ba) ¢, whence ab =
= ba, a contradiction. If ac is not in the center, then (ac)™' €S by Lemma 2.5.

Hence ¢™' = ¢ 'a"'a = (ac)™' a € S, again a contradiction.

Remark 2.7. It is evident that every commutative as well as every torsion group is
subduo. As regards non commutative or non torsion subduo groups their structure
is unknown, and its determination seems to be a problem suggesting no easy solution.
It must be observed that even the structure of infinite subcommutative groups is not
yet known (see [12]). Nonetheless, their existence was recently assured by OI’Sanskii
in [8] where an infinite non abelian group whose proper subgroups are cyclic of prime
orders, is constructed. '

We give here some information about subduo groups which may be deduced as
Corollaries of Theorem 2.6.

Corollary A. Let G be a subduo group, and let T be the set of the eleements of G
having finite orders. T is a proper subgroup of G if and only if xa = ax for every
xeT,aeG\T.

636



Proof. Suppose that T is a proper subgroup of G with xa # ax for some x €T,
ae G\T. Then the subsemigroup {x,a) is a group (Theorem 2.6) and a™' =
= x"a"1x"a"* ... (h;, k; non negative integers, Y (h; + k;) > 0). Hence, since T is
a normal subgroup of G, it follows that a~! = ya****2*-- for some y e T. Con-
sequently y~1 = a'*t¥1*k2* g contradiction.

Conversely, let xa = ax for every xe T, ac G\T. Let yeT. If xye G\T we
have x(xy) = (xy) x, whence xy = yx which implies xy e T, a contradiction.

Corollary B. Let G be a non torsion subduo group and T the set of the elements

of G having finite orders. T is a subgroup of G if and only if T is contained in the
center of G.

Proof. Let T be a subgroup, and C(T) its centralizer. C(T) is a group containing
G\ T (Corollary A). C(T) = G implies that G is the set union of its proper sub-
groups T'and C(T), which is a contradiction. Hence C(T) = G and T s in the center
of G. The converse is immediate.

Corollary C. Let G be a subduo group. If H is a normal non abelian subgroup
of G, G/H is a torsion group.

Proof. Let g € G. The subsemigroup (H, g) is not commutative, so its a group

(Theorem 2.6). Then g~* = ag* for some a € H and some non negative integer k.
Hence g**! = ¢ ' e H.

Remark 2.8. The above Corollary C assures the existence of groups which are not
subduo semigroups. Indeed, let us consider a non abelian torsion group 4 and a non
torsion abelian group B. The direct product G = A x Bis not subduo since G/4 ~ B
is not a torsion group. This example also shows that the direct product of two subduo
groups is not necessarily subduo.

Lemma 2.9. Let S be an ideal extension of a group G by an nilsemigroup. Let u
be the identity of G and let a, b be two elements of S. If the subsemigroup {au, bu)
is a group, then {au, bu) < {a, b).

Proof. Since u e {au, bu), we have u = (au)" (bu)*' ... (au) (bu)~ = a"b* ...
...a"b*u for some h;, k; = 0 with Y (h;+ k;) > 0. Let ¢ = a"b* ... a"b". Since
there exists a positive integer n such that ¢" e G, we have u = cu = (cu)" = c"'u =
= "€ <a, b), which proves the statement.

Now we are able to state the following theorem, which provides a classification of
archimedean subduo semigroups. ‘

Theorem 2.10. S is an archimedean subduo semigroup if and only if S satisfies
one of the following conditions:

i) S is a subduo group;
ii) S is archimedean commutative or subcommutative;
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iii) S is an ideal extension of a subduo group G by a subduo nilsemigroup N and,
when denoting by * the operation in N and by ¢ the G-endomorphism of S,
one of the following conditions holds:

A) N is duo, and for every a,beN\O0, the relation a*b % b*a implies

#(a) = [¢(a)]'*", d(b) = [¢(b)]'"" for some positive integer t;

B) N is not duo and, for every a,be N\O, the relation a = b % b * a implies
¢(a) = [¢(a)]""", p(b) = [$(b)]'"" for some positive integer t when {a, b, x) = N,
and G = {¢(a), ¢(b)> when {a, b, *) = N.

