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0. INTRODUCTION

Contact problems with friction describe the behaviour of two bodies %, #, being
in contact, provided the influence of the friction occuring on the common contact
surface is significant. Under the assumption of pointwise validity of the Coulomb
law ewerywhere on the contact surface, the contact problems were solved in [5] for
the first time (the Signorini case for a strip in R?). Extensions of the result for suf-
ficiently smooth domains in R for the coercive case were published in [3]. The present
paper is the continuation of the latter paper, the methods of proofs being essentially
based on it.

The bodies %,, « = 1,2, occupy domains.Q,, ¢ = 1, 2, respectively; Q, = R?,
Q, < R®and Q;, n Q, = 0. I', is the common contact part of the boundaries I,
¢ =1,2. The rests I'"'\ T, ¢ = 1,2, are divided into I';. and I';, ¢ = 1, 2, where the
stresses and the displacements are prescribed, respectively. Throughout the paper
we consider the small strain tensors

-

1/0u; oul
e (u)); == (— + = , =12,
( J( ))J (2 <6x- 6x-)>,~j L

Jj i

and also the validity of the linear Hook law between (e;;(u")) and the corresponding
stress tensors (7;;(u')): 7,(u') = aj;, eu’), i,j=1,2,3, on Q, ¢=1,2, where
[u', u*] is a couple of displacements on Q; x Q,. In particular, if Q, is homogeneous
and isotropic, then the Hook law has the form

E Eo
1,(u)= ——eWu)+ ———§;; ‘) on Q,,
J( ) 1+ 0, .I( ) (1 + a,)(l _ 20_‘) Jekk(u) n

where the constants satisfy o, e(O, %), E, >0, ¢=1,2, and §;; is the Kronecker
symbol. The summation convention is applied consistently for indices i, j, k, I, but
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never for ¢«. The equilibrium conditions

(0.1) —a’(;'_f(ﬁhf; ae.inQ, i=123, (=12,
X

J
must be satisfied for the given volume forces (ff)i=1,2,3, ¢ = 1,2.On I, the following
conditions with the evident physical meaning must be fulfilled:

(0.2) T(u) <0, u,—u; <0, T,(u)(u, —u)=0,
03) [1w)| = #|7)] . (1) - FR@) Il — 2] = 0. FT) <0

=u, —u; = AT(u) (the Coulomb law of friction),

where for the couple [u', u?] the stress T(u) is given by the equality T(u) = T(u') =
=—T(u?)and T(u')=(—1)'"" (v;(u") n;), : = 1, 2. The terms with ¢ and n in (0.2) and
in all the following expressions are the tangential and normal components of the
corresponding vectors, respectively. The normal vector n on I', is chosen as the unit
outer normal vector with respect to Q,. The only given term in conditions (0.2) and
(0.3) is the function & (the coefficient of friction). A will be a suitable non-positive
function. Moreover, the equalities

(0.4) u'=uy, ae.onl), =12,
(0.5) Tu')=Ty ae onTly, =12,

must hold, where ug, T, are given, ¢ = 1, 2.

The contact problem with friction is to find a couple of displacements [u', u?]
on ©; x Q, such that the conditions-(0.1)—(0.5) hold. It is semicoercive, iff at least
one of I'}, I'? is of the zero measure.

The Signorini case is the contact problem with Q, rigid and undeformable. It is
semicoercive, iff mes I'! = 0.

1. ASSUMPTIONS. VARIATIONAL FORMULATION OF THE PROBLEM

Throughout the paper we shall suppose that both I'' and I'* are Lipschitzian,
the sets I',, I'., I'y, ¢ = 1,2, possess Lipschitz relative boundaries and are pairwise
disjoint. &#:I',—> R, is Lipschitz with a compact support and 0 < ¢, =
= dist (supp &%, oI',). Moreover, I, fulfils the following conditions:

(1.1) There exist positive constants ko < 1, Ko, r and 4, and &, € (0, (1 — ko) &,
such that for each 6 e (0, 4,) there exists a finite covering U, of I', with the
following properties:

