Czechoslovak Mathematical Journal

Tadeusz Bromek; Maria Moszynska; Krzysztof Prazmowski
Concerning basic notions of the measurement theory

Czechoslovak Mathematical Journal, Vol. 34 (1984), No. 4, 570-587

Persistent URL: http://dml.cz/dmlcz/101983

Terms of use:

© Institute of Mathematics AS CR, 1984

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/101983
http://dml.cz

Czechoslovak Mathematical Journal, 34 (109) 1984, Praha

CONCERNING BASIC NOTIONS OF THE MEASUREMENT THEORY

T. BROMEK, M. MoszyNskA, K. PRAZMOWSKI, Wagszawa

(Received November 25, 1982)

Introduction. This paper was inspired by our cooperation with statisticians who have
been interested in the measurement theory as a tool for describing phenomena
appearing in statistical practice and research. Applications to statistics will be the
subject of another paper. The aim of this paper is to present the basic notions of the
measurement theory in a precise and slightly generalized form, to clarify the role of
relational structures, and to show to what extent these structures can be modified
without changing the type of a scale.

Section 0 contains model-theoretical preliminaries. For a comprehensive treatment
the reader is referred to Chang, Keisler [2].

In the classical approach, the measurement theory deals with classes of homo-
morphisms of relational structures.

In Section 1 we generalize the basic notions of the measurement theory (cf. e.g.
Roberts [3]) replacing the set of homomorphisms Hom(B,, B) by an arbitrary class #
of functions from the universe Q, of B, to the universe Q of B.

Section 2 concerns the family & = Hom(B,, B) for arbitrary structures B, B.
We examine the regularity and the type of a scale and their dependence on the under-
lying structures.

In Section 3 we consider simple measurement scales: nominal, ordinal, interval,
and ratio. We first show that under the assumption of regularity these four kinds
of scales are types in our sense. Next we try to answer the question what possible
structure B may appear when f: B, — B is a scale of one of these four types In 3.12
we give some comments on Bartoszyfski’s paper [1].

Section 4 concerns composed measurement scales, i.e. scales of the form f =
= (fys ..., f,) with all f; being simple scales.

0. Preliminaries. Let us start with some basic notions of universal algebra.

Let B=(2,%,Z) be a relational structure with the universe Q, the indexed
family of relations # = (R;);e4, and the indexed family of operations X = (0,,),en-
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The signature of B is understood to be the pair of sequences of natural numbers,

S(B) = ((m).)}e/i’ (nu)uEM) (’nb nu g 1)
where m; is the arity of R, and n, is the arity of o,,.

Let By = (20, 20, Z,) and s(B,) = s(B). A homomorphism of B, into B is a func-
tion f: Q, — Q satisfying the following conditions:

(%) VieA Roy(xy,.... xn) < Ry(f(xy), ..., f(x0))
and
(%) YueM x = oo, (xy,....x,) = f(x) = a,(f(xy), ..., f(x,) -

Clearly, every n-ary operation ¢ may be treated as an (n + 1)-ary relation:
R(Xg, o Xpiq) 1 Xppqg = 0(X1, .00 X,)
which will be referred to as induced by o. Notice that
0.1. If Ry, R are induced by o, g, respectively, then for every injective f,
f e Hom((2o, 0y), (2, 0)) = f € Hom((2o, Ry), (2, R)) .

However, if f is not injective, then the above implication fails.
Indeed, according to the terminology adopted e.g. in Chang, Keisler [2], the con-
dition () defines a strong homomorphism.

Setting
JR) 1= {(f(x1)s s S(xm))s R(X1, s Xm)}

for an arbitrary m-ary relation R on Q, we can replace () by the equivalent con-
dition
(*) VieAd f(Ros) = R, |f(Q).

We use the symbol Hom(B,, B) to denote the set of homomorphisms from B, to B.
We often write “‘f: By — B” to denote a homomorphism in Hom(B,, B).

As usual, f: By — B is an isomorphism iff there is a g: B — B, inverse to f. We
denote by Iso(B,, B) the set of isomorphisms from B, to B and by Aut B the set of
automorphisms of B, i.e.

Aut B = Iso(B, B).

Since any function fe Q% is treated here as a subset {(x,f(x)); x € Q,} of the
Cartesian product Q, x Q (not as a triple (f, Q, 2)), we assume that

Q cQ=(Q)° .
When dealing with definability (cf. 2.6 and 2.7), we use formulae of the first order

predicate language £ without identity. Its specific symbols are those for operations
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and relations in B. Hence, whenever the symbol ‘="’ appears in a formula of £,
it is treated as the predicate for the identity relation = which consequently has to be
an element of the family £ in B.

