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In combinatorics two points a, b of a graph are called adjacent if they lie on an
edge — and they are called independent in the opposite case. Many results of classical
combinatorics concern the problem of independent points. There is one typical
question of infinite combinatorics which has no finite parallel: when a graph is self-
independent — meaning that there is a set of independent points with the same
cardinality as the whole underlying set of the graph. These questions were generalized
for general categories, see [K;]. Roughly speaking, two subcategories 'y, &, of
a category A are called independent if there is no morphism between an object in %",
and an object in A ,. These problems were studied for special types of categories
in [HS]. An important generalization of this question for concrete categories was
studied in [K;]. We recall the basic definitions:

Let (", U), (&, V) be concrete categories (i.e. U: A — Set, V: & — Set are faith-
ful functors). Then functors ¥, @: 4 — & are independent if for every pair a, b of
objects of /" there is no morphism between ®a and ¥b.

A functor @: A — & is called strong if there is a functor F: Set — Set, called
the underlying functor of &, with F o U = Vo .

A functor @: A" — &£ is called a full embedding if it is faithful and full (i.e. for
a,be A, ®(Hom (a, b)) = Hom(Pa, &b)).

Let (&', U), (&, V) be concrete categories. Then (', U) is (strongly) £-spanned
Sfrom o upwards, where a is a cardinal, if for every cardinal f = « there is a class F
of (strong) full embeddings from & to A such that

a)if ¥,0eF,; ¥ & & then ¥ and & are independent;
b) if a is an object of & then for every ¥ € #,, card U(¥Ya) < max {card Va, B};
c) card F, = card {a; a is an object of ', card Ua < B}/~ where a ~ v iff
a, b are isomorphic.
We say that (&, U) is (strongly) ultimately £-spanned if (A, U) is (strongly)
%#-spanned from o upwards for a cardinal o. If & has exactly one morphism (i.e. £
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is a one-object discrete category) then we say that (", U) is ultimately discretely
spanned or discretely spanned from « upwards.

In the foregoing definitions we assume that all proper classes have the same
power — denote it by ¢ — which is bigger than any set cardinal «. This is correct in
the Bernays-G6del model of the set theory with the strong axiom of choice. In this
paper we shall work in this model of sets.

An important role among concrete categories is played by S(F) categories (defined
in [HPT]) where F is a set-valued functor: If F: # — Set is a functor then objects
of S(F) are the pairs (4, o) where A4 is an object of #” and « = FA, morphisms from
(4, o) to (B, B) are the morphisms f: A — B of A such that Ff(a) = f if F is
covariant, Ff(B) < o for F contravariant.

Many papers have been devoted to the investigation of S(F), particularly for
F:Set — Set. Every current category is a reflective or coreflective subcategory of
S(F) for some functor F. Categories which have full embeddings to S(F) were
investigated in [HP,], [P,] etc. The most important result was proved by Hedrlin
and Kugera. They proved that under the set axiom (M)*) every concrete category
can be fully embedded to S(Q,) where Q, = Hom (2, —): Set — Set, see [H],
[H K], [K], and Kugera proved that every concrete category can be fully embedded
to S(P,) where P, = Hom (—,2): Set — Set, see [K]. Moreover, every day-life
concrete category can be strongly fully embedded to S(F) for a functor F such that
the underlying functor is an identity, [KuP]. In the paper [AHS] it was proved
that S(F) is a “universal” initially complete fibre-small concrete category. This is
only a brief list of interesting properties of S(F). It leads us to a detailed investigation
of S(F).

The aim of this paper is to characterize the categories S(F), with F: Set — Set
contravariant, such that S(F) is ultimately Z-spanned, where 2 is the category of
directed graphs (clearly S(Q,) = 2). It continues the paper [K;]| where the same
question was studied for covariant functors F: Set — Set and is based on the papers
[K, K,] where the categories S(F) into which & is fully embeddable (i.e. the binding
S(F) categories) were characterized.

We say that F: Set — Set is nearly faithful if there is a cardinal f such that if
f,9: X — Y are mappings with Ff = Fg then f = g or card Imf, card Im g < f.
Then we prove:

Main Theorem. For a contravariant set functor F: Set — Set the following are
equivalent:

a) S(F) is strongly ultimately S(Q,)-spanned,;
b) S(F) is strongly ultimately S(P,)-spanned;
¢) S(F) is ultimately discretely spanned,

*) Axiom (M) — there is a cardinal y such that each ultrafilter closed under intersections of y
sets is trivial.
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d) there is a full embedding of S(Q,) to S(F);
e) F is nearly faithful.