(1.1a) For every Ve, there exists a function ¢, e C*!(R?) such that ¢y(0) =
= ¢y(0) = 0. Denoting by ¥, the map [x,, X5, x3] - [*1, X2» X3 —
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— @y(xy, x,)], we suppose that after a suitable rotation and shift, ¥,(V) is
an open set in R* x (—r, r) containing 0; ¥,(Vn I) = R* x {0}, ¥,(V
NQ)c R x(0,r) and ¥, (Vn Q) = R> x (=r,0). Put B(n,r):=
= B}(0) x (—r,¥), B¥(n,r) := B2(0) x (0,r), B~(n,r) := B}(0) x (—r, 0)
for n > 0, where for a real positive number #, an integer N and M < R¥,
B)(M) := {x e R"; dist(x, M) < n}. For each Ve, such that Vn

N B} soie(Supp #) + O we suppose, moreover, that ¢, e C*!(R?),
[ov]lcz.irey < Kos ¥(V) = B(33, 7), ¥y '(B*(S, 7)) = @, ¥, '(B~(3, 7)) = @,
and ¥, '(B(6,r)) n (I'* v I'*)\I, = 0.

(1.1b) For each 6 € (0, 4,) there exists a system of non-negative Lipschitz functions
¥ = {gy, Ve A;} which is of the class C*>' for such V for which Vn

N B} 50 +00(Supp #) * 0. For each Ve, dist (supp gy, R*\V) > 0 and ¥
is a partition of unity on I',.

L

We suppose that all a;;, are Lipschitz on Q,, ¢ = 1, 2, fulfil the usual symmetry
condition ajj, = ajy, = a;,; on Q, for every i,j, k,1e{1,2,3}, 1 =1,2, and

(1‘2) 0<ay, = \f|—2 a::jkl(x) Eij6 < Ao, < +0,
xeQ,, (eR®, 1=1,2.
2 2
Let f=[f"f*]e[]L(Q;R?), T® = [Ty, Ts]e[[H "*(I'; R?), supp Ty <=
=1 =1
2 —
< Iy, let [uh, ui] € #(Qy, Q,) := [ H'(Q,; R®) satisfy the equality ug/I*\I',=0,
t=1

t=1,2.

Define C*~ := {ge H V*(I',); <g,v) 2 0 Yve H'¥I',), v £ 0 ae. in I} for
¢+, +> the scalar product in L,(I",). Denote by (-, *), the scalar product in L,(,; R®),
2

2
(**)o =Y (*, ). on ] Ly(; R?), by [+, -], the scalar product in L,(I'*; R®) —
=1 t=1

2
— analogously [+, *Jo =Y. [+, *].- For ut, vt € H'(Q,; R®) we define
t=1

2
(1.3) a(u, v) = f ajju ei(ut) eg(v)dx, ¢=1,2, a(u,v) =7y a(u,v).
2, =1

Let A := {ve #(Q,, Qz)j v =ugonl,, v, — vy <0onT.}. Foragiveng,e C*~
define

Problem <g,»- Find u € o such that for every ve X,

(1.4) a(u,v —u) 2 (f,v —u)y + [T 0 — ulo +
+ < Fgus o = vi] = ul —ul>
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In the Signorini case the terms with the index 2 in (1.3), (1.4) and in the other
definitions vanish, a, , = Ay, = +00.
Now we define T,(u)/I", by the following formula valid for « = 1, 2:
(1.5) (= 1) KT (), wy = a(ur, w) — (f1, we),
Vwi e H(Q, R?), wi[*=0, wl*\I,=0.

Definition 1.1. A solution u of Problem {g,> *) is called a solution of the contact
problem with friction, iff #T(u) = Fg, for the corresponding T,(u) defined by

(1.5).

An analogous definition for the Signorini case see in [3]. Of course, for a suf-
ficiently regular solution of the contact problem with friction in the sense of De-
finition 1.1 all the classical conditions are satisfied.

2. PROBLEMS OF FICHERA TYPE

Let & be the space of all rotations and shifts in R?, denote R := {w = [w', w’] e
€ H(Q2,Q,), W, e, w=2xQ, 1=12}, P=R" Let R, :={we®R,
# =2, Ry=RinR Put L()=—(f0v) - [Ts, 0], ¢=1,2, Lv)=
= L['v') + I*(v?) for v = [v', v*] € #(Q,, 2,). In this section we shall solve the
problem provided one of the following conditions is fulfilled:

(2.1) mesTy >0, mesI'; =0 and I*(w®) > 0 for every w’> = +*/Q, for some
«* € & {0} such that w? = O on I',;

(2.2) mes Iy, = mesI'; = 0, L(w) > 0 for eack we # N (R\R,) and L(R,) = 0;

(2.3) in the Signorini case mes I'y = 0, L(w) = L'(w') > 0 for each w' € H'(Q,; R?)
such that there is »' € 2 \ {0} fulfilling »*/Q, = w' and w, < OonT..