For any formula o of %, we denote by “a®” the relation in B defined by «. Similar-
ly, for any term 7 of #p, we denote by ““t®” the operation in B defined by 7. That is,

W(xy, .o x) iff Bl= ofxy, ..y Xp)
(i.e. ais satisfied in B by (x4, ..., ;) € Q)

and
x=1xy, .., x) iff Bl (x=1(xg,...,%x)).

1. Regular and homogeneous families of functions. Let 2, and Q be two non-empty
sets and let & < Q%,

1.1. Definition. A function f e & is regular with respect to & iff
Vge F 3o:f(Q)—- 2 (9=0f).
The class & is regular iff all functions in & are regular with respect to &#.
It is easy to show (cf. Roberts [3, p. 60])
1.2. A function f e & is regular with respect to F iff
VgeF Vx,yeQ, [f(x)=1(y)=g(x)=9()].
As an immediate consequence of 1.2 we obtain

1.3. Every injection f € Q% is regular with respect to F.

1.4. Definition. Let fe #. A function ¢:f(Q,) > Q is admissible for f with
respect to F iff of € #. The set of all functions admissible for f with respect to &
will be denoted by @4(f) (or simply ®(f) if it does not lead to a confusion).

1.5. Definition. The class & is homogeneous iff

Vi,geF Bu(f) = Ps(g).

The next two propositions concern the connections between the homogeneity and
the properties of admissible functions, under the assumption of regularity. Notice
that the latter (1.7) is almost converse to the former (1.6).

1.6. Proposition.*) If there is f € # regular with respect to & with ®z(f) being

*) For particular cases of 1.6 see Roberts [3, p. 67, Th. 2.2.].
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a transformation group of f(Qq) then
(i) &# is regular;

(il) @4(g) is a group for every g e #;
(i) & is homogeneous.

Proof. Take g e &. Since &(f) is a group, obviously g(2,) = f(,). Since f is
regular, there exists @ € ®(f) such that

(1) g=0f.
(i): Let h e #. There is { € &(f) such that
() h=yf.
By (1) and (2), since @(f) is a group,
h=@o ')g.

Thus g is regular, which proves (i).

(ii): Notice that
3) o(g) = o(f) o .
Indeed,

Ve <I>(g)¢>l//go e(b(f)@w = (;p(p) = @(f) o .

This proves (ii).

(iif): We have
4 (f) " = o(f),
which combined with (3) proves (iii). g

1.7. Proposition. If & is regular and homogeneous, then for every f € %, theset
D 4(f) is a group of transformations of f(2Q,).

Proof. By homogeneity of &

(o) = 9(90) for every f,ge#.

Take fe &. Clearly id,q,, € 9(f).

Take ¢, € ®(f). Then ¢ € D(¢f), because ¢f € F and F is homogeneous. Thus
Yo € ®(f). Finally, take ¢ € &(f) and let

(1) 9=o0f.
Since g is regular, there is y € ®(¢) such that
) f=Yg.

By (1) and (2), 9 = @yg and f = Y¢f, whence Y = idjq, = Y¢. Thus ¢ = o "
Since &(g) = P(f), it follows that Y e &(f).
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Let us introduce the following relations on the class & :

1.8. Definition. Let f,g € £#.

(i) f < g :+30:f(Q) » 2 (9 = of);
(i) frg=f<gnarg<f

Evidently
1.9. < is a quasi-order and thus ~ is an equivalence relation.
1.10. Definition. The type [ f] of f is an equivalence class of f with respect to ~

1.11. (1) If f is regular with respect to &, then f < g for every ge F.
(il) If & is regular, then & = [ f] for every fe &.

Let us notice that

1.12. For arbitrary families & |, & , of functions from Q, to Q,

() #1 e Fr=>Vfe F, b5(f) © 05(f);
(i) if fe (j].?ﬂ then

‘p?f.v(f) = iU%i(f) and ‘Prl)f.»(f) = O‘I’f.-(f) .
113. Deinition. #(%) := (7).
Then obviously
1.14. If & is homogeneous, then B(F) = Dg(f) for every fe &F.

As an example let us consider the family defined as follows.

1.15. Definition. For any f, € Q% and any group of transformations G, of fo(%o)>
let

F(G, fo) := {¢fo; 9 € G}
1.16. F(G, f,) is regular.

Proof. Take f, g € F(G, fo). There exist ¢, € G such that f = ¢f, and g = y/fo-
Then f, = ¢~ f and thus

g= e )f, where V9 'eG.