To compare the covariant and the contravariant case we formulate the Main Theorem
from [K;].

Theorem. For a covariant set functor F: Set — Set the following are equivalent:

a) S(F) is strongly ultimately S(Q,)-spanned;

b) S(F) is ultimately discretely spanned,

c) there is a full embedding of S(Q,) to S(F);

d) there are sets A, B such that A is finite and F(A 0 B) % Im Fi U Im Fj
where i: A —-> AU B, j: B— AU B are inclusions.

The proofs in this paper are based on [K,, K, and KP]. These techniques belong
to infinitary combinatorics, while the results are formulated in the language of the
theory /of categories. The proof of Main Theorem is divided into several parts. First
we prove that S(P,) is strongly S(P,)-spanned from ¥, upwards. Then we construct
a strong full embedding from S(Q,) to S(P,) such that for every infinite set X the
underlying functor F fulfils card FX = card X. Further, if we use [K,] we get that
if there is an embedding from S(P,) to S(F) then S(F) is strongly ultimately S(P,)-
spanned, hence by the results in [K,] we get Main Theorem. In the end we show some
testing categories for the decision whether S(F) is binding and we formulate a big
characterization theorem.

First we prove an auxiliary lemma:

"Lemma 1. For every infinite set X, every subset U =« X and every non-empty
graph (X, R) (i.e.® + R = X x X) there is a set % < exp (exp X) (where exp X =
= {Z;Z < X}) such that

(i) card A = 22* where a = card X;
(i) Ay, H2eWN, A+ A, implies H'y — A, + 0+ A, — Ay
(iii) every A" € U fulfils: a) if K € A" then K is infinite;
b) if Ky, K, € A then either K, = K, or card (K, — K,), card (K, — K;) >
> 1;
¢) U,X ¢ X and there are (x, y)e R, K e A with x, y e K.

Proof. Choose a decomposition {T,X, X, X3,X4, X5, X4, X;, Xg} of X such that

1) U+ Tandeither Uc X, orUnX; 0 fo1i=1,2,...8;

2) card X; = card X, = card X; = card X, = card X5 = card X = card X, =
= card Xg = card X;

3) there is (x, y)e R with x, ye T.

Choose bijections ¢;: X, = X;, i =2,3,...,8. Then card (exp (exp X)) = 2*".
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Define a mapping ¥ exp (exp X,) — exp (exp X) as follows: for & € exp (exp X;)
Put () = 10 02(W) 0 (Xs = 03(W) < (X — 0 W) We ) 0 (os(V) 0
Vos(V)U(X, — (V) U(Xs — @g(V)); VeexpX, — L} U{T}. If & ¥5€
€exp(expX,)and Ve & — Ly then VU 0y(V) U (X3 — ¢3(V)) U (X4 — @u(V)) €
SUS,) — 9(72) and 9s(V) 0 0o(F) U (Xr — x(V) U (Xs = 9V) € U(2) -
= V(). Hence Y(&) + ¥(&2) and so ¥ is one-to-one. Thus we get that if we define
A =1Imy = {Yy(¥); ¥eexp(expX,)} then A fulfils (i) and (ii). Since either
UcX,or UnX;#+0fori=1,2,..8 we have that U ¢ y(¥) for each & €
€exp (exp X,). It is easy to see that X ¢ () and since Te (%) and there are
(x, )€ R with x, y € T, we conclude that (iii) c) is fulfilled. Since ¢, (i = 2, ..., 8)
are bijections we get that every set in (&) is infinite and (iii) a) is fulfilled. Let
aeV—W If V,We¥ then a, gy(a)e[VuUpy(V)u (X; — @s(V)) v (X4 —
= 2a(V)] = [WU 0;(W) U (X5 — o5(W)) L (X, — @a(W))] and  @s5(a), pua) €
e[Wu 22(W) L (X5 — ¢3(W)) U (X, - ‘P4(W))] = [Vue(V)u(X; -

= @3(V)U(Xa = 0u(V))]. It V,W¢# then o4(a), pe(a) e [05(V) L @o(V) v
V(X7 = 9:(V)) U (Xs = 05(V))] = [0s(W) © 0(W) U (X7 = 95(W)) L (X5 —
- (/’S(W))]’ q’?(“)’ 908(“) € [‘PS(W) U p(W) U (X7 - ‘P7(W)) v (Xs - <P8(W))] -
~ [os(V) U ps(V) U (X, — 04(V)) U (Xg — @g(V))]. Moreover, if Ve s, W¢ S
then [Vu Px(V) v (X3 - (Ps(V)) Y (X4 = @a(V))] 0 [(PS(W) U @(W) U (X, -

— ¢;(W)) U (X5 — @ps(W))] = 0 and thus (iii) b) is fulfilled, too. The lemma is
proved.