Proof. Let S be an archimedean subduo semigroup. If S is either commutative or
subcommutative or is a subduo group, the statement is trivially true. Otherwise, S is
an ideal extension of a subduo group G by a subduo nilsemigroup N, by Corollary
2.3. Let us first show that if a, be N\ 0 with a b + b * a and the subsemigroup
H = {a, b) is duo, then there exists a positive integer ¢ such that

(16) é(a) = [d(a)]""", ¢(b) = [$(b)]""".
In fact, by Theorem 1.12 it follows that either
(17) ab = bPa?

for some positive integers p, g, or ba € G. Analogously, either ba = a'b’ for some
positive integers i, j, or ab e G. Since ab, ba € G imply a * b = b * a, the relation
(17) cannot hold together with ba = a'b’ (Proposition ). Thus we may suppose that
(17) holds together with ab € G. Since H is duo, we have ba € H'b n aH'; moreover,
G is an ideal and contains ab; hence ba € {b) n {a), that is

(18) ba = a" = b*
for some n, s positive integers. From (17) and (18) it follows that
(19) ab=a"="b"

with m, r positive integers. Therefore a™*! = aba = a"*! and b"*! = bab = b**1.
Since a * b + b * a implies m =% n, r * s, the elements a and b are periodic and have
a power which is idempotent. Denoting by u the identity of G, we have a* = b* = u
for a suitable positive integer r. Hence au = (au)'*', bu = (bu)'*?, that is, (16) are
valid. Consequently, if N is duo, (16) hold for every a, be N\O with a x b * b = a.
Suppose, on the contrary, that N is not duo, and let a, be N\O. If {a, b, *) = N,
we have H = {a, b) = S;so His duo and a * b # b % a implies (16). If {a, b, *) =
= N, then <a, b) > S\G. Since S is subduo and not duo (Corollary 2.3), S is
generated by two elements o, 8 (Proposition «). Since o e G (8 € G) implies either
a,be G or ab = ba, both contradictions, we necessarily have o, f € S\ G, whence
o, Be<a, b). Thus S = (&, B> = <{a, b). At this point it is immediate that G =
= {au, bu) = {¢(a), p(b)>.
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Conversely, the statement is trivially true when S satisfies conditions i) or ii).
Now, let us suppose that S satisfies iii). It is well known that S is archimedean, so it
remains to prove that it is subduo. Let a, b be two elements of S with {a, b) = S
and ab #+ ba. We have the following two cases to examine:

1) ab, ba e G;
2) a,be S\NG with a* b # bxa.

In case 1) we have ab = abu, whence
(20) ab = aubu .

If the subsemigroup {au, bu) of G is commutative, it follows from (20) that ab =
= buau = bau = ba, a contradiction. Thus {au, bu) is a group (Theorem 2.6)
and (20) implies ab = bux = yau = yua for some x, y € {au, bu). Since {au, bu) =
< H = {a, b) by Lemma 2.9, we may conclude that ab e bH n Ha.

In case 2) we must observe that, if N = (a, b, *», then N is necessarily duo.
Otherwise, condition B) of the statement implies that G = {¢(a), ¢(b)> = <{au, bu),
whence G < {a, b) by Lemma 2.9. Moreover, N = {a, b, *x) implies S\ G <
< {a, b). Thus S = {a, b), a contradiction. Hence we may obviously suppose
b x a & 0. By the hypotheses, there exist two elements x, y € {a, b, *> \ 0 such that
bxa = axx = yxb. This implies ba = ax = yb with x, ye H. If also a x b % 0,
we conclude in the same way that ab = Xa = by for some X, y € H. If, on the con-
trary, a x b = 0, we have ab € G, whence ab = abu = aubu. If {au, bu) is a sub-
group of G, we conclude in the same way as in case 1) that ab € bH n Ha. Otherwise,
{au, bu) is commutative (Theorem 2.6) and we have ab = buau, whence

(21) ab = bau .