Hence f is regular. g
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1.17. F(G, f,) is homogeneous. Moreover,
if & =FKG,f,), then ®5(f)=G forevery feF.
Proof. By 1.4 and 1.15, for every f € & we have
Yedu(f) > UfeF=3peCG (Uf = ¢f),
and f = ¢'f, for some ¢’ € G. Thus
Yvo'fo = ¢fo,
whence Y@’ = ¢. Therefore Yy = ¢(¢’)”" € G; hence P5(f) = G.

On the other hand, let Y € G and fe &. Then f = ¢'f, for some ¢’ € G, whence
Yf = (Yo') fo with Y9’ € G, ie. Yf € F. Thus Y € D5(f); hence G < P4(f). m

As a direct corollary of 1.7 we obtain

1.18. If # isregular and homogeneous, fo € # and G = ®4(f,), then G is a group
and

F = F(G, f,) -

Let us now consider the product of families &, ...,

N

1.19. Proposition. Let &, = (Q,)%, i = 1,...,n, and let
Fi=F x .. xF,c(Q x..xQ).

Iff = (f1» ... Ja) € Z, fi are regular with respect to #; and f(Qo) = Q;, then
(i) ¢$(f) = ¢.¢x(f1) X .o X ‘pm(fn)

and
(ii) f is regular with respect to &.

Proof. (i): The inclusion o is evident. Let us prove =. Take ¢ € ®4(f). Then

ofeFy x ... x F,, ie of =(gy,...,g,) for some g;e F,, i = 1,...,n. Since f;
is regular,

g; = Y.f; forsome Y,edz(f)), i=1,..,n.
Thus

(1) (P(fl""afn) = ('»I’lfh"') ll/nfn)

and, clearly,
(2) ¢ =(¢1,--»ps) forsome @;:f(Qo) x ... X f( Q) = 2 X ... X Q,.

By (1) and (2), ¢ = (Y4, ..., ,) and thus ¢, depends only on the i coordinate.
Therefore ¢ € Pg,(f1) X ... x Pg(f,)-

Proof of (ii) is routine.
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Let us turn to the particular case described by 1.15.
1.20. For f; e (2;)™, let G; be a group of transformations of f(R,), i = 1, ..., n,
and let G be the direct product of Gy, ..., G,.
G=G; x...xG,.
If f=(f1s oo s fu): Qo= Q4 X ... X Q,, then
FG.f) = F(Gy, fy) x ... x (G, f,).
Proof. By 1.15,
F(Gi’fi) = {(pifi; @; € Gi} for i=1,...,n,
and
FG.f) = {of; 9 € G} .
Since every ¢ € G is of the form

Q= ((Pla"" (pn) WIth (PiEGi,
we have

F(G,f) = {(¢1f1, s (Pnfn); P; € Gi} = F(Gl’fl) X ... X F(Gmfn) c m

Of course, 1.19 and 1.20 are valid for products of arbitrary collections (&)
and (G;);er, not necessarily finite. '

iel

2. Families of homomorphisms. We are going to investigate the case which is
classical for the measurement theory, when & = Hom(B,, B) for some relational
structures B, = (Qo, %o, Z,) and B = (Q, #, X) of the same signature.

In particular, a homomorphism f: B, — Bis called a (measurement) scale whenever
Q < (Re)" for some n > 1. *)

Let us start with two simple examples.

2.1. Example. Let B, = B = (Re, max), ie. Z, = 0 = Z and X, (= X) consists
of one binary operation max. Define f: Re — Re by the formula

. (o if x| =1,
fx):=4x—-1if x 21,
x+1 if x £ -—1.

Then f € Hom(B,, B), because
f(max (xy, x,)) = max (f(x,), f(x;)) -

By 1.2, the function f is irregular with respect to Hom(B,, B), because for g =

*) Following Roberts [3] we use the symbél Re for reals.
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= id : Re —» Re we have
g € Hom(B,, B) and g(—1) * ¢(1),
while f(—1) = f(1).
By 1.3, g is regular with respect to Hom(B,, B). m

2.2. Example. Let B, = ((Re)?, =) with = defined by the formula

(xb xz) = (Ynyz) X =Y
and let B = (Re, =).
Let f: (Re)*> > Re be the projection
f(xg, x5) 1= x, .

Then f is regular with respect to Hom(BO,B), though f is not injective (counter-
images of points are equivalence classes of =). g

In what follows we refer to a scale f as regular if it is regular with respect to
Hom(B,, B).