Proposition 2. S(P,) is strongly S(P,)-spanned from X, upwards.

Proof. In [VPH] it is proved that for every infinite cardinal « there is a rigid
graph (X, R), i.e. a graph without nonidentical compatible mappings into itself,
with card X = «. If we use the Sip-construction described in [M] or [Ks, K¢],
with the particular Sip defined in [HN] or [Ks] we get that there is a symmetric,
rigid, connected graph (X, R) such that every edge lies in a triangle and card X = a.
In what follows we shall assume that an infinite cardinal o is given and that G, =
= (X, R) is a graph with these properties. Further, choose a set U = X with 2 <
< card U < card X.

Now for every set 4~ < exp X such that

a) K € A implies that K is infinite;
b) K,, K, € A" implies either K; = K, or card K, — K,, card K, — K; > 1;
¢) U,X ¢ A and there are (x, y) € R and K € " with x, y e K,
and for every object (Y, S) of S(P,) we shall construct-an object (Y v X, ®,(S))
(v denotes disjoint union) such that
1) if ¢: (Y, S) = (Z, V) is a morphism of S(P,) then ¢ v 1x:(Y v X, ®4(S)) ~
= (Z v X, 4(V)) is a morphism of S(P,) as well;
2) f@: (Y v X, D,(S)) > (Z v X, Dy,(V))is a morphism of S(P,) then #', = A,
and there is a morphism y: (Y, S) > (Z, V) of S(P,) with ¢ = § v 1.
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In this case @,: S(P,) - S(P,) is a strong full embedding such that the underlying
functor is non-increasing from « and if &'y — A", + 0 + A, — A then P, and
&, are independent and Lemma 1 concludes the proof.

Define @,(S): A mapping f: X v Y — {0, 1} is in P4(S) if either f/Ye S and
fM)nx =0,

or there is (x, y) € R with f 7!(1) = {x, y},
or fT'() e,
orf~ (1) = X.

We prove 1). If fe ®,(V) we have to prove that P,(¢ v 1x)(f) = (¢ v 1x)of€
€Dy (S). If fZeVand f7'(1) n X = U then (¢ v 1x) o f]Y = ¢ o (f]Y) = P,(9) o
(flY)eS and (¢ v 1x)of) ' (X =(p v 1) ' (fT' (1) nX =
=1;'(f7" 1) nX)=(f"'(1)nX) = U and so (¢ v ly)of€ Px(S). Further we
have ((¢ v 1x)of)" (1) = (@ v 1x)"' (f7'(1)) and hence if f7!(1) = X then
((¢ v 1x) o f)~1 (1) = f~*(1), which yields 1).

The proof of 2) will be divided into auxiliary statements:

(i) For every (xq,x,)€R, card (¢~ '({xy, x,}) 0 X) > 1. Indeed, there is fe
€ ®y,(V) with f7Y(1) = {x, x,} and since P, ¢(f) = ¢ of€ Py (S) we have
card ((¢ o f) "' (1) n X) = card (¢~ '({xy, x,}) n X) > L.

(ii) For every ye Y, ¢(y)e Z. Assume the contrary, i.e. there is a point ye Y
with @(y) € X. Choose x;, x,€X with (¢(y), X,), (¢(»), x2), (X1, x,) € R (this is
possible because X is infinite, G, is connected and each edge lies in a triangle), and
ChOOSC flafZ’fS: € ¢MZ(V) Wlth f;l(l) = {qo(y), xl}’ fz_l(l) = {(p(y): xZ}’ f;l(l) =
= {xy, %,}. Then ¢ o f€ @, (S), i =1,2,3and (¢ o f;) ' (1) Y Qfori=1,2.
Hence (¢ o f;)"* (1)nX = U for i = 1,2 and so ¢~ '({¢(y), x;}) n X = U for i =
= 1,2. Therefore ¢ '(p(y)) "X =U and ¢ '(x;)nX =0=0"'(x;)n X,
which implies (¢ o f3)7" (1) n X = @ — a contradiction with (i).

