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Suppose L is a Riesz space (a lattice ordered vector space). For notation and basic
terminology concerning Riesz spaceé, the reader is referred to Luxemberg and Zaanen
[6]- A Riesz homomorphism between two Riesz spaces is a positive linear map that
preserves the finite lattice operations. The Riesz space L is almost a-complete if it
is Riesz isomorphic to a subspace L™ of a o-complete space M with the property
that if m e M*, there is a sequence (u,) such that u,e L™ (n =1,2,...),0 < u; <

0

< u, £...,and V u, = m. See Aliprantis and Langford [1] or Quinn [10] for some
n=1
properties of almost o-complete spaces.

A sequence f1, f5, f3, ... 18 order Cauchy if there is a sequence y; = y, = y3 = ...

.20, Ay, =0, such that, for m = n, |f,,, —f,,! < y,. If every order Cauchy
sequence converges then L is order Cauchy complete. By Corollary 8.5 of Quinn
[12], Lis o-complete if and only if it is almost o-complete and order Cauchy complete.

Suppose Q is a set and Q is a Riesz space of real valued functions defined on Q
containing the constants. Then B,(2) (the first Baire class of Q) is the set of all point-
wise limits of sequences of Q. Also, U SBI(Q) is the set of all pointwise limits of non-
increasing sequences of By(2). For a discussion of Baire spaces see Mauldin [7] or [8].

If X is a topological space, then X is said to be a P-space, if C(X), the set of all
continuous functions on X, is closed with respect to pointwise convergence. In Giiman
and Henriksen [4], P-spaces were introduced. See also Regoli [13] for a discussion
of some properties of P-spaces. .

It is the purpose of this paper to compare monotone pointwise convergence with
monotone order convergence and bounded pointwise convergence with order con-
vergence in B,(Q) and in C(X). All convergence referred to here is sequential con-
vergence.

A first easy observation is that monotone pointwise convergence implies monotone
order convergence in both B;(Q) and C(X).
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Theorem 1. Suppose X is either a completely regular Baire space with the count-
able chain condition or a perfectly normal Baire space. Then bounded pointwise
convergence implies order convergence in C(X).

Proof. Suppose X is a completely regular Baire space with the countable chain
condition. Suppose f1, f,, f3, ... is a sequence of functions in C(X) pointwise con-
verging to 0 and 0 < f; < 1 for each positive integer i. Let f;; = ((f; A (1/2)7") v

-]

v (1/2))) — (1/2) for each positive integer i and j. Note that f; =jzlf,-j and0 = f;; <

< (1/2). Also for every point x of X and positive integer j there exists a positive
integer k such that if i > k, then f;;(x) = 0.

For each positive integer i and j let Z;; be the set to which x belongs if f,;(x) = 0
for p = i and let U;; be the interior of Z . Note that Z;; is closed. For each positive

integer j, Z,; < ZZ; c Zj;< ... and U Z;;=X. Let M; be the complement
0 i=1

of Y U;;. Since U U;; is open, M is closed. The interior of M; is an open set w hich
i=1

is the countable union of a collection of sets each of which is the subset of the bound-

ary of Z;;, for some i. As the boundary of each Z;; is nowhere dense and X is a Baire

space, M; does not contain an interior point and M is nowhere dense. Therefore

e
U U;; is an open dense set.
i=1
As X is completely regular, for each point x of U,; there is a continuous function h,

such that 0 < h, < 1, h(x) = 1 and h(y) = 0 for each y not in U;;. Let V, be the
cozero set of h.. Let w be a maximal disjoint collection of V, and B;; be the union
of the sets in w. As X has the countable chain condition, @ = {V;, V,, ...} is countable.
Suppose y belongs to U;; and N is an open set containing y. If N is disjoint from the
setsinw, a v, contammg y and no point of B;; can be constructed as X is completely
regular. Then  is not maximal. Thus y is a hmlt point of B;; and B;; is dense in U;;.