2.3. Proposition. Let f € Q% and let R be a relation on Q. If

Ry :=f"'(R),
then
(i) Ry is the unique relation on Q, such that f € Hom((2o, R,), (2, R));
(i) if R Q% is an equivalence (a weak order) then R, is also an equivalence
(a weak order);*) **)
(iii) if R is reflexive and antisymmetric (in particular if R is the identity), then f is
regular.

Proof. (i) follows directly from the definition of homomorphism.
(ii): If R is reflexive, symmetric, transitive, connected, then so is, respectively, Ro*).
This proves (ii).
(iii): Take g: (2o, Ro) = (2, R).

If R is reflexive and antisymmetric, then

f(x) = £(y) = R(f(x). f(»)) A R(f(y), f(x)) =
= Ro(x, ¥) A Ro(y, x) = R(g(x), () A R(9(y), g(x)) = 9(x) = g(»).

Thus, by 1.2, fis regular. g

*) Weak order is understood as a transitive and connected binary relation.
**) In general, if a universal sentence # of the 1%! order language without =) is true in (2, R),
then B is true in (g, R) as well.
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For & = Hom(B,, B), the set @ ,( f) and the homogeneity of & are characterized
by the following

2.4. Proposition. Let # = Hom(B,, B). Then
(i) ¢(f) = Hom(B ]f(Q), B) for every fe F;
(i) &# is homogeneous if and only if

F(Q) = g(Q,) forevery f,geF .
Proof. (i): By 1.4, (*') and (*x) from Section 0,
¢ € D5(f) « ¢of € Hom(B,, B) <
< [Vied ¢f(Roz) = R, | ¢ f(Q) A Ve M ¥x € (Q0)™ of gou(x) = 0,0 f(x)] =
<= Vi, u [0(R) = R, | ¢ f(20) A ¢0,f = 0,0f] = ¢  Hom(B | f(2), B) .

(ii) follows immediately from (i). m

2.5. Propesition. If Hom(Bo, B) is regular, then the following are equivalent:
(i) Hom(By, B) consists of surjections;
(ii) @(f) = Aut B for some f: B, > B;
(iii) @(f) = Aut B for every f: By, — B.
Proof. (i) = (iii): If Hom(B,, B) consists of surjections, then, by 2.4, Hom(B,, B)

is homogeineous, whence by 1.7, @(g) is a group for every g: B, — B, and thus, by
24, &(g) = Aut B.

The implications (iii) = (ii) and (i) = (i) are obvious.
The problem arises, to what extent the set of functions admissible for a given

function f: Q, —» Q depends on the choice of the relational structures for which f
has to be a homomorphism. More precisely, let

By = (20, 20, %), B =(2,,7%)
and
B, = (Q,, Z, Z(,) , B = (Q, R, Z') s
and let
# = Hom(By, B) and #' = Hom(B;, B').

Under what assumption on the pairs (B,, B) and (B,, B') the equality

d)(.é’F ) = ¢(F ’)
holds?

To answer this question, let us introduce the following relations =* and =%
for relational structures with the same universe:

2.6. Definition. Let B = (2, %, %) and B' = (Q, #', ).
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(i) B2 B iff [(#', ') is definable in terms of (%, X) by means of the family «
of formulae and terms of Zg];
(i) B=>*"B if B=*"B A B' 2 B.

Let us prove

2.7. Lemma. If B, 2*B, and B "B’ (for the same a!), and either all
formulae in a are quantifier-free or f: By — B is surjective, then

f e Hom(B,, B) = f € Hom(B;, B’) .

Proof. Let fe Hom(B, B). First take operations o5, in X, and ¢/, in X'. By the
assumption both a5, and g, are definable by a symbol 7, or by a formula «, of £y,
i.e. either

(1) 0o, =1° and o, =1,

or forevery Xy, ..., X,,, X € Qo (m being the arity of }),

]a'(')u(xl, ooy Xp) = X 00(Xg, oy Xy X)
and

2)
(o7 (x), s £ ) = F() < B (1), o £ (), ()

(cf. Section 0).

Assume (1).
To prove that f(c5,(xy, ..., X)) = ,(f(%1), ..., f(x,)) it suffices to show that

) S oo X)) = BC1), S (50)

If 7, is one of the atomic terms*) in L, i.e. Th° = 0y, and 1), = o, for some ve M,
then (3) holds because f € Hom(B,, B). It also holds if 7, is a composition of atomic
terms. Thus (3) holds for arbitrary 7,

Now assume (2). To prove that fo{,(xy, ..., X,,) = 6,(f(X1), ..., f(x,,)) it suffices
to show that f(Ry) = R’ | f(Ro) for the relations R, and R’ induced by ¢}, and o
Clearly, in this case we may include R, and R’ in %, and %', respectively.

