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SPACES OF OBSERVABLES
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Suppose that Q is a quantum system, L(Q) its logic (see [ 7], [17]), and g a physical
quantity. Then any statement which an observer can make on Q may be viewed
as an assertion specifying that the value of g lies in a certain set of an “‘evaluating”
structure M. Here M may be the space of reals or a more general space. If we denote
by x(A) the statement that the value of g lies in the set A, A = M, we obtain a mapping
x: A — x(A) of subsets of M to L(Q). Such a mapping is called an observable. In the
axiomatic approach the sets 4, A = M are assumed to be Borel sets and x is more-
over supposed to respect the set-theoretic operations in a certain manner.

In this paper we assume that M is a Banach space and L(= L(Q)) is an ortho-
modular poset. We then consider the question of when (and how) one can introduce
a linear and a topological structure into certain sets of observables. This question —
obviously important for both physical and mathematical reasons — has been con-
sidered in [6] and [17] for M = R" and L a lattice logic. While the generalization to
Banach spaces roots mostly in the mathematical curiosity, the generalization to non-
lattice logics is also dictated by physical considerations. The reason is that the
assumption on Lto be a lattice is the only one which does not seem to be motivated
physically (see [1], [17], etc.).

The paper consists of three parts. In the first part we assume that M is separable
and show that certain sets of observables can be endowed so that we obtain a Banach
space. Although we had to refine some technical procedures and adequately alter a few
notions, the central line follows the pattern of the paper [6]. Asamore explicit novelty
one may offer a new proof of the basic technical tool (Lemma 1.2) and a version of
a theorem “‘on simultaneous testability” (Theorem 1.1). In the second part we intro-
duce compact observables as a natural generalization of real bounded observables.
In the third part we consider the observables for M possibly non-separable. We show
that a potential generalization, if there is any, requires that the topological character
of M be less than the continuum.
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1. COMPATIBLE SETS OF BOUNDED OBSERVABLES
Let us first recall the basic notions (see e.g. [6]).

Definition 1.1. A logic (of a quantum mechanical system) is a partially ordered set L
with first and last elements 0, 1, respectively, and an operation a — a’ which satisfies
the conditions

(i) (a') = a forall aeL,
(i) @ < b implies b’ < a’,
(iii) a v a’ always exists in Land equals 1,
(iv) Va; exists in L for any disjoint sequence a;, i € N (disjointness: a; < aj for
i*j).
A mapping p: L; —» L, between two logics is called a 6-homomorphism if

() p(0) =0,
(ii) p(a’) = p(a) for all aeL,,
(i) p(Va;) = Vp(a;) for any disjoint sequence a; € L, i € N.

As an example of a logic we may introduce a c-algebra or a lattice of projectors
of a Hilbert space (seealso [5],[13]). In what follows we shall deal with a fixed logic L.

Definition 1.2. Let M be a separable Banach space and let %(M) denote the c-algebra
of Borel subsets of M. By an observable we mean a c-homomorphism x: (M) — L.
Let us agree that the letters x, y, possibly with indices, x,, x,, x;, ..., will always
mean an observable x: (M) — L, where M will be a given separable Banach space.

Proposition 1.1. If x is an observable then x(#(M)) = {k e LI k = x(A) for an
A€ B(M)} is a Boolean c-subalgebra of L.

Proof. Obvious (see also [6]).

Proposition 1.2. Let x be an observable and let f: M — M be a Borel measurable

mapping. Then the mapping y: (M) — L defined by the formula y(4) = x(f ~*(4)),
A€ B(M) is an observable. (We shall write y = xf~1).

Proof. Obvious (see also [6]).
Proposition 1.3. If two observables x,, x,: B(M) — L coincide on a base for the
open sets of M then they are identical.

Proof. Since M is separable the observables x,, x, must coincide on the collection
O(M) of all open sets of M. One can then continue by induction since (M) is known
to be the least collection containing O(M) that is closed under the formation of com-
plements and disjoint countable unions (see [10]).
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In the sequel we determine those sets of observables which map %#(M) into a o-
subalgebra of L. It turns out that a finite character condition will guarantee this

property.

Definition 1.3. Let &% = {x,| €I} be a set of observables. Then & is called
compatible if any set {x;,(4,), x,,(42), ..., x;,(4,)} = L, A, €1, A; € (M) generates
a Boolean subalgebra of L.

One may remark that there are also intrinsic definitions of compatibility which are
perhaps better for physical verification (see [4], [6]). If a collection of observables
is found compatible then the corresponding part of the experiment may be reduced
to a classical one. For a detail explanation, sce [6], [17].