It follows that U B;; is an open dense set.
i=1
Let {ky, ky, ...} be a collection of continuous functions such that for each positive

integer p, 0 < k, < 1 and V¥, is the cozero set of k, and let ¢;; L (1/2)" k,,. Then t;j

is continuous and its cozero set is B;;. Let rj; = A (1 — ((p t,;) A 1)). Then
izp,n
ry; 2 1y 2 r3; 2 ... is a sequence of continuous functions converging to zero on
o]

o0
an open dense set W; = |J B;; such that r;; = f;;. Let g,/ = ) r;;. Thus g, 2 g, =
i=1 j=1 ©
> g, = ... is a sequence of continuous functions converging to zero on (\ W,
i=1

@
As X is a Baire space [) W; is dense. Further g; = f;. Therefore f1, f2,f3, ... order
Jj=1
converges to zero.
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Suppose X is a perfectly normal Baire space. Define f;; as before. Let g;; = V f,;-
pzi
Then g;; is lower semi-continuous, g;; converges pointwise to zero as i — oo, and

for every point x in X there exists a positive integer k such that g,;(x)=0. Let m;;
be the pointwise limit of {(ng;;) A (1/2)'}, n = 1,2,3,.... Then m;; is lower semi-
continuous, is equal to zero wherever g;; is equal to zero, and is equal to (1/2)
wherever q;; is not equal to zero. Let 7;;(x) = 0 if x belongs to the interior of m;;'(0)
and equal (1/2) otherwise. Since m;;'(0) is closed, its boundary is nowhere dense.
Thus r;; is a non-increasing sequence which converges pointwise to zero as i — oo
on a set of the second category in X. Also r;; is upper semi-continuous. Since X is
perfectly normal there exists a non-increasing sequence h;, k = 1,2, 3, ..., of con-
tinuous functions converging pointwise to r;;. Let g;; = hy;; A (1/2)) and g,; =

= A hyu A (1)2)if p> 1. Then g,;, p = 1,2, 3, ..., is a non-increasing sequence
i+k=p

of continuous functions such that g,; = r,; 2 m,; 2 q,; 2 f,; and g,; converges

pointwise to zero on a set of the second category in X.

0
Let g, = Zlgpj. Then g, is continuous, g, = f,, and g, converges to zero except
=

possibly on a set of the first category in X. In particular g, converges to zero on a dense
subset of X. Thus f, order converges to zero.

Example 2. Let X be the square of the interval [0, 1] ordered lexicographically.
Take as a basis for the topology on X the sets of the form

{(a,x)|b>x>¢},
{(a,x)|1 2 x > b}, and
{(a,x)| c > x = 0}.

This is a perfectly normal Baire space without the countable chain condition.
The following example is due to H. Cook.

Let M be the subset of the plane to which x belongs if the first coordinate of x is
either 0 or 1 and the second coordinate of x is in the closed interval [0, 1]. Order M
lexicographically. Let a basis for the topology on M be the collection of sets

{(x,y)|a<x<b, c<y<d}

d
an {(x,y)|a<x§b,c<y<d}.

Let L= M x M. Then Lis compact and has the countable chain condition. On
the other hand, let R be the subset of L consisting of all pairs of points of M each of
whose first coordinate is 1. Then R is the square of an interval of the Sorgenfrey line
and is not normal. This implies that L is not completely normal (and thus not perfectly
normal).

Theorem 3. Suppose L is a linear lattice of real valued functions and bounded
pointwise convergence implies order convergence in L. Then Lis almost a-complete.
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Proof. Let {f1, f2, f3, ...} be a bounded disjoint sequﬁﬁ.:/e inL. Asfy, f2,f3, ..., con-
verges pointwise to 0, it must order converge to 0. By Theorem 2.2 of Fremlin [3],
L is almost g-complete.

In [10] Meyer gives a necessary and sufficient condition on a normal topological
space X for C(X) to be almost o-complete. Compare Theorems 1 and 3 here with his
Corollary 8. Also see section 9 of [5].