By hypothesis, we have ¢(a) = [¢(a)]'*", that is au = (au)'*!, whence u = (au)".
Moreover, there is a positive integer m such that a™ € G. Therefore we have u =
= (au)’ = (au)™ = a"u = a™. Now (21) implies ab = ba™*"' and the statement
is proved.

Remark 2.11. The following examples show that there are actually non com-
mutative nilsemigroups which are duo and subduo, as well as subduo nilsemigroups
which are not duo; in fact, let N, = <a, b) with ab = 0, a®> = b> = ba, and N, =
= {a, b) with ab = a? = b?> = 0. It is immediate that their multiplication tables
are respectively

1 a b ¢ O [ a b ¢ O
a ! ¢c 0 0 O a ' 0 00O
b c ¢c 00 b 1 ¢c 00O
c 00 00 ¢ 00 00O
0 0 0 00O 0 ! 00 0O

639



and that N, and N, are subduo, but N; only is duo. Every nil extension of a torsion
group by N, or N, provides an example of an archimedean subduo semigroup which
is respectively duo or not duo.

A further characterization of t-archimedean subduo semigroups is provided by the
following

Theorem 2.12. S is a t-archimedean subduo semigroup if and only if it satisfies
one of the following conditions:

i) S is archimedean commutative;

ii) S is archimedean subcommutative of order greater than two;

iii) S is an ideal extension of a group G by a nilsemigroup N, every proper non
commutative subsemigroup H = {a, b) of S is t-archimedean with an idem-
potent and ba e S\ G implies ba = a" = b* and ab = (ab) for three integers
h,k,r > 1.

Proof. Let S be a t-archimedean subduo semigroup. The statement is obvious
when S is either commutative or subcommutative. Otherwise, S has an idempotent u
(Theorem 2.2), consequently it is an ideal extension of a subduo group G whose
identity is u, by a nilsemigroup N (Proposition 8). Let H = {a, b) be a proper non
commutative subsemigroup of S. Then H is duo. Let us suppose H to be non archi-
medean. Then necessarily ab, ba € G: otherwise, by Theorem 1.12, we should have
ab = bPa%, ba = a'b!(p, q, i, j positive integers), whence ab = b?~'a'~'abb’~'a?™",
Since ab # ba, at least one of bP g~ and b/"1a?7! is actually an element of
{a, b). Thus, by Proposition B, we have ab € G and, G being an ideal of S, also
ba € G, a contradiction. Now if the subsemigroup <au, bu) of G is commutative,
we find the contradiction ab = abu = aubu = buau = ba. If {au, bu) is a group
(Theorem 2.6), then au = buxu for some x € H. Hence, by Lemma 2.9, au € H.
Let ¢ be a positive integer such that a’ € G. Then (au)' = a'u = a', whence a' € bH.
Hence a and b are in the same archimedean component of H (Proposition ) which
implies that H is archimedean, a contradiction. Thus H is t-archimedean by Proposi-
tion ¢, and has an idempotent in view of Theorem 1.12. Now, let us suppose ba €
€ S\ G. By Theorem 1.12 we have ab = b”a%(p, ¢ > 0). If also abe S\ G, then
analogously ba = a‘bf(i,j > 0), which implies as above that either ab = ba or
ba € G, both contradictions. So necessarily ab e G. Since H is duo, we have ba e
€ H'b n aH' and, G being an ideal of S, ba = a" = b* for some h, k > 1. Since
ab e H'a, it follows that ab = a™ for some positive integer m #+ h. Hence, a"*! =
= aba = a"*!, whence a" = u for some positive integer n. Now we have (ab)" =
= a™ = u, whence ab = (ab)"*".