Now take relations Ry, in £, and R} in #'. By the assumption, there is a formula a;,
of & such that for every x, ..., x, € Q, (n being the arity of R})

4 Roi(X1s oony X,) < 050X, 0y X,
and
) RY(f(x1)s - 0s f(x0)) < o5(f(x1), - f(X0)) -

To prove that f(Rj,;) = R} (i.e. the left hand sides of (4) and (5) are equivalent) it
suffices to show that

(6) a5o(X g, ey X,) <> 05(f(xy)s - S(x2)) -

*) More precisely, 7,(xXy, -+ Xp) is an atomic term.
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We prove (6) by induction on the complexity of «;. If «, is an atomic formula, i.e.
a5 = Ry, and of = R, for some k € /A, then (6) holds because f(Ro,) = R, | ().

Thus, by (3), if 03°(xy, ..., X,) <> Ro(T2(Xq, ...y X,), ..oy T2 (X1, ..., X,,)) for some 7,
i =1,..., m,, then (6) holds as well.
If o5(xy, ..., X,) is of the form x, = ©(x;, ..., x,—;) for some 7 in L, then, by the

assumption on Zp (cf. Section 0), the identity relation is in £ and in %,; however,
since = is in &,, it follows that f preserves =, i.e. f is injective. Therefore (6) also
holds (cf. 0.1). Further, if (6) holds for some formula a;, it also holds for its negation;
if (6) holds for two formulae, it also holds for their conjunction.

If (6) holds for some «,, it also holds for f, defined by

Bi(y) w> Vx ay(x, ),
because then f is a surjection (since o contains a formula with quantifiers).
In conclusion, (6) holds for arbitrary o;. This completes the proof. m

As a direct consequence of 2.7 we obtain

2.8. Corollary. Let # = {f € Hom(B,, B); f(Q,) = Q} and
F' = {feHom(By, B'); f(2,) = Q}. If By, =>* B, and B ="""B’' for some o, o,
then for every fe F N F'

(i) 25(f) = 25(f);
(i) f is regular with respect to F iff f is regular with respect to F';
(iii) the type of f with respect to F coincides with the type of f with respect to F'.

Proof. By 2.7, # = #'; this implies (i), (ii) and (iii). m
2.9. Corollary. Let & = Hom(B,, B) and %' = Hom(B;, B'). If B, = B,

and B =** B’ for some «, o, and all formulae in « and o' are quantifier-free, then
for every fe F n F'

(i) qjsr(f ) = ¢f'(f );
(ii) f is regular with respect to & iff f is regular with respect to F';
(iii) the type of f with respect to & coincides with the type of f with respect to F'.

Proof. By 2.7, # = ', this implies (i), (ii) and (iii).

3. Simple measurement scales: nominal, ordinal, interval, and ratio. Let B, =
= (20, %o, Zo) and B = (2, #, X). A homomorphism f: B, — Bis said to be a simple
(measurement) scale whenever Q < Re.

3.1. Definition. Let f: B, — B be a simple scale and let # = Hom(B,, B).

(i) f is a nominal scale iff @ 4(f) consists of all injections from f(2,) to Q;
(ii) f is an ordinal scale iff ®4(f) consists of all strictly increasing functions from
f(2) to 2;
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(iii) f is an interval scale iff ®z(f) consists of all increasing similarities from £(Q,)
to Q (¢(x) = ax + b for some a, b e Re, a > 0);

(iv) f is a ratio scale iff @ 4(f) consists of all increasing homotheties with centre 0%)
(¢(x) = ax for some a > 0).

The above four classes of scales are usually referred to as types of scales (cf.
Roberts [3]). We are going to show that under the assumption of regularity of
Hom(B,, B) this terminology agrees with that introduced in 1.10 (cf. 3.3). Let us
start with

3.2. Theorem. Let f, g € Hom(B,, B) with Q € Re and let g > f. Then

(i) f is nominal = g is nominal,;
(i) f is ordinal = g is ordinal;
(iti) f is interval = g is interval;
(iv) f ic a ratio scale = g is a ratio scale.

Proof. Since g > f, there exists ¢, € <D(f) such that g = @of. Thus

(1) Y e ¥(g) < Yoo € D(f).
(i): Let f be a nominal scale, i.e.
) O(f) = {9:f(Q) = Q; ¢ is injective} .

By (1) and (2), @, is injective and
Y € B(g) <> Y, is injective < Y is injective .
Thus g is a nominal scale.