Example 4. There exists a compact Hausdorff space X such that C(X) is not almost
o-complete. Let H denote the set of all continuous functions on the interval [0, 1]
and K denote the set of bounded functions in B,(H). Since B,(H) is not closed with
respect to pointwise convergence it is not g-complete (Tucker [18], Lemma 4). As
it is order Cauchy complete (Tucker [18], Proposition 6), B;(H) can not be almost
g-complete. If @ denotes the functions it is o-complete.

Suppose f; = f, = f3 = ... is a sequence of functions in C(X) converging point-
wise to a function f and, further, suppose x is a point of X such that f is not conti-
nuous at x. Let k = f(x) — 1. Replace each of f; with f; v k and f with f v k.
Since {f; v k} is bounded below and C(X) is g-complete, A(f; v k) is in C(X) and
since monotone order convergence implies pointwise convergence A(f; v k) =
=fvk

By Theorem 1 of Tucker [14], any function which is the pointwise limit of a se-
quence of functions in C(X) can be uniformly approximated by the difference of two
functions each of which is the pointwise limit of a non-increasing sequence of func-
tions in C(X) and is therefore continuous.

Since C(X) is closed under pointwise convergence, X is a P-space.

(3) implies (2). If X is a P-space, C(X) is closed with respect to pointwise conver-
gence. If f, f2, f3, ... is a bounded sequence converging pointwise to f, let y,,(x) =

= max f,-(x). Then y,, y,, V3, ... is a nonincreasing sequence of functions converging
izn
pointwise to f and y, = f,. Thus fy, f5, f3, ... order converges to f. Also any mono-

tone order convergent sequence is pointwise convergent (Tucker [16], Lemma 3),
so that any order convergent sequence is pointwise convergent.

(2) implies (1). By Theorem 3, C(X) is almost o-complete.

A Riesz space L is said to have the sequential mapping continuity property
(abbreviated s.m.c. property) if every positive linear map from L into an Archimedean,
directed, partially ordered vector space is sequentially order continuous. This pro-
perty was defined in [16] and was shown in K which take on only the values 0 and 1,
every function in K is the uniform limit of a sequence of functions each of which is
a linear combination of the functions in w. (Tucker [17], Theorem 7). The functions
in w form a Boolean algebra, so by the Stone representation theorem they are iso-
morphic to the open and closed sets of a totally disconnected compact Hausdorff
space X. The natural mapping between K and C(X) is a Riesz isomorphism. As one
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can note from the definition of almost g-complete, it is a property which is preserved
by Riesz isomorphisms. Thus C(X) is not almost g-complete.

Theorem 5. The following three statements are equivalent:

(1) C(X) is almost o-complete and monotone order convergence implies point-
wise convergence,

(2) Order convergence in C(X) is equivalent to bounded pointwise convergence,
and

(3) X is a P-space.

Proof. (1) implies (3). By Lemma 2.10 of Papangelou [11], C(X) is order Cauchy
complete if and only if when each of x; = x, 2 x3 = ...and w; S w, S w3 = ...
is a sequence of functions in C(X) with the property that x, = w, for each n and
{x, — w,} order converges to 0 then there is a function u in C(X) such that Ax, = u
and Vw,=u. Since monotone order convergence is assumed to imply pointwise con-
vergence in C(X), then if x, and w, are as described above then {x,—w,} pointwise
converges to 0. Thus the pointwise infimum of x, is the pointwise supremum of w,
and since it is both upper semi-continuous and lower semi-continuous, it is conti-
nuous. So that-C(X) is order Cauchy complete and since it is assumed to be almost
og-complete, to apply to a large class of Riesz spaces. Also see [3] Huijsmans and
de Pagter in [5] prove a theorem (Theorem 9.3) for general Riesz spaces which when
specialized to C(X) yields that X is a P-space if and only if C(X) is almost o-complete
and has the s.m.c. property. Combining this with Theorem 5 gives that if C(X) is
almost g-complete, then C(X) has the s.m.c. property if and only if order con-
vergence implies pointwise convergence. This is not true for Riesz spaces in general,
e.g. let L be the space of bounded sequences. Then Lis almost o-complete and order
convergence implies pointwise convergence, but L does not have the s.m.c. property.