Proposition 1.4. If {x, l Ael} is a compatible set of observables, then there is
such a o-subalgebra B of Lthat x(A,) € B for any Ael, Ae B(M).

Proof. See [2], [4]. It may be worth while to note that “pairwise compatibility”
used in [17] does not ensure the validity of Proposition 1.4 for logics. For this and
other algebraic problems concerning compatibility, consult [4] and [9].

The following theorem will enable us to introduce the linear and topological
structures into certain sets of compatible observables. The fact that the Borel map-
pings guaranteed by the theorem can be chosen ‘“‘uniformly” is perhaps of some in-
terest by itself.

Theorem 1.1. Let M be a separable Banach space. Then there exist Borel mea-
surable mappings f,: M — M, n € N such that the following statement holds true:
If {x,|neN} is a sequence of compatible observables then x, = zf, ' for an
observable z: B(M) - L.

Proof. We need two lemmas.

Lemma 1.1. (Loomis-Sikorski theorem). Let B be a Boolean c-algebra. Let us
denote the Stone space of B by S. In other words. let us take such a compact totally
disconnected space S that B is Boolean isomorphic to the Boolean algebra C(S)
of all clopen subspaces of S. Let (S, X) stand for the c-algebra generated by C(S).
Then there exists a c-homomorphism h: (S, %) — B whose kernel is the c-ideal of
meagre subsets of S.

Proof. See e.g. [17],§2. -

Lemma 1.2. Let x: #(M)— L be an observable. Put B = x(#(M)). Let h: (S, £) -
— B have the same meaning as in the previous lemma. Then there exists a (mea-

surable) mapping g: S - M such that x = hg™".

Proof. If M=R then the theorem has been proved by R. Sikorski (see [14], § 29)
and re-proved by V. Varadarajan (see [17], Chap. 1). The proofs use the ordering
of R and require rather complicated reasoning. By a classical theorem of the separable
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descriptive theory, we have #(R) = (M) for any separable Banach space (see [8],
§ 33, Th. 2). This would give us a proof of Lemma 1.2. The fact is that there is a fairly
transparent direct proof whose sketch we shall present here. The method is also
applicable to more general situations (see [12]). The details of the following proof
may be found in [11].

Let us consider an observable x: #(M) — L and put B = x(%(M)). Let the map-
ping h: (S, Z) > B be the Loomis-Sikorski o-homomorphism. Before starting the
construction of the mapping g: S — M, let us make a few observations.

(i) With a harmless abuse of notation we can regard B as a collection of subsets

n

upper bound in B and U B, the set- theoretxcal union. Thus, U B,e X.

n=1

n=1

(ii) If {4,| neN} = #(M) and 4 = U A,, then x(4) = U x(4,), where the latter
=1
operation means the topological closure in the Stone space S. Therefore the set
x(A4) — U x(4,) is always meagre in S.
n=1

(iii) Let us denote by 4", the covering of M consisting of all open 1/n-balls. Take
a countable uniform reﬁnement of A, and denote it by & ,. Thus X%, =

= K

- U x(Kp) are meagre inS.PutV = U S,. Then Vis also meagre and moreover,

k e N}. Since U x(Kk) = x(M) = 1, we obtain that the sets S, = S —

1f%

aeJ
(iv) We may suppose that there is a point r € M such that x(r) = {. Otherwise x
would be a c-isomorphism and we should have nothing to prove.

Let us now return to the construction of g:S > M. If se Vthen we set g(s) = r.
Suppose now that se S — V. Put A4 = U A, and consider the collection & of all

finite intersections of elements of % . Put F= {De$| sex(D} Then & is
a Cauchy filter base. Denote by m, the closure point of &, in M. Define g(s) =

for any s€ S — V. Thus we have completely defined the mapping g:S - M and one
can show that x = hg~1. (It suffices to show this identity for all open sets.)

Let us return to the proof of Theorem 1.1. Denote by #(M)“° the countable product
of the c-algebras #(M). Let i: M®® — M be such a mapping between the countable
product of M and M that i™': (M) — #(M)® is a -Boolean c-isomorphism (see
[8]). Then the required mappings f, can be defined so that f, = m,i” ", where =,
stand for the respective projections of M“° onto the n-th copy of M. To show that, let
{x,|neN} be a set of compatible observables and let B be a Boolean c-algebra

containing U X (-@(M)) Then there is such a countable set of measurable mappings

n=1
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gn: S — M that x, = hg, ' (Lemma 1.2). Let us set z = hg~'i™ !, where g: S - M
is the mapping defined by the formula g(s) = (g,(s), g,(s), ...)- Then we obtain that
zZfit = hg~li7lin7' = hg™'n;! = hg,', and this was to prove.