(iii) If x; # X3, x4, X; € X, ¢(x;) € X then ¢(x;) + ¢(x,). Assume the contrary,
i.e. for some points x;, x, € X, x; * x, we have ¢(x,) = ¢(x,) € X. Denote x =
= ¢(x,). Choose X, X, so that x, %,, X, form a triangle in (X, R). We prove that
card ¢~ !(%,), card ¢7!(%,) > 1. If ¢~ *(%,) = 0 then by (i), card ¢ (%,) > 1 and
by (i), ¢ ~*({x, %,}) = X. Since card ¢~ !({x, %,}) > 3 we get by the definition of
Py, (S) (there is fe @y (V), f7!(1) = {x, X,}) that ¢~ !({x, %,}) is infinite. Hence
either ¢~ '(x) or ¢ ~!(X,) are infinite. Assume that ¢ ~!(x) is infinite. Then ¢ ~!(x) € #”
(there is f € Py,(V) with (1) = {x, %,}) and ¢~ ({x, X,}) 2 ¢~ '(x). By the pro-
perty b) of 'y, 97 '({x, %,}) ¢ A", and therefore ¢~ !({x, X,}) = X by the definition
of @,,(S) — a contradiction with (i) (obviously there exists (, v) € R with {u, v} N
n {x, X,} = 9). Thus ¢~ !(%,) + 0, analogously @~ (x,) * 0. Since there are f1, f, €
€ Dy (V) with fr'(1) = {x, %]}, f;'(1)={x, %} and card o~ '({x, %,}),
card ¢~ '({x, %2}) 2 3 we get that ¢~ '{x,X,}, ¢~ '({x, %,}) are infinite (because
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@ of1,00f,€ Dy (S)). Since ¢~ '({x, %))+ X + 97 '{x, X,} by (i), we necessarily
get o7 '({x, %,}), ¢ ({x, x,}) e #, and therefore card (¢p~'({x, X,}) —

— ¢ Y({x, %,})) = card 97 (%,) > 1 and card (o~ '({x, X,}) — ¢~ !({x, %,})) =

= card ¢ '(X,) > 1.

Now we get that if card ¢~ *(X) > 1 and (X, X) € R then card ¢~ '(%) > 1 since
(%, %) is in a triangle and so for every z € X, card ¢~ '(z) > 1. By the property
¢) of A, there are gy, g2, 93 € Py,(V) with g7 '(1) € 95 '(1) & g5 '(1) = X, hence
(@og)™ (1) s (poga)™ (1) € (pogs) ' (1) =X (by the above property and
(i)) and since card ¢~ '(z) > 1 we get that (pog,)"'(1)e#, and therefore
(¢ - g,)~" (1) = X, which contradicts the definition of @, (S). Hence (iii) is proved.

(iv) (X) > X. Indeed, if ¢~ '(x) = 0 for some x € X then there is X with (x, X) € R
and therefore card ¢~ '({x, X}) n X > 1 by (i) but card ¢~ !({x, ¥}) < 1 by (iii) —
a contradiction.

(v) #(X) = X. Indeed, there is f€ @,,(V) with f~!(1) = X, hence ¢ o f € D (S)
and by (iv), (¢ of)"' (1) = X. Consequently, either (¢ of)™' (1) = X, then
¢ '(X) = X (and ¢(X) = X by (iv)), or (¢ o f)"* (1) € &' (and then ¢~ (X) € A',).
But there are g, 92 € Py,(V) with g7'(1) & g5'(1) € f~* (1). Then (iv) yields
(@og) ' (1) g (9og2) (1) € (@of) (1). Since (pof)! (1)e o7, then the
property b) of ', implies (¢ og,)™' (1)¢ 4, and card (¢ o g,)" ' (1) = 2 and
card (¢ 0 g4)~* (1) < 2 — a contradiction.

(Vi) /X = 1. Since /X is a bijection from X to itself (see (iii) and (v)) we get
that (p/X is a compatible mapping from G, to itself and so ¢/X = 1y because G,
is rigid.

(vii) 4, = A'y. For every K e A, there is fe @y, (V) with f~'(1) = K, hence
(pof) ' (1)=Ke .

(viii) @/Y:(Y,S) = (Z, V) is a morphism of S(P,). If f € V then there is g € P,(V)
with g7'(1) n X = U and g/Z = f. Since p o g€ Py (V) and (pog)" ' (1) n X =
=g '(1)nX = Uwegetthat (¢ . g)/YeSbut(¢og)/Y=0/Yog = ¢[Yog|Z =
= ¢[Y o f and therefore ¢/Y is a morphism of S(P,).

(ix) ¢ = @Y v 1.

This follows from (ii) and (vi). The proof is complete.

We say that a functor F: Set — Set is non-increasing from « upwards if for every
set X with card X = « we have card FX = card X.

Proposition 3. There is a strong full embedding from S(Q2) to S(P,) such that
the underlying functor is non-increasing from N, upwards.