Corollary 6. If C(X) is almost g-complete then every positive linear functional
on C(X) is an integral if and only if X is a P-space.

Proof. If X is a P-space, then C(X) is closed with respect to pointwise convergence
and every positive linear functional on C(X) is sequentially continuous. (Tucker
[16], Proposition 4). If every positive linear functional on C(X) is sequentially
continuous, then ¢,(f) = f(x) is sequentially continuous and order convergence
implies pointwise convergence. By Theorem 5, X is a P-space.

Example 7. There exists a topological space X such that C(X) is almost g-complete
but bounded pointwise convergence does not imply order convergence for sequences.
Let X be the set of rational numbers in [0, 1] with the topology induced by the or-
dinary topology on [0, 1]. Suppose H is a subset of C(X) and f = V h. For each x;

heH

in X let g(x;) = Lu.b. {h(x;)}. There is a countable subset {h;;}, j = 1,2, ..., of H
heH
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such that Lu.b. {h;;(x,)} = g(x;). Thus {h;;},i = 1,2,...,j = 1,2, ..., is a countable
j
subset of H such that Lu.b. {h;;} = g and VVh;; = f. So that, C(X) is order separable

and thus almost o'-con;plete. (Aliprantis "and Langford [1]). For each positive
integer j let N;;, i = 1,2, ..., j, be a collection of circles such that N;; has center x;,
the radius of N;; > 0 as j > o0, and N,; " N,; =0, p < g < j. Let f(x) = 1 if x
is exterior to each of Ny;, N,;, ..., N;;and f; decreases linearly to zero between each
circle and its center. If k; = f,, for all p > j, then k; 2 1 and thus {f;} does not
order converge to 0 even though it converges pointwise.

The situation of B,(2) is much less complicated. It has been shown previously
that order convergence implies pointwise convergence. (See Tucker [16], Lemma 3).
For the converse we have the following theorem.

Theorem 8. Bounded pointwise convergence implies order convergence in By(R2)
if and only if B,(R) is closed with respect to pointwise convergence which implies
that it is the set of A measurable functions for some o-algebra A.

Proof. If bounded pointwise convergence implies order convergence, by Theorem
3, B,(Q) is almost o-complete. By Proposition 6 of Tucker [18], B() is order
Cauchy complete. Thus B,(Q) is 6-complete. By Lemma 4 of Tucker [18], it is closed
under pointwise convergence. Therefore the conclusion follows. (See Regoli [13] or
Bogdan [2].)

If By(Q) is closed with respect to pointwise convergence and fy,fs,fs, ... is
a bounded sequence converging pointwise to f, let y,(x) = max f(x). Then y,, y,,

izn

V3, ... is a nonincreasing sequence of functions in B,(Q) conv—erging pointwise to f
and y, = f,. Thus fy, f5, f3, ... order converges to f.

In [9], Meyer shows that if X is an infinite dispersed compact Hausdorff space
then C(X) is not closed with respect to pointwise convergence but B,(C(X)) is.

The following theorems expand on the relationship between P-spaces and spaces
of Baire functions. These theorems also supplement the results in Tucker [17].

In the following, B,(2) = By(B,(£2)), and in general if « is an ordinal, a > 0,
B,(€) is the family of pointwise limits of sequences from ) B,(2). If w, is the first

a>y
uncountable ordinal then B,, (2) = B,,, +;(2) which will be denoted as B(2).

Theorem 9. If ¢ is a real valued Riesz homomorphism defined on B,(Q), then ¢
can be extended to B,(2).