Conversely, the statement is obvious when S satisfies condition i), and it immediately
follows from Lemma 1.9 when S satisfies ii). Thus, let us suppose that S satisfies
iii). S is t-archimedean by Proposition §, so it remains to prove that S is subduo.
Let a, be S with ab #+ ba and H = {a, by = S. Then H is t-archimedean with an
idempotent which coincides with the identity u of G. Therefore H n G is a subgroup
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of G, since it is t-archimedean as an ideal of H, and contains an identity. We distin-
guish two cases:

A) ab, ba e G. In this case, since ua, bu e H n G, it follows that ab = uabu =
= bux = yua with x,ye H n G and consequently with ux, yue H. Thus
abe Ha n bH. In the same way we obtain ba € Hb n aH.

B) bae S\ G. Then, by hypothesis, ba = a" = b* and ab = (ab)" (h, k,r > 1);
hence ab = a(ba)"™' b = aa""" Vb = aba""" " = abb*"~V = b~ Vgp.

3. STRUCTURE OF A SUBDUO SEMIGROUP: THE GENERAL CASE

This section deals with subduo semigroups which are not necessarily archimedean.
First of all we state the following

Theorem 3.1. Let S be a non archimedean subduo semigroup. Every Archimedean
component of S is either commutative or t-archimedean with an idempotent.

Proof. Let T be an archimedean component of S. If T is not commutative, it
contains two non permutable elements a, b and H = {a,b) < T <= S. Since T is
t-archimedean (Proposition {) and H is duo, T contains an idempotent in view of
Lemma 2.1.

Now we are able to provide the following classification of subduo semigroups.

Theorem 3.2. Let S be a semigroup of order greater than two. The following

conditions are equivalent:

i) S is subduo;

ii) S is a semilattice of t-archimedean semigroups, every subgroup of S is subduo
and, for every a,be S with {a,b) < S, we have either ab = b’a? (p, q > 0),
or ab = a" = b* (h, k > 1), or ab lies in a group.

Proof. i) implies ii). S is a semilattice of t-archimedean semigroups by Theorem
1.11, and obviously every subgroup of S is subduo. Let a, be S with H = {a, b) c
< S. If ab #+ bPa’ for every pair of positive integers p, g and ab is not in a group,
Theorem 1.12 yields that H (being duo) is t-archimedean, and that ba belongs to
a subgroup of H; therefore, ba lies also in the maximal subgroup of H, which is an
ideal of H. Now the relation ab € H'a n bH*, due to the fact that H is duo, leads to
ab e {a) n {b), that is ab = a" = b* for some positive integers h, k. Now, if h = 1,
the relation ab = a and the fact that H is r-archimedean imply that ab is in a group
(Proposition B), a contradiction. Thus h > 1. Analogously we find that k > 1.

ii) implies i). Let a, be S with H = {a, b) = S. We may suppose that ab lies in
a group, since in the other cases it is obvious that abe H'a n bH'. Consequently,
ab belongs to the maximal subgroup G of the r-archimedean component S,; of S
containing ab. G is an ideal of S,; and, denoting by u its identity, we have au, bu € G,
and au = ua, bu = ub. Now, we must observe that ba satisfies one of the following
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conditions:

(22) ba = a'bl (i,j > 0),
(23) ba=a =b (r,s>1),
(24) ba is in a group .

If (22) holds, we have ba = a'~'abb’~' = (a’~'u) ab(ub’~'), whence bae G. We
arrive at the same conclusion starting from (24). In this case, we consider the sub-
semigroup H n G of G. If H n G is commutative, since aba = abua belongs to
H n G, we have (aba)(ba) = (ba) (aba), whence ab = ba. Otherwise, H N G is
a group (Theorem 2.6),and u € H n G. Hence ua, bu € H n G, whence ab = uabu =
= bux = yua for some x, y€ H n G. Thus we may conclude that abe Ha n bH.
Finally, suppose that (23) holds. In this case we have a, b e S,; and there exists
a positive integer n such that a", b"e G. Moreover, buau = bau = a'u = (au)’,
and analogously, buau = (bu)*. Hence bu = (au) ™' and au = (bu)*~', whence

(25) : aubu = buau

and au = (au)"" V7Y, bu = (bu)*" V6D, Putting t = (r — 1)(s — 1) — 1, we
have u = (au)’ = (bu)', whence u = (au)" = (bu)™ and

(26) u=a"=b".