Proofs of (i)-iv) are analogous. g

As a direct consequence of 3.2 and 1.11 (ii) we obtain

3.3. Corollary. If Hom(B,, B) is regular, then the classes of nominal, ordinal,
interval, and ratio scales from B, to B are types of scales.

The assumption of regularity in 3.3 is esential; suitable examples may be found in
Roberts [3, p. 68].

The natural question arises, what are the possible structures of nominal, ordinal,
interval or ratio scales as homomorphisms. A partial answer is given by 3.5, 3.6 and
3.8-3.11.

In what follows @ < Re, < is the natural order in Re, and the quaternary relation ¢
on Re is defined by the formula

Q(xl’ X25 V15 J’z) Xy — Xy =Yy — Y2
The restrictions of £ and g to a subset of Re will be denoted by the same symbols.

*) Called increasing homotheties in the sequel.
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3.4. Lemma. For any connected Q' = Re with card Q' > 1, and for any ¢: Q' —
— Q c Re,

(i) if ¢ preserves < and g, then ¢ is an increasing similarity,

(ii) if @ preserves 0, <, and g, then ¢ is an increasing homothety.

Proof. (i): Let ¢ preserve < and g. It is easy to see that if x, = }(x; + x3), then
(x,,(p(x )) i =1,2,3, are collinear. Further, for any set Z of integers and every
sequence (X;);cz, if
1) x; = ¥(x;—y + x;,,) forevery ieZ,
then all (x;, o(x;)) are collinear.

For every natural n, there are a set of integers Z, and a sequence (x{"),.z, such
that

! n n 1
(1) x(ia»)l_xp:E
and
@ VxeQ JieZ, |x — xf.")| < %;

moreover, we may require that

(3) {(x""Y; ieZ, ,} = {x{"; ieZ} forevery n.

i

Thus, the set Q" = U{x"‘) ieZ,} is dense in Q'. Since Q" is a subset of a line, the
function ¢ | Q" is an (increasing) similarity and thus its unique monotone extension
over ' is also an (increasing) similarity.

(ii) follows from (i).

3.5. Theorem. Let Q = Re and let fe Hom(Bo, B), where Q is the universe of B.

(i) 1f B=*(Q, =) and B]f(QO) =" (f(Qo), =) for some quantifier-free a, o',
then f is a nominal scale;

(ii) if B == f(Qo) =2 (f(Qo), <) for some quantifier-free o, o,
then f is an ordinal scale.

If, moreover, f(,) is connected and card f(Q,) > 1, then

(iii) if B="""(Q, <, 0) and B|f(Qo) =" (f(Q), £, @) for some quantlﬁerfree
a, o, thenf is an interval scale;

(iv) if B=""(2,0, <, 0) and B lf(Qo) ="*"(f(Qo), 0, <, 0) for some quantifier-
free o, o', then f is a ratio scale.

Proof. By 2.4,
v ®(f) = Hom(B | f(2,), B).
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By 2.8,
homa, <) @ 2)) o (5,

@ Hom(B| (). B) = | homr(or) 2. 0) (6 %) for (i),
Hom(f(0), 0, <,0),(2,0, £,¢)) for (iv).

Notice that for an arbitrary ¢: f(2,) = 2

(3) ¢ preserves = iff ¢ is an injection,

and
(4) ¢ preserves < iff ¢ is strictly increasing.

Clearly, if ¢ is an increasing similarity (homothety) then it preserves < and ¢ (0, <,
and ). Moreover, since f(£,) is connected and card f(€,) > 1, 3.4 implies that
(5) o preserves < and ¢ iff ¢ is an increasing similarity

and

(6) ¢ preserves 0, <, and g iff ¢ is an increasing homothety.

Now, (1) and (2) combined with (3) prove (i), combined with (4) prove (ii), combined
with (5) prove (iii), and combined with (6) prove (iv). m

We are now interested in the following question: are the conditions given in 3.5
also necessary for f to be, respectively, a nominal, ordinal, interval, or ratio scale?

As we shall prove, the answer is ‘‘almost affirmative” for nominal and ordinal
surjective scales (with <* instead of =**'), while it is negative for interval and ratio
scales (cf. 3.8—3.11).

Let us start with the following

3.6. Definition. Let G be a group of transformations of Q onto itself and let
(x4, ..., x,) € Q". The set

G(xy, ..n x,) := {(@(xy), ..., (x,)); @ € G}
is called the orbit of (x1, ..., x,) with respect to G.