Proof. The proof is similar to that of the foregoing proposition but simpler.
Let G = (X, R) be a symmetric, rigid, connected graph such that every edge lies in
a triangle and card X = N, (there is such a graph — see the foregoing proof).
Choose a decomposition {X,, X,, X3, X,} on X such that every set is infinite. We
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shall define a strong full embedding @: S(Q,) — S(P,): if (¥, V)€ S(Qz) then put
&(Y,V) = (Q,Y v X, ®(V)), and f: .Y v X — {0, 1} is in &(V) if either

S Mnx =X and f(1)nV="0or

S = X or

F7Y(1) = {xy, x,} for some (x4, x,) € R or

ST) =X,V {1 V2); y2€ Y,y € A} for some 4 = Y or

f_l(l) =X;V {(J’p J’2); vieY, y,€ A} for some A < Yor

(1) = X, v U{Q,Y; i eI} for some decomposition (Y;iel}of Y
(notice that Q,Y = {(y1, y2); V1, ¥2€Y} =Y x Y) and for ¢: (v,S) - (z,T)
define @p = Q,¢ Vv lx. The proof that & is a strong full embedding will be divided
into several parts — analogously as in the foregoing proof.

() If ¢:(Y.S)~ (2, T) is compatible then Q,p v 1x: 9(Y, S) = ¥(Z, T) is
a morphism of S(P,).
Proof. If f € 9(T) then
either a) f~(1) n X =X, and f7'(1)n T =9, then ((Q:p v 1x)o /)71 (1) =
= (@ap) oS M) U 15 oS (1) = (Qa) o (1) 0 X, and because
0, ¢(S) = T we obtain (Q20) 1o fTH1)NS = ((Q0 Vv 1x) ) ' (DnT=09
and 50 (0,0 v 1y) o f€ &(S),
orb) f7Y(1) = {x,, x,} for some (x,x,)€eR, then ((Q0 v 1x) o f)71 (1) =
= {x;, %2} — and so (Q,¢ Vv 1x)ofe &(S),
orc) f7(1) = X, U{(y1, 2); y2€Z, yy € A} for some 4 < Z, then (2200 v 15) 0
of) (1) =X, U ({(y1 y2); y2€Y,yie @ (4)}) and so ((Q20 V 1x)of) €
€ ¢(S),
ord) f7Y(1) = X5 U {(y1, y2); y1 € Z, y, € A} for some A = Z — the proof is the
same as that of ¢),
ore) f71(1) =X, 0 U{Q,Z; iel} for a decomposition {Z;iel} of Z, then
((Qz‘ﬂ v 1x) Of)_l (1) =X, v {Qz(‘Pﬂl(Zi)ﬁ ieI} and so (Qz‘l’ Vig)efe
€ 9(S),
or f) f7Y(1) = X, then ((Q,¢ v Ix) o f)"' (1) = X, too, and thus (Q,¢ V 1x)of€
€ 9(S),
and (1) is proved. Hence we immediately get that @ is a functor.
Assume that ¢: (Q,Y v X, &(S)) = (Q,Z v X, &(T)) is a morphism of S(P,).
(ii) For every (x;,x;)e R, card ¢ '({x1, x,}) n X 2 2.
Proof is analogous to the foregoing one.

(iii) For every y € Q,Y, ¢(y) € Q,Z.

Proof. Assume the contrary, which means that ¢(y) e X for some y e Q,Y. Let
x = ¢(y). There are x,, x, such that x, x,, x, form a triangle in (X, R). Then there
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are [, f,€®(T) with f7'(1) = {x,x,}, f7'(1) = {x,x;} and (¢f)7" (1) n
N QY+ Qfori=1,2 Since pof;eP(S), i =1,2 wehave (pof) ' (1)nX =
= X; for some j = 1, 2, 3, 4. Thus either (¢of;) ' (1) nX = (¢of2)"'(1)n
NnX, then (pof,) ' (I)nX =0 !(x) and o7 '(x) "X =0 =0 '(x)n X —
a contradiction with (i), or (¢ofy) ' () NnXn(pof)"' (1)nX =0, then
e '(x)nX =0 and o Yx,x,}nX =((¢of) ' (N)nX)u((eof) ' (1)
NX)=X,uUX, where j, k = 1,2,3,4, j # k. On the other hand, there is f3 € &(T)
with f57!(1) = {x,, x,} and hence ¢ o f5 ¢ ®(S) — a contradiction. Therefore (iii)
holds.

(iv) If Xy * x5, X1, X, € X then ¢(x,), ¢(x;) € X implies ¢(x,) + ¢(x2).

Proofis the same as that of (iii) in the foregoing proof. Now by the same argument
as in the foregoing proof we get that ¢(X) > X, hence ¢(X) = X and

(V) (p/X = ]x.