Clearly such assumptions cannot be satisfied for arbitrary contact surfaces (e.g.
for a plane contact surface).
We introduce

(24) Jgn(u) = %a(v, U) + L(U) + <'9;Ign,5 lvtl - Utzl> , UVE %(‘Ql’ QZ) >

and denote by | * || the norm in H#/(Q,, ,). If (2.1) holds, then there exist constants
¢, > 0, ¢, = 0 such that

(2.5) Jo(v) 2 &i|v)|x — & Voex .

We denote Ao := A" — [u,, 0]. To prove (2.5), we assume the contrary. Hence
we can find a sequence {1} = #y, |v;]|» = + oo such that

(2.6) 0= Eklim Houlr a(wi, wi) + a*(up, we) + Lw) ,
=+
*) In what follows, we shall write “{g,»’* instead of “Problem {gp)”-
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where w,, = v,/||vi|# € 7. Let w, be the weak limit of {w,} (after passing to a suit-
able subsequence). For the corresponding orthogonal projection ITy onto 9 we obtain
a(wy, w,) = a(ITgwy, Myw,) —> 0. From (2.6) and the Korn inequality, w; — 0 and
ITyw, — 0. Hence w, > woe A N R, |[wo|» =1, wy = 0 and(wj), = 0. However,
(2.6) yields L(w,) < 0 which contradicts (2.1).

If (2.2) is satisfied, J,, does not depend on elements from R,. Putting P, = R,
we can find ¢, > 0, ¢, = 0 such that

(2.7) Jo(v) 2 &) — & Yved 0P,

The converse assertion yields the existence of a sequence {v;} = A N By, [v ] -
> + 0, vf|vfl o = we = woe & A P, such that (2.6) with ug = 0 holds. Hence
Hyw, =0, we—> woeR, N A, |wo|le =1, L(wo) <0 which contradicts (2.2).
The case (2.3) is analogous, there are &, > 0, ¢, = 0 such that (2.8)

(2.8) a(v,v) — (f,v) — [To,v] 2
2 & [v] goirsy — &2 Yoe #H(Q R?), v,[[ =0,

where we have omitted the indices 1 in the corresponding terms. For the above used
technique cf. [4].

Analogously as in [3] we are able to prove the existence of a solution of <g, for
every g, € C*~ and the continuity of the operator ®y: Fg, > F T,(u), single-valued
due to the uniqueness of ITg of the solution of {g,». The inequalities (2.5), (2.7), (2.8)
ensure the uniform boundeness of &, on C*~. Now we use the technique developed
in [3], Secs. 3 and 4, and the Tichonov fixed point theorem to prove the existence of
a solution of the contact (or Signorini) problem with friction under one of the assump-
tions (2.1), (2.2), (2.3) and one of the following conditions:

ap 1a Ao,y + Ao s
(299) F. < \/(M) o Awat A
“ |m 240,140,2 \/(ao,on,x) + \/(ao,on,z)

- 2
for A,y < Ay, and Go2 5 (Ao.2 = 4o.1)" .

ao,1 44, 140,2

(90) Il < J(*5252%) S T

_ 2
for Ay, < 4o, and o2 < (figv_z__f&ll :

ao,1 444 140,2

(2.10) |#].. < \/ <&> in the Signorini case
24,
(II|| is the norm in L(I)).
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If both #, and 4, are homogeneous and isotropic, the estimate for | # |, in (2.9),
(2.10) can be replaced by (2.11), (2.12), respectively, where o, are the appropriate
Poisson ratios, E, the corresponding Young moduli of elasticity,

1—-o0 E s t
s,=——t, t,=—", =12, v= [ and T =-2:
1 — 20, 1+ 0, S, t

(2.11)