3.7. Lemma. For an arbitrary G,

(i) every orbit with respect to G is an invariant of G, i.e. for every (xy, ..., x,)€
eQ", neN, and Y €G,

Y(G(xq, ..., X,)) = G(xyg5 .0y Xp) 5

(ii) every invariant of G is a union of orbits; moreover, for every R = ", neN,
[Vo € G o(R) = R] = R = U{G(xy, ..., x,); (X1, ..., X,) ER} .
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Proof. (i): Take y € G. On the one hand
X eY(G(xy ... x,)) =30 eG x' = (Y 9(x1), - ¥ 0(x,)) = X' € G(x1, ..., X,)

because Y@ € G; thus ¥ G(x) = G(x) for every x = (Xy, ..., X,) € Q".
On the other hand,

X' €G(xy, .. x,) >0 eG x' = (@(xy), ..., p(x,)) =
<39eG x' =YY o(xy), ..., Y1 @(x,)) € Y(G(xy5 -, X)) 5
because Y "¢ € G; thus G(x) = Y(G(x)) for every x € Q".

(ii): Take R = Q" and let ¢(R) = R for every ¢ € G. Evidently (x,...,X,)€
€ G(xy, ..., X,) because idg € G; thus R = U{G(xy, ..., %,); (X1, ..., X,) € R}. Con-
versely, let x' € U{G(xy, ..., X,); (X1, ---» X,) € R}; then there is (xy, ..., X,) € R such
that x’ = (¢(x,), ..., ¢(x,)) for some ¢ e G; but ¢(R) = R, whence x’ € R; thus
U{G(xys . %,); (X4, .- X)) ER} € R.

We are now ready to prove

3.8. Theorem. (i) If there is a surjective nominal scale f: By — B, then (Q, =) 2*
=% B for some quantifier-free o.

(i) If there is a surjective ordinal scale f: By — B, and Q is a connected open
subset of Re then (Q, <) 2 B for some quantifier-free a.

Proof. Let f: B, — B be a surjection; then, by 2.4, &(f) = Hom(B, B) and thus
&(f) o Aut B. Let
G:= AutB.

Then, evidently, every R; in # and every o, in X are invariants of G. Hence,
by 3.7 (ii), they are unions of orbits with respect to G.

(i): If f is nominal, then G is the group of bijections of Q. Let us look for orbits
with respect to G. Take x = (xl, .. X,) € Q" and let y be the conjunction of all the
formulae x; = x; and x, # x, which are satisfied by x. It is evident that every element
of G(x) satisfies y. On the other hand, if y(y, ..., y,) holds in (@, =), then there is
a bijection @g: {Xy, ..., X,} = {yy, ..., Ya}. Since card (2 — {x4, ..., x,}) =
= card (2 — {y;,..., ¥a})» @o can be extended to a bijection ¢:Q — Q. Thus
(¥15 -++> ¥a) € G(x). In conclusion

(@, =) (1 oo a) T (¥1, .., V) €G(x),

ie. G(x) is definable in terms of = by means of y. The number of orbits is finite, be-
cause the number of y’s is finite for a given n. Thus every relation and every operation
in B, as finite unions of orbits, are definable by means of (2, =).

(ii): If £ is ordinal, then G is the group of increasing bijections of Q. Let us again
look for orbits with respect to G. Take x = (x4, ..., x,) € 2" and let now y be the
conjunction of all the formulae x; = x; and x, < x, which are satisfied by x. Clearly,
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every element of G(x) also satisfies y. On the other hand, if y(y;; ..., y,) holds in
(@, =, <), then there is an increasing bijection @q: {xy, ..., X,} = {V1,-..» Vu}.
By the assumption on @, ¢, < ¢ € G, whence (yy, ..., y,) € G(x). In conclusion,
G(x) is definable in terms of = and <. Again, the number of obrbits in finite, whence B
is definable by = and <. Obviously, (=, <) and < are mutually definable; thus B
is definable by <. u

Let us show that in 3.8 the assumption of the existence of a surjective scale is
essential.

3.9. Example. Let Q, = {1,...,n} and Q = Re; then obviously there is no sur-
jection f: Q, » Q. Further, let , = 0 = X and let Z = {R}, #, = {R | Q,} with
the relation R defined by the formula

R(xgyeeos Xppg) i [(x1 = X2 A F Xy ooty X)) V Xg < Xp < oot < Xpiq] -
The function f: Q, — Q defined by
f(x) = x forevery xeQ,
is obviously a homomorphism of B, = (2, %, Z,) in B = (Q, Z, X). Notice that
&(f) consists of all injections of Q, into Q, because &(f) = Hom(B,, B) and
Ro(Xg5 cves Xpig) <> R(xg, o0 X,) <> (x5 = X3 A (X2, 0 Xupy)) -