(Vi) There is,: Y — Z such that for every (yy, y;) € Q.Y @(y1, ¥2) = (¥1(y1), 2)
for some ze Z.

Proof. For every ze Z there is f,e ®(T) with £, (1) = X, U {(z, z;); z, € Z}.
Hence ¢of,e®(S) and (¢of,) ' (1)nX =X, — therefore (pof,) ' (1) =
=X, U{(y1,¥2); y2€Y, y € 4,}. Then for z + Z we have 4, N A; =  and since
¢(Q,Y) = Q,Z (by (iii)) we get that {4,; z€ Z, 4, + 0} is a decomposition of Y.
Define l//l( y) = ziff y € 4,. Then y, evidently has the required property.

(Vii) (P/Q2Y= Yy X Yy, 0 = (‘p1 X ‘pz) v 1y,

Proof. Analogously as in (vi) we find ¥/,: Y — Z with ¢(yy, y,) = (2, ¥5(y)) for
every (¥1, ¥2) € Q,Y — this means that ¢/Q,Y = y/; x /. The rest follows from (iii)
and (v).

(viii) ¥y = ¥y

Proof. Assume that y,(x) % y,(x). There is fe &(T) with f~(1) = {(z, z);
zeZ}uX, Then (pof)"'(1)nX =X, and so (pof)"'(1) =X,u{Q,Y;
i eI}, where {Y;; i eI} is a decomposition of Y, but (x, x) ¢ (¢ o f)~* (1) — a contra-
diction. Thus ¥, = ¥, =, ¢ = Q¥ v 1y.

(ix) ¥: (Y, S) = (Z, T) is a morphism of S(Q,).

Proof. Since there is f € ®(T) with f~'(1) = X, U (Q,Z — T), hence ¢ o f € P(S)

and (¢ o f)"' (1)n X = X; therefore (¢ o f)"' (1)n S = 0, which implies Q, ¥(S) =
T ’

(x) @ is a strong full embedding with an underlying functor non-increasing
from X, upwards.

Proof. By (i), (iii), (v), (vii), (viii), (ix) we get that & is a strong full embedding.
By Theorem 1,4 of [Ks] we get the rest of the assertion.
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The proof of Proposition 3 is complete:

Corollary 4. S(P,) is strongly S(Q,)-spanned from 8, upwards.

Proof follows from Propositions 2 and 3 if we use the result from [K3] (Proposi-
tion 1.8).

Now we recall some notions from [K,] and [K;]. For a contravariant functor F -
and x € FX define a subfunctor F*, F*Y = {F f(x); f: Y > X} and set F(x) Y =
={F g(x); 3f: X > Z onto, g: Y > X with g - f is onto, x € F f(FZ)}.

Lemma 5. For every contravariant set functor F:Set — Set, for every point
x € FX and for every infinite set Y with card Y = card X we have:

a) card F*Y = card F(x) Y;
b) card F(x) Y = card 2".

Proof of a). Denote by p: Y — X v Y the sum injection.

Then for each f: Y — X there is a mapping h: X v Y — X onto with f = po h.
Thus Fu(F(x) (X v Y)) = F*Y and since card Y = card X v Y we get card F(x) Y =
= card F(x)(X v Y) 2 card F*Y. The converse inequality is obvious.

Proof of b) — see [K,].

Hence we get

Proposition 6. If there is a full embedding of S(P,) to S(F) then S(F) is strongly
ultimately S(P,)-spanned.