Lt sy + /sy .
Fl, < INTL T 2NT2 Gf p24& T 20— 2/v or ve0,}&
1#1 3 (2818,) 1y Y sy + 1, Ys, v :

&T7el0,—> \ or vedh,4&T 20,
1—2v

2 D
F|, < . , if ped0,HD&T = —,
“ Yes) 1+ Y1+ 1)7) oL 1—2.o
1 2
Fllo < . if p24&7 €<0,0—2./v);
171 Y(@sy) 1+ 1+ ) < Vo)

(2.12) 1. < J(; - Z)

Theorem 2.1. Let all the suppositions of Sec. 1, (2,1) or (2.2) and, furthermore,
one of the conditions (2.9) or (2.11) hold. Then there exists a solution of the contact
problem with friction. If all the suppositions of Sec. 1 for the Signorini case, (2.3)
and (2.10) or (2.12) hold, then there is at least one solution of the Signorini problem
with friction.

Remark2.1. As aq ,, Aq,, in (2.9), we can take lim inf €72 atjlx) €
§—0 xeBg.si’(suppf)nQ.
&eR

lim sup €|~ atju(x) &ijéu» respectively, instead of the constants from
-0 &eBs3(suppF)nQ;
&eR?®

(1.2). The case (2.10) is analogous. The same assertion is true for the coercive case.
The reader can easily reformulate (2.9) provided 4,,; = 4o .

Remark 2.2. More regular solutions of the contact problem with friction can be
found both in the coercive and the semicoercive case. For instance in [2], existence
of a solution with T,(u)e L,(T,), u/T . H'(T';; R*) for Q being a strip in R? is proved.

3. TWO-DIMENSIONAL SIGNORINI PROBLEM WITH A STRAIGHT
CONTACT SURFACE

Let @ = Q, « R%, I, = (x4, x> x {0}, x;, x,€ R* U {—00, + 0} (after a suit-
able rotation and shift). We assume that n/I’, = [0,1] and I'y = I'\T,. Let the

appropriate suppositions of Sec. 1 be valid in their two-dimensional modification.
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Denote L(w) = —[T,, w] — (f, w) (the index 1 is omitted), we H'(Q; R?), R :=
= {weH' (% R?), 32 Z, w/Q = (@}, B =R, ¢, = ([x,y]~[1,0], [x,y]e
€R?), ¢, = ([x,y]~[0,1], [x,y]eR), ¥ = ([x,y][-y.x], [x,y]eR?),
R’ = sp ¢;, R” = sp {g,, ¥}, where sp denotes the span. Of course R’ = A :=
= {ve H'(Q; R?); v,/I', < 0}. Our purpose is to prove the following theorem.

Theorem 3.1. Under the suppositions stated in Sec. 1 let L(¢,) = 0, let ve A N
A R\ {0} imply L(v) > 0. Let |F ||, < /(1 — 20)/(2 — 20)) in the homogeneous
isotropic case, | F||,, < \/(ao[24,) in the general case. Then there exists a solution
of the Signorini problem with friction.

Proof. Without a loss of generality we suppose x; = 0, x, = 2n, & > 0,supp ¥ <
< (e, 2n — 4e). Let g e C>'(R?) have dist (supp ¢, I'y) > 2¢, let suppg <
< (0,27) x (—1,1). Let o(R?) =<0, 1), ¢/{3¢, 2n — 3e)> x {0} = 1. Analogously to the
procedure used in Sec. 2, for every g, € C*~ \ {0} there is a minimum point of the
functional J, (v) = }a(v, v) + L(v) + <97]g,,], |v,l> on A . J, does not depend on
elements of %', hence we can find one of its minimum points u on #" N (B @ N"),
where it is coercive, and for every r € R, u + r¢; is a minimum point of J, on A",
Because of a suitable analogue to (2.8) and of the inequality

(31) Jofu) S 7, () < 1,(0) = 10) = 0, g,e€*,

which is valid for every solution of the problem <g,>, there is a constant K indepen-
dent of g, and such that IIgegu < K. The operator ®,: #g,+— 7 T,(u) acting
from C*~ into itself is continuous. Namely, let Fg" — Fg0 + 0 in H '*(I,),
then (.Q’Ig,',”l, (1)) > ko, m =0, mg, mg + 1, ..., for a suitable m,. Hence
(ko/N/(2)) [Tt /2,1, S <F|g7], |(Tn ). > < 2 F g, (T gt),|> < const, m =
=0, mgy, mg + 1, ..., provided u,, is a solution of {g}>. Now, there are constants
k', k” > 0 such that for every m = m,