The foregoing theorem suggests the way of introducing the linear structure into
certain sets of observables. If x;, x, are compatible observables then we can write
X, = zf{ !, x, = zf; ! for an observable z and Borel mappings f, f,. This leads us
to setting x; + x, = z(f; + f,)~". If r€ R, then the scalar multiplication r o x is
defined as follows: r o x = xj, !, where j,(a) = ra, a € M. Naturally, the observable
0 = 0, x will serve as the zero.

Now we have to determine suitable sets of observables which will be closed under
the formation of the operations #, o. This is done in the following definition.

Definition 1.4. Let ¥ = {x,| A€} be a set of compatible observables and let B
be the least Boolean o-subalgebra of Lwhich contains the set {x,(4)| A €I, A € B(M)}.
We say that & is exhaustive if the following requirement is fulfilled: If x is an ob-
servable such that x(#(M)) = B then x € &.

Theorem 1.2. Any exhaustive set of observables forms a linear space with the
operations =+, o.

Proof. We shall show that the operations =, o are correctly defined. The veri-
fication of the axioms for a linear space then becomes routine and we leave it to the
reader.

Let x,, x, be compatible observables and let fy, f5, g1, g, be measurable mappings
with x;, = zf' = ug;', x, = zf; ' = ug;* for observables z, u. We are to show
that z(f; + f,)"' = u(g, + g,)~ ' holds true for all open subsets of M. Let K be an
open subset of M and let {G,| n e N} be a base for open sets in M. Put 2 =
= {(Gy,» Gy,)| Gu, + G,y = K} It is clear that (f; + f5)"" (K) = U(f7 '(G,,) N
n f; (G,,), where (G,,, G,,)€ 2, and similarly for g, + g,. We must show that
z(f;'(G,,) 0 f5 '(G,,)) = u(97'(G,,) N g5 '(G,,) for any (G,,, G,,) € 2. This s easily
verified since  z(f; '(G,,) N f5 (G,,)) = z f1 '(Gn) 0 2 f5 (Gy,) = u 97'(G,,) O
N u g5(G,,) = u(g7(G,) N 95 '(Gay)-

It follows from the last theorem that if we are given M and L, we have certain
subsets of the set of all observables which admit the linear structure. The subsets
may be relatively small (e.g. the ones generated by exactly one observable) or relatively
big (e.g. the maximal compatible sets). The endowing of the entire set of observables
does not seem possible without violating the natural intrinsic properties (see also [7],
[12)) »

A topology is introduced into observables via the notion of the spectrum (see [6]).

Definition 1.5. The spectrum of an observable x is the least closed subset F of M
such that x(F ) = 1. We denote the spectrum of x by w(x).

Proposition 1.5. Any observable has its spectrum.
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Proof. Let # = {Fa| a eI} be the collection of all closed subsets of M such that
x(F) = 1. Put F = () F,. Then the collection {M — Fal «€el} is an open covering

ael
of (a separable metric) space M — F and therefore there exists a countable collection

{F,|neN} = # such that U (M — F,) = M — F. It follows that F = \ F, and
n=1 n=1

therefore x(F) = 1.

Definition 1.6. An observable x: #(M) — Lis called bounded if w(x) is a bounded
subset of M. If x is bounded then |x| = sup {|m| | m € w(x)} is called the norm of x.

Proposition 1.6. Suppose that x is bounded. Then

(i) |x| = 0 if and only if x =0,
(i) |rox| = |r| |x,, reR,

(i) Ix % y| =< le + |y|for any two compatible bounded observables x, y.

Proof. Let us indicate the proof of (iii). Since x, y are compatible we can write
x=1zf"', y=1zg~! for an observable z: #(M) — L and measurable mappings
f,g: M — M. First we observe that there exist (measurable) mappings f1, g9,: M- M
such that x = zf; ', y = zg; ' and moreover, o(x) = f,(M), o(y) = g,(M). Showing
this for f,, one puts f; = f on the set f ~(w(x)) and defines g,(M — w(x)) = p for
an arbitrarily chosen point p e w(x). We can now write (x # y) = z(fy + g:)7".
Since we have w(x) = f,(M), w(y) = g,(M) and, for obvious reasons, (x * y) =
< (f1 + 91)(M), we only need to show that sup {||k||ke(f1 + g:) (M) =
< sup {||k|| | ke fi(M)} + sup {|k| | k e g,(M)}. But this is easy.