Now, by (25) and (26), we may conclude that ab = aubu = buau = b*"*'a™*1,

We will conclude this section by a characterization of subduo semigroups without
idempotents. In fact, the following holds:

Theorem 3.3. Let S be a non archimedean semigroup without idempotents. S is
subduo if and only if it satisfies one of the following conditions:

i) S is quasi hamiltonian;
ii) § = <a, b) is a semilattice of three t-archimedean semigroups S,, Sp, S,z;
S, U S, is commutative and the following relations hold:

(27) b%a = bab", ab* = b%ab,
bab = bP*'a, bab = ab?t!
for some positive integers p, q, 1, S.

Proof. Let S be a non archimedean subduo semigroup without idempotents.
If S is not quasi hamiltonian, there exist a, b € S with ab + bfa? for any pair of
positive integers p, q and, since S has no subgroup, we have {a, b) = S by Theorem
1.12. Then S has three r-archimedean components S,, Sy, S,; (two of which are
surely distinct) that are commutative in view of Theorem 3.1. If S, = Sup> Sz Y Sap
is trivially commutative. If S, + S,; + S;, we have {c,d) = S for every ce S,
and d e S\ S,4; hence {c,d) is quasi hamiltonian by Corollary 1.13. Then there
exist four positive integers h, k, m, n such that cd = d"c* = ™™ = ¢~ 1(cd) d™~*.
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Since ¢ and cd are in the t-archimedean semigroup S, if k > 1, it is easily seen that S
has an idempotent, a contradiction. Thus k = 1, and therefore

(28) cd =d'c.
Analogously, we find

(29) de = cd' (t>0).
Let ¢, g € S,5. Then we have

(30) ca=a'c, bg=gb

for some positive integers r, s. If we suppose r > 1, s > 1, we deduce from (30), (29)
and (28) and from the fact that S,; is commutative that cgab = cabg = a'cgb® =
= cga”b* = aW " Vrcgab® = M VrpET DVegab, where A, p, v are positive integers.
But this relation again implies the existence of an idempotent (Proposition B); so
either r = 1 or s = 1. It follows that, if there exists x € S,; such that ax # xa, then
by = yb for every y € S . In other words, either S, U S,; or S; U S,; is commutative.
Then we may suppose in any case that S, U S,, is commutative. Using (28) and (29),
we may find the relations (27) of the statement.

Conversely, if S is quasi hamiltonian, it is obviously subduo. Then let us suppose
that S satisfies condition ii). From the first and the fourth identity of (27) it follows
that b%>a = bab" = ab?™", b®a = bab?*" = ab??*" and in general, b"a = ab\™~Da*r
for every integer m = 2. Since m(q — 1) = g — r, we also have (m — 1) g + r = m,
whence

(1) ba = ab™**

for some 4 = 0. In the same way, starting by the second and the third identity of (27),
we find

(32) ab™ = pmteg
for some p = 0.

Now let us consider an element b"ab* with h, k = 0 and h + k > 0. In view of
(31) we have b"(b"ab*) = b"(b™a) b* = b"ab™**b* = (b"ab*) b™** for every m = 2.
Moreover, consider b(b"ab*). If k > 0, then making use of the last identity of (27)
we get b(b"ab*) = b*(bab) b*~' = b"ab?** = (b"ab*) b2. If k = 0, we have h > 0,
and the first identity of (27) yields that b(b"a) = b"*'a = b"~'b*a = (b"a) b".
Analogous results may be found for the symmetric products (b"ab*) b/. Let us remark
that, for every u, v, w € S* and every positive integer n, in view of the fact that S, U S,
is commutative, we have b"(uavaw) = (b"uav) aw = (awb") uav = (uavaw) b". We
may conclude that S is subduo.
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