(3'2) k/”H*Bum - H‘JS“O“%,Q = a(“m — Ug, Uy — uo) =

= ”ﬁg:‘ - 9793”—1/2,&[ “0”1,9 + ”%.”1,9] S K| Far - Zay| -12.r. -

Hence & T,(u,) - & T,(u,) in H™V*(I',). If Fg) — 0, then there exists a sub-
sequence of {u,} (denoted by {u,} again) such that IMTygut, — & € H'(Q; R?).
For each ve A,

(33) Jo(ﬁ) é 11__ Jo(“m) é Tﬁ-ﬁ Jo(um) é H_I'H Jg,.'"(um) é

m=+ oo m— + o0 m—+

< lim J,.(v) = Jo(v),
m—+ oo

hence @ solves <0, Jo(@) = lim Jo(u,) (put v = @ in (3.3)). In particular,
m=+

a(uy, u,,) — a(@, ). This together with the Korn inequality yields ITyu,, — ITyil
in H'(Q; R?) and T,(u,,) - T,(u,) in H™"*(T,).
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The proof of regularity for e (0, 1) and the estimates making the use of the Tichonov
fixed point theorem possible require a certain modification due to the non-existence of
a satisfactory estimate of ITg.u for u solving {g,». In the variational inequality to
<g,y — cf. (1.4) — we put u + o(ITyen-u)-» — Myen-u) for v, in the shifted ine-
quality we put u_, + o(Tyguu — (Tgent)-s) for v_, (u_(x) = u(x + h),
h = [h, 0] e R"). With the exception of the term

(34) s = fjwlhl"“z“(@*"lgnl, o] = [u> + (F|9a))=ns [0 — |u]-1>) di

all the other terms do not depend on ITy.u and can be estimated as usual (cf. [3]).
Denote « = ITygy.u, let Iyu = qp; = g€ R'. Because of the suppositions on
supp & and g we can assume that

Uy = (Q“t)—h +4q, (vr)—h =0« +4q, U, =0« +4q, (ut)—h = (Q”t)—h +4q,

for ,hl < ¢ and we obtain

)—;1 - g’vlgn|s '(Q”I)—h + ql - {Qﬂ' + ql> dh +

In

(35) s =JE |h| =172 (F

+J. |II|_1_2’<=7IQ,,|, |Q(“t)—h + (1 - Q) “; + [1| - I”t + ‘1|> +
|hlze

s Jowr + (1 = @) (w)-n + a| = |()-s + q|> dh.

The second term in (3.5) can be estimated by

thv 2”3’_“00 “9%”—1/2,1(1 le((e)-n = @) 1/2,r: !h|~1_2a dh <

+ (7

4
= aszu ”y”oo “an“—I/Z,Rl “Q”“l/Z,Rl —g kl(g’ aafs TO, Q) ”‘0/7“00 “an”-l/Z,R1 .

Denote & = |o«, + q|, & = &_, — @ and the first term in (3.5) by #,. We have
(3.6)

¢ 2 —1-2a 1z ¢ hl| 2 —-1-2 12
I §f I(#9.)-n— F 912 12,00 [] dh) (J 19713 )2, 5 || adh) =

£ 121 [leol-er j(ﬁi—)ﬁ) + Ki(®) negnn_m,m} .

(o) i)

where
BN el = j f s 'ﬂhlz i) =) gy gn ) we ma(RY),
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¢(a) will be given in (3.10) and K («) is a suitable constant. Naturally
+o0 M+
f f (@-p — @) |h| 7' 72 dx dh <
+ oo +co—
= f f ((ue)-n = cun)? - [n| 7172 dx dh < ko(f, Tos 0)
19072 s d

so it remains to estimate the most important term [°,
Supp & = (+¢, 2n— &), hence

(3.8) |12, _j "J'2"<gh(’2 = fh(”) dxdy + 2f f (xg'f")y)zdxdw

+ 2f f (xglf")y) dxdy .