Theorem 1.3. Let & be an exhaustive set of compatible bounded observables. If
we endow the linear space & with the norm ] | then & becomes a Banach space.

Prof. By Proposition 1.6, the linear space endowed with | | is a normed space.
We need to show that & is complete. This immediately follows from the following
lemma.

Lemma 1.3. Let {x,,| n eN} be a sequence of bounded compatible observables.
Take a sequence {f,,l n € N} such that x, = zf,7! for all n € N and for an observable
z. Then x,, is a Cauchy sequence in the norm | | if and only if the sequence {f,,| neN}
is Cauchy on M — Z for a set Z € B(M) with z(Z) = 0,

Proof. Suppose that x, = zf,! is Cauchy in the norm | |. This means that for
any k € N there exists n; € N such that, for all n, p = n,, we have 1/k = lx,, - xpl =
= |z(fy — f,) |- Put Z; , = {me M| [(fs = £2) (m)|| > 1/k}. Since |2(f, — £,) 7| £
< 1/k we see that z(Z; ) = 0. Put Z = U ( U Z,,)- As z preserves the countable

keN n,pzni
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unions, we obta'n that z(Z) = 0 and the construction of Z yields that f, is Cauchy
on M — Z.

Conversely, let {f,| n € N} be Cauchy up to a set Z, z(Z) = 0. Then for any ke N
there exists n, € N such that {m € M| | £(m) — f,(m)| > 1/k} = Z for alln, p = n,.
This implies that x, = zf,”! is Cauchy in the norm | ] Lemma 1.3 is proved.

According to the previous lemma, if x, = zf, ! is Cauchy in the norm | | then f,
is Cauchy ‘“‘almost everywhere” with respect to a set Z with z(Z) = 0. Then f, con-
verges to a (Borel) mapping f uniformly on M — Z. If we define f on Z e.g. as a con-
stant, we see that x, converges in the normed space & to x = zf~'. The proof of
Theorem 1.3 is complete.

One can easily check that if M is a Banach lattice, algebra, etc., then we can
similarly “‘structure” certain sets of observables, thus obtaning a Banach lattice,
algebra, etc. The structural properties of M are generally transferred to the sets of
observables. The intrinsic cardinal or topological properties need not be preserved.
For instance, if we take M = R, L = exp N the the space of all bounded observables
equals I ,(N). Although R is separable and reflexive, the space I(N) is not.

In conclusion of the first part of the paper let us remark that there has been another
approach to introducing the linear and convergent structure into sets of observables
(see [2], [15]). This technique used a generalization of Caratheodory’s notion of scale.

2. COMPACT OBSERVABLES

Let us now introduce a more special class of observables which may be viewed as
generalizations of bounded real observables.

Definition 2.1. An observable x is called compact if w(x) is a compact subspace
of M.

Proposition 2.1. (i) Let x,y be compatible observables and let y be compact.
Then o(x # y) < w(x) + w(y).

(ii) If x, are compatible and compact and if x, converges to x in the norm [ |
then x is compact.

Proof. (i) By the same argument as in the proof of Proposition 1.6, (iii), we have
mappings g;,9g,: M - M such that x = zg;!, y = zg;' and g;I(—I\Z_) = o(x),
9:(M) = o(y). We can write (x % y) = z(g, + g,)"". Since w(x * y) =
< (g1 + 92) (M), it suffices to show that (g, + g,) (M) = g,(M) + g,(M). Sup-
pose that ce (g, + g,) (M). Then there exists a sequence c,, ¢, € M, such that

(91 + g2) (cx) = c. Since g,(M) is compact, there exists such a subsequence c,,
of ¢, that g,(c,,) — d. Therefore g;(c,) — ¢ — d and this completes the proof.
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(ii) It follows from Lemma 1.3 and the fact that a set arbitrarily close to a pre-
compact set must bs precompact.

The above proposition allows us to convert sets of compact observables to Banach
spaces.

Theorem 2.1. Let & be an exhaustive set of compatible compact observables.
If we endow & with the linear operations =%, . and the norm l | then & becomes
a Banach space.

Proof. Use Proposition 2.1 and Theorem 1.2.