Thus f is a nominal scale. But it is easy to show that R is not definable by means
Of =. m

3.10. Example. Let Q,, 2 and f be as in 3.9. Replacing R and R, = R | Q,
in 3.9 by
R’ and Ry, =R'|Q,,
where
R/(Xqy oy Xpyq) 19 [ Xy = X5 < X3 < .. < Xpyq V

V(F G, enXe) AFA>0x, =4 %, for i=1,..,n+1)],

we obtain a homomorphism f: By = (2, {Ro}) = (2, {R'}) = B, which is an or-
dinal scale, though R’ is not definable by <. g

Let us observe that there is no analogue of 3.8 for interval and ratio scales.
3.11. Example. Let B, = B = (Re, A, (2)) with # being the family of all relations

invariant under the group of similarities (homotheties). Then among the relations
in Z there are those defined by the formula

Dj(Xq, X3, X3) 1> X, — Xy = A(x, — x3) for AeRe.

Since the family {D;} .. has cardinality ¢, we infer that R has cardinality at least c.
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On the other hand, there is only countably many relations on Q which are definable
in terms of < and ¢ (of 0, < and ¢). m

The following problem remains open:

As was shown by K. Rudnik in [4], if there is a surjective nominal scale f: B, — B,
the (2, =) is definable in terms of B. Using this fact he proved that every surjective
nominal scale is regular (cf. [4]).

3.12. Remark. An example of a ratio scale is given in Bartoszynski [1], however,
the author did not formulate his results in terms of scales. Those results can be
presented as follows. The structure (o, xo, po) under consideration consists of
a non-empty set Q, an x, € 2, and a function p: (Q,)* - [0, 1], satisfying Axioms
1—8. Let us quote only the first three of them:

Axiom 1. Vxy, X, p(xq, X5) + p(x2, X4) = 1.

Axiom 2. Vxy, X3, X3 (P(x1, X2) Z 3 A P(x2, X3) Z § = p(xy, x3) 2
= max (p(xy, X2), P(*2, X3))-

Axiom 3. Vx p(xo, x) = 3. '

In fact, the author is interested in another structure

BO = ('Q()s xO, <9 QO) B

with the relations <{ and ¢, defined by the formulae

(*) Xp X Xy P(xu xz) =1
and
(*#) 0o(X1> X25 ¥1, ¥2) > 0 < p(xy, X3) = p(y1, 1) < 1.

By Axioms 1 and 2, the relation < is a linear order, whence the relation ~ defined by
Xy~ X3 5°(x1 X2 A Xy xl)

is an equivalence relation (cf. Prop. 1).

By Axiom 3, x, is evidently a minimal element in (Q,, <). Let
B = (Re",0, £,0),
where g is a quaternary relation defined by the formula
oty 12581, 8,) ety —t, =8 — 5,

The author proves that (by Axioms 1—8) there exists a homomorphism*) f: B, - B

*) In fact, the author proves that /(=) = < and f(eo) < ¢; however, by Axioms 2 and 5 we
infer that f(0g) = . .
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such that
Hom(B,, B) = {«.f; a > 0} .

Thus f is a regular ratio scale. Consequently, by 3.2 (iv), Hom(By, B) consists of
ratio scales. g

4. Composed measurement scales. Let Q; = Re for i = 1,...,n and let Q =
=0, x...xQ.Fori=1,..,n,let
Z;=Hom(B,, B;)), where B, = (2, %,,2%,) and B, =(Q, %, %)),
i=1,...,n.
Consider the family
Fi=F  x...xXZF,

as in 1.19.

Every fe & is referred to as a composed measurement scale.
In particular, let n = 2, ie. 2 = Q; x Q, = (Re)? The following terminology
is commonly used:

f: By~ B=(2, %, X) is nominal-nominal iff f=(f,, f,) with f-nominal for i =1, 2;
f is nominal-ordinal iff f = (fy, f,) with f,; nominal and f, ordinal, etc.

By 1.19 (i), a nominal-nominal scale f with f, f, surjective regular is characterized
by &(f) which consists of (¢,, ¢,) with both ¢,, ¢, being injections; a nominal-
ordinal scale f (with f1, f, surjective regular) — by ®(f) consisting of (¢,, ¢,) with
¢, an injection and ¢, an increasing injection, and so on.

By 1.19 (ii), if all the components of f are regular, then f itself is regular.

Finally, if Hom(B,, B) consists of scales with regular components, then by 3.3 the
above mentioned classes of composed scales (nominal-nominal, nominal-ordinal,
nominal-interval, ordinal-nominal etc.) are types of scales.
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