The sum of the second and the third term in (3.8) is equal to

o (o) dx _ e
i o x(21r -x) 8(21‘C f (@) = )" d d

f lll o 8(21r e)j ((0e)-1 — 0e,)* dx dh < ks(e, o, f, Ty, 0) .

Let us introduce the 2m-periodical function @ such that w/{0,2n) = ®[<0, 2r),
I = w_, — w. We have

[ f <§"(x3_ f"(y)) dx dy = f f (.9”()2 - ih(y)) dxdy <

0

< f |£,_2J ($"(x + £) — "x))* dx d#, lh’ <e.
— o0 )
For a 2n-periodical function F and o€ (0, 1) we introduce a seminorm || by
+o M2n .
69 r = [T - pp axan.
—w J 0

We define
(3.10) (o) = 2272 f

*t® sin? ¢

ltll+21
-

Lemma 3.1. For every o, f€40,1), a + f < 1, and for every 2m-periodical
function F such that one of the parts of (3.11) is finite, we have

ey [ e ne = DD g,y
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+
Proof. Let F(x) = (2n)"'/2 ¥ s,e™*(the Fourier expansion), where s, = (1/y/(21))-
k=—o0
[ F(y)e™™ dy — the conveigence is in the sense of L,(0, 2r). We have

G12) (F12= X Jof [T - e o= o) 3 (s e

Hence

[ s = 2y 1205 = ) 5 e [l e oa -

- c(2) e(B) 4 )2
€D ez,

Applying Lemma 3.1 to F = w, we obtain

[ (fo-a= ol i an - A 17 [0l ) 0l <

—w® C(% + a) o lhl2+2a

e3) elo) ([ ((ewr)=p — @) x o
ém[—mj Wd dh+k4(f,To,Q’ )
Summing up this estimate, (3.5), (3.6) and (3.8), we get
= \|F c(o i =) ! o 1]
(313) = Mw[ ( >J(C(% w0z + Kl \lggn\\—uz,R]
- [u“rQ“1/2+a,Rl + ks(sa o, f, Tos Q)] + ké(ff T, Q) .

Carrying out the appropriate estimations like in Sec. 2 of [3] and using (3.13),
we obtain

- o0

jml”\_““ a((e«)-1 — e«,(e#)-n — o) dh <

S(1+¢) 7w \/(2*@()—2%;@) Llegnll-1/2+a,r: + K() @9 - 1/2.5:] -
(] 1 ttes = e @ - e ah) s sefens To0)] +

+ kg(f, To, 0,8"), & >0 arbitrary,
hence

(3.14) (jlhl (@)1 — 0us (04) -4 — 4 dh)‘” <
< (1+9)|#]. j(M) Clogal o2 ams + K(@) gl -2 +

+ ko(e, o, €, 0, f, Tp) -

628



The use of the uniform boundedness of ¢ T,(u) on H ™ '/*(R") (defined by means of
(1.5)) and of the equivalence of the norms [|*||_y/544z and ||*[ -1 240k + K(%) .
A =1/2,r: on H™2*%(R") completes the proof.

Remark 3.1. In the 3-dimensional case, if I, is strainght in only one direction,
an analogous theorem can be proved by the same method. If I', is part of a plane,
then existence is still an open problem because of the rotation around the axis per-
pendicular to the plane.

Remark 3.2. If L(R") = 0 then for each ve H# with v/T' e L,(I',) there exists
0o € R' such that r + go¢, € . Provided g,e C*~ n H ™ '/?*%(T,), the solution
u(g,) of

Problem (g,)’.
J,(v) > min, veH,

has I ~traces in H'/2*%(I',), hence in L(I",) (the proof uses analogous arguments
as for <{g,>). For every ve # with v[I', =0, {T,(u),v,> = a(u,v) — L(v) = 0.
So T,(u) = 0 for every u = u(g,), g, € C*~ nH~'/2**(I,), and the set of all solutions
of <0}’ is exactly the set of all solutions of the Signorini problem with friction in the
described case.

Remark 3.3. The problem with a given normal displacement and with friction in
the Coulomb sense (see [1]) can be solved by the same methods as those used
for the Signorini problem with friction. The estimations for maximal admissible | # |,
for the existence theorem are identical, the other sufficient conditions are very similar.
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