Compact observables seem to be the most natural generalization of the real
bounded observables. Since the bounded real observables to the Hilbert space logic
L(H) can be identified with the self-adjoint operators on H, one may try to look for
an analogous representation of compact observables x: (M) — L(H), M being e.g.
a Banach algebra. We do not know of any kind of such a representation yet.

Let us conclude this part by giving a simple example showing that Proposition 2.1 (i)
is not valid for bounded observables. Put L = exp N and M = [(N). Denote by J,
the element of I(N) whose all but the k-th coordinate are 0, the k-th one being 1.
Let us define f,g:N — [(N) by setting f(n) =6, g(n)=46,(—1+ 1/n). Put
x=f"1,y=g"" Then Oc o(x + y) but 0¢ w(x) + o(y).

3. PROSPECTS OF A NON-SEPARABLE THEORY

The previous investigations established a strategy for dealing with the “‘separable”
observables. Let us now allow the space M to be non-separable and try to “‘structure”
sets of observables. The following two statements show that we cannot hope for any
generalizations unless there is a base for open sets of M which contains no more
than 2°° elements. (The class of M which remains uncovered by this article will be
analysed elsewhere.)

The first statement points out one type of obstacles. Let us express it in the language
of Lemma 1.2. Prior to that, recall that a set I is called measurable if there is a non-
trivial two-valued c-additive measure p: exp I — {0, 1} which vanishes at all points

(see [16]).

Theorem 3.1. Suppose that M is a metric space which possesses d discrete subspace
of measurable cardinality. Then there is a logic Land an observable x: (M) — L
such that x = hg~?' for no measurable mapping g: S - M.

Proof. Let L= {0, 1} be viewed as a two-point Boolean algebra. Let p: exp I —
— {0, 1} be a measure making a discrete set I, I = M, measurable. Take such an
observable x: (M) — L that x(4) = u(A ") for any Ae B(M). Since h = id,

the equality x = hg~!would mean that y is concentrated at a point of I — a contra-
diction.
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It is known that if measurable cardinals exist in an “‘ordinary” theory of sets, they
must be “extremely big” (see [16]). It follows that we could harmlessly ignore them
within the framework of quantum theories. Then an analogue of Lemma 1.2 may
hold, and often really does, but unfortunately the nonmeasurability of M still appears
too weak to make an analogue of Theotem 1.1 possible. Before showing that, let us
agree that a cardinal «(M) for a metric space M will denote the topological character
of M («(M) = the infimum of the cardinalities of the bases for open sets of M).

Theorem 3.2. Let M be a Banach space of nonmeasurable cardinality and let
®(M) > 2°°. Then there exist a logic L and two compatible observables x, y: B(M) —
— L such that the equalities x = zf{ ', y = zf; ! do not simultaneously hold for any
two Borel mappings f1, f,: M — M and any observable z: #(M) — L.

Proof. Let L = #(M) x %(M), that is, let L be the c-algebra of subsets of M x M
generated by all rectangles 4 x B, A€ (M), Be B(M). Let us now define the ob-
servables x, y. Since a(M) > 2°°, the space M must contain a discrete subspace D
such that card D > 2°°. Take two points a, b € M such that theset J = {me M| m =
= Ja + (1 — A) b, 240, 1)} is disjoint with D. Put K = DU J and pick up an
arbitrary pointce M — K. Wesetx = p~!, y = g~ !, where the mappings p, g: M x
X M — M are defined as follows. If d e K x K then p(d) = n,(d), q(d) = n,(d),
where 7,, m, denote the respective projections. If d ¢ K then p(d) = g(d) = c.
One easily sees that p, g are measurable and hence they define observables. Seeking
a contradiction, let us suppose that there exist two Borel measurable mappings
f1,f, and an observable z such that x = zf] ', y = zg, '. Since any metric space of
non-measurable cardinality is realcompact (see [12]), we obtain that z = k™' for
a mapping k: M x M — M (see [12]). We shall show first that k restricted to K x K
is an injective (measurable) mapping onto K. Indeed, if (t;, 1,) €K x K, (uy, u,)€
eK x K and if eg t; # u; then k™f7'(t,)) 0 k™'(f7 ' (uy) = p~ (1)) 0
N p Y(uy) = n;'(t;) nmy'(uy) = O and therefore k(t,, 1,) + k(uy, u,).

We now complete the proof by showing that k/K x K cannot be measurable.
Since card D > 2°, there exists a point d € D such that k({d} x J) = D. We obtain
that every subset of {d} x J is Borel which is obviously absurd. The proof of Theorem
3.2 is complete.
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