Proof. In [K,] it is proved that if there is a full embedding of S(P,) to S(F) then
there is x € FX such that there is a strong full embedding of S(P,) to S(F*) such that
the underlying functor is non-increasing from B upwards, where f is a suitable
cardinal. By Lemma 5 and Proposition 2 (and Propositions 1,8, 1,9 in [K;]), S(F*)
is striongly S(P,)-spanned from max {f, N,, card X} upwards. We prove that S(F)
is strongly S(P,)-spanned from max {f, ¥,, card X} upwards. Choose a cardinal
a = max {B, N, card X}. Then card {(Z, y); (Z, y) is an object of S(F), card Z <
< a}[/~ = card 2" (where (Z,y) ~ (V,6) if they are isomorphic, and « is the set
ordinals smaller than a), hence we have to construct a family {G;; i eI} of independent
strong full embeddings from S(P,) to S(F) such that the underlying functors are
non-increasing from o upwards and card I = card 2™, We can assume that there is
a family {H;; je J} of independent strong full embeddings from S(Pz) to S(F)
such that the underlying functors are non-increasing from « upwards and, moreover,
the functor C, is their subfunctor and card J = card 2** = card 2"a. Now we use
the idea from [Ks] to complete the proof. We choose a bijection ¢: exp F,a — J and
for a subset U = Fa define a functor Gy: S(P,) - S(F) as follows: Put j =
= ¢(U n F*x). Then for an object (Y, T) of S(P,) define Gy(Y, T) = (Z, V) where
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H{(Y,T)=(Z,W) and V= WU Fky(U — F*a) where ky:Z — o is a mapping
such that ky/a = 1, and ky(Z — o) = {0} (« = Z since C, is a subfunctor of the
underlying functor of H;). If f: (Y, T)—(Y’, T") is a morphism then put Gyf = H,f.
Since H,f|a = 1, we get ky = ky o f and so Fky(U — F*a) = Ff(Fky(U — F*a),
and because H; is a functor we get that Gy is a functor, too. If f: GU(Y, T) -
- Gy/(Y’, T') is a morphism of S(F) then we get that U’ > U, U’ n F'a = U n Fa
and there is a morphism g: (Y, T) - (Y’, T") of S(P,) with f = H ;. px,g- Indeed,
since F* is a subfunctor of F we get: if Gy(Y, T) = (Z, V), G,/(Y', T') = (2, V")
then f is a morphism from (Z, V 0 F*Z) = H,yp«(Y, T) into (Z', V' 0 F*Z') =
= H,y np<)(Y’, T") and from the properties of H; we get the second and the third
assertion. Hence f/a = 1, and so we get the first one, too. To conclude the proof it
suffices to construct a set 2 = exp Fo such that a) Vy, V, €, V; + V, implies
Vi = (FauV,) 0+ V, — (FauV,) and b) card A = card exp Fo. Since
card Fo > card F*a = card 2%, we easily construct the required set (for example,
we can use the simplified way from Lemma 1) and the proof is complete.

In the end we give some conditions equivalent with the universality of S(F ) (by
which we mean that every concrete category can be fully embedded to S(F) without
set theoretical assumptions; e.g., S(P,) is universal [K]). To this purpose we recall
some notions from [K,].

For a contravariant functor F and for x € FX put &, = {~; ~ is an equivalence
on X, x € Ff(F(X/~)) where f: X — X/~ is the canonical quotient mapping} and
denote by e, the cointersection of all equivalences ~ in &, (i.e., e, is the finest equi-
valence which is coarser than every equivalence ~ in ).

An equivalence e is called a finite decomposition if all its classes are finite and it
has only a finite number of non-singleton classes.

Lemma 7. If F:Set — Set is a contravariant functor and x € FX then every
finite decomposition e which is finer than e, lies in F,.

Proof. see [K,].

The following result is easy to obtain:

Lemma 8. If F: Set — Set is a contravariant functor and x € FX, then any map-
pings f,g: Y — X for which there is ec #, such that (f(y),g(y))€e for each
y €Y, fulfil Ff(x) = Fg(x).

Proof. Let h: X — X/e be the canonical mapping. Then for some x; € F(X[~),
Fh(x;) = x and foh = goh. Thus Ff(x) = F(foh) (x;) = F(goh) (x;) =
= Fg(x). '

We recall that ¢: X — X is a transposition if there are x, y € X such that #(x) = y,
f(y)=xandforzeX, z # x,y, (z) = z
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If f:X > Y, g: X - Z are mappings onto, h: X — V is their counion (i.e. there
are f1:V—>Y, g;:V—>Z with f=f,0h, g =g,.h and whenever f =k, o k,
g = kj, o k for some k then there is a unique r with & = r o k), then a contravariant
functor F dualizes this counion if Ff(FY) u Fg(FZ) = Fh(FV). We say that F
dualizes counions if it dualizes all counions, and F dualizes counions with finite
decompositions when it dualizes all counions of f: X — Y, g: X — Z such that the
equivalence ~ on X is a finite decomposition and x ~ y iff f(x) = f(»).

We recall a notion from [K;]:

Let (o, U), (&, V) be concrete categories. Then a family {@;: (", U) » (£, V);
iel} is called a (&, a)-span in & if

a) @, are independent full embeddings;

b) for each object K of ", card V(P(K)) < max {a, card U(K)} for each iel;

c) card I = card {Lis an object of #; card VL < a}/~, where L ~ L, iff L, L,
are isomorphic.

In particular, if (", U) is discrete then we say that (,S,”, U) has a discrete a-span.

Now we formulate a big characterization theorem (compare it with the analogous
theorem for covariant set functors in [K;]).