Proof. By Corollary 3 of Tucker [18], ¢ can be extended as a positive linear
functional. To show that the extension of ¢ is a Riesz homomorphism consider f
and g in USB,(Q) such that f A g = 0. There exists a sequence {f;} of B;(®) such
that f = Af; and there exists a sequence {g;} of B(Q) such that g = Ag;. Since
{f: A g;} converges pointwise to zero, o(f; A g;) = o(fi) A e(g;) converges point-
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wise to zero by Theorem 3 of Tucker [17]. As o(f) = Ae(f;) and o(g) = Ae(9:)
also by Theorem 3, o(f) A ¢(g) = 0. Now suppose h and k are in B,(2) and h A
A k = 0. There exists a sequence {h;} of points in (USB,(2))* and a sequence {k;}
of points in (USB,(2))" such that h = \/h; and k = Vk;. Since h A k =0, h; A
A k; = 0, which implies o(h;) A g(k;) = 0, which in turn implies o(h) A o(k) = 0.
Thus the extension is a Riesz homomorphism.

Theorem 10. If B(Q) is mapped by a Riesz homomorphism ¢ into C(X) so that
for each f in C*(X) there is a subset  of o(By(R)) such that f is the pointwise
supremum of the functions in w, then X is a P-space.

Proof. By Theorem 2 of Tucker [17], ¢ = af where  is a Riesz homomorphism
from B,(Q) to C(X), B(1) = 1, and o« is multiplication by a function h in C(X).
Suppose there exists a point x in X such that h(x) = 0. Then f(x) = 0 for each f
in o(B4()) and the constant function 1 is not the pointwise supremum of any subset
of ¢(B4(R)). Therefore h(x) = 0 for each x in X and 1/h is a continuous function.
Thus «~'af = B is a Riesz homomorphism of B,(Q) into C(X) with the property
that B(1) = 1 and for each f in C*(X) there is a subset w of f(B(®)) such that f is
the pointwise supremum of the functions in .

Let Z be a zero set of C(X). There exists a function f in C(X) such that f(x) = 1
for each x in Z and 0 < f(x) < 1 for each x not in Z. There exists a subset @ of
B(B4(2)) such that f is the pointwise supremum of the functions in w.

By Theorem 7 of Tucker [17], each bounded function in B,(2) can be uniformly
approximated by a function in B,(®) with a finite range. Let g be a function in l;:’(w)
such that 0 < g < 1 and g, be a function in B,() with a finite range that uniformly
approximates g — 1/2"*' within 1/2"*!. Note that g, < g and {g,} converges
pointwise to g. Thus f(g,) < B(g) and by Theorem 3 of Tucker [17], {B(g,)} converges
pointwise to B(g). The function g, is the sum of a finite number of disjoint functions
in B;(Q) each of which takes on only one non-zero value. Denote the set of all such
functions for all » and all g as I'. Then f is the pointwise supremum of the functions
in A(I'). Now if h is a function in B,(Q) that takes on only the values O and 1, h < 1,
(1 —h)=1,and h A (1 — k) = 0. This implies that S(h) takes on only the values 0
and 1. Thus each function in S(I’) takes on only one non-zero value.

Pick x in Z. There exists a subsequence f, f3, f3, ... of B(I') such that 0 < fy(x) <
< fa(x) < f3(x) ... and {f,(x)} converges to 1. For each positive integer i let ¢; be
a positive number and ¢; be a function that takes on only the values 0 and 1 such that
Blcit;) = fi. Let s; = Blct; A t; A ... A ;). Then si(x) = fi(x) so that {s,(x)}
converges to 1. The sequence {c/(t; A f; A ... A t;)} converges pointwise to a func-
tion k in B,(®). By Theorem 9, f can be extended to B,(Q). Let p(k) = v. By Theorem
4 of Tucker [17], v is continuous. By Theorem 3 of Tucker [17], v is the pointwise
limit of {s;}. Therefore v(x) = 1, v™*(1) is open, and Z is open. This implies that x
is a P-space by Theorem 5.3 of Gillman and Henrikson [4].
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