Theorem 9. For a contravariant set functor F: Set — Set the following are equi-
valent:

1) S(F) is universal;
2) S(F) is binding;
3) there is a strong full embedding from S(P,) to S(F);
4) there is a strong full embedding from S(Q,) to S(F);
5) S(F) has more than card 2¥% + card 2" non-isomorphic rigid objects;
6) there is a rigid object (X, V) in S(F) with card X > 1;
7) there is an object (X, V) in S(F) such that its monoid of endomorphisms is
finite and different from the monoid of all mappings of X,
8) S(F) is strongly ultimately S(P,)-spanned,;
9) S(F) is strongly ultimately S(Q,)-spanned;
10) S(F) is strongly ultimately #-spanned for every finite single-object category;
11) S(F) is strongly ultimately M-spanned for some finite single-object category;
12) S(F) is ultimately discretely spanned;
13) S(F) has an (M ,a)-span for a finite single-object category and an mﬁmte cardi-
nal o > card 2"? + card 27%;
14) F is nearly faithful;
15) F does not dualize counions with a finite decomposition;
16) there is a set X and x € FX such that e, is nontrivial (i.e. there are x, y such

that (x, y) ¢e,);
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17) there is a set X and a transposition t: X — X with Ft + Fly;

18) there is a set X and a mapping f: X — X such that there is only a finite number
of points x of X with f(x) + x and Ff # Fly;

19) there is a cardinal o such that for every set X with card X = « and every
transposition t: X —» X, Ft % Fly;

20) there is a cardinal o such that for every set X with card X = o and every
mapping f: X — X such that f(x) & x only for a finite number of points x
of X we have Ff #+ Fly.

Note. We recall that a concrete category is binding if there is a full embedding of
the category of graphs into it (or there is a full embedding of any category of algebras
into it), and is universal if every concrete category has a full embedding into it. It is
easy to see that every universal concrete category is binding and as was proved e.g.
in [K], the converse implication is equivalent to the set axiom that there is only
a set of measurable cardinals. Nonetheless, if F: Set — Set is a contravariant functor
then the two properties are equivalent without any set assumptions. This is not true
for covariant set functors, see [K], e.g. S(Q,) is only binding. On the other hand,
for a covariant set power functor P (i.e. PX = exp X, and P f(Z) = f(Z)), S(P) is
universal, see [K].

If we compare the results in [K; and K, ] with those in [K;] and Theorem 9 we
find that they are similar. Let us call the reader’s attention to a difference. The role
of S(Q,) is played, for a contravariant functor, by the category S(P,), but the role of
S(P) where P is a covariant power-set functor is not matched by any contravariant
functor because every S(F) can be fully embedded to S(P,) without any set as-
sumptions. The second difference consists in the fact that there is a faithful covariant
functor F such that S(F) is not binding. While for covariant functors the proper-
ties — binding and faithful — are independent, this is not true for contravariant
functors. As was proved in [P, ], if F is a faithful contravariant set functor than there
is a strong full embedding of S(P,) to S(F) such that the underlying functor is the
jdentity functor and therefore S(F) is universal.

Proof of Theorem 9. In [K,] the following implications were proved: 1) => 3) =
= 5) = 6) = 14) = 15) = 16) = 17) = 19) = 1). It is evident that 1) = 2), 4) = 2),
1) = 7), 14) = 20) = 19), 20) = 18). From [ VPH] it follows that 2) = 5). By Propo-
sition 3 we get 3) = 4). By Proposition 6 we get 3) = 8) and by Proposition 3,
8)=9). By [HP,] (see also [Kj]), 9) = 10) = 12) = 5) and 10) = 11) = 13).
By Lemmas 7 and 8 we get that —116) = ~118) and so 18) = 16). For the same
reasons ~116) = 717), thus 7) = 16). To complete the proof we have to show
13) = 7) & 16). Assume that S(F) has an (#, «)-span, i.e. there is a family {(X,, V;);
iel} of independent objects of S(F) such that their endomorphism monoid is iso-
morphic with .# and card I = «. Since ./ is finite it suffices to show that .# is not
a monoid of all mappings of X;. Assume the contrary, then card X¥' = card /4
for each i. Further, a > card 2F# + card 2F! and so card X; > 1 and there are
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iel and x € V; with x ¢ Ff(F1) for f: X; - {0} = 1. Since card X; < N, we get by
Lemma 7 that either e, is non-trivial or x € Ff(F1) — this completes the proof.

It is evident that Main Theorem follows from Theorem 9. The fact that S(P,) is
discretely spanned from N, upwards follows from the results of Kudera [K] and was
proved independently by Pultr, whose proof has not been published.
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