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In the present paper it will be proved that if n is a positive integer and G is a con-
nected graph of an even order =n, then G" contains at least n — 1 edge-disjoint
I-factors. (As follows from the example given in [6], this lower bound cannot be
improved).

By a graph we mean a graph in the sense of the books [1] and [4]. Let G be a graph;
we denote by V(G) its vertex set and by E(G) its edge set; the integer IV(G)I is referred
to as the order of G; if A & 0 is a subset of V(G), then {A); denotes the subgraph
of G induced by A; we say that F is an m-factor of G if F is a regular graph of degree
m and it is a spanning subgraph of G; if u, v € ¥(G), then the distance between u and v
in G will be denoted by ||u, v||¢. If G is a graph and n 2 1 is an integer, then the n-th
power G" of G is defined as follows: V(G")=V(G), and for every u, v € V(G), uv € E(G")
if and only if 1 < “u, v”G < n

The following theorem was proved in [6]:

Theorem 0. Let n be a positive integer, and let G be a connected graph of order
p = n. Assume that if n is even, then p is also even. Then G" has an (n — 1)-factor.

(Moreover, it was shown in [6] that for any integers n = 1 and p > n(n + 1),
there exists a tree T of order p such that T" has no n-factor).

In the present paper Theorem O will be improved for the case when the order of G
is even. If H is a graph, then we denote by (p(H) the maximum integer m such that
there exists a set of m mutually edge-disjoint 1-factors of H; clearly, if ¢(H) * 0,
then the order of H is even.

The main result of the present paper is the following:

Theorem 1. Let n be a positive integer, and let G be a connected graph of an
even order p = n. Then ¢(G") = n — 1.

To prove Theorem 1 we make use of three lemmas (one of them was proved in [6]).
Let T be a tree, and let u € V(T). Similarly as in [6], we shall say that a subset V¥,
of V(T) is a u-set in T'if either ¥, = {u} or there exist distinct components Ty, ..., T
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(k=1) of T—u and either V, = V(T;)u ...u V(T;) or Vo =V(Ty) U ...
U (T v {u).

Let A be a finite nonempty set. Consider an arbitrary object x; if x € 4, then we
write &(x, A) = 1, and if x ¢ A, then we write &(x, A) = 0. We denote by K(A) the
complete graph with the vertex set A. Recall that the edge-chromatic number of the
complete graph K, equals e — | or e if e is even or odd, respectively; see the con-
struction in [2], pp. 249—250. It follows from that construction that (K, x K,) =
= ¢, where F x H denotes the cartesian product of graphs F and H.

Lemma 1. Let n = 2 be an integer, T a tree, u € V(T), and let A and B be disjoint
u-sets in T. Assume that IA| < IB] <n< [A V] B[ and that |A U BI is even. Then
P(CAUByp) =z n — 1.

Proof. Denote a == IAI, b= lBl, and e = (a + b)[2. It is easy to see (cf. [6])
that there exist vertices ry, ..., r, and sy, ..., s, such that 4 = {ry,...,r,} and B =
= {5y, ..., 5} and that

1A

|riou|r =i — &(u, A) forevery ie{l,...,a}, and )

Isj»u|r <j — &(u, B) forevery je{l, .., b}.

If e =a,then weput u, = r,, Uy = Fy_q, ..., Uy = Fy, Uy = Sy, Uy = S,,
If e < a, then we put u; = r,, u, = r,_y, ..

cen by = S
s lg = Ty Ugig = Sg5 0005 Ue = Sp-ay/25
Uy = Sp—ayj2+1> ---» Ve = Sp. Moreover, for every integer m ¢ {], . e}, we define
u,, = u, and v, = v, where ke {1, ..., e} and m = k (mod e).

We distinguish two cases:

1. Assume that e = n. Let H, be the graph induced by

E(K({uy, ..., u,}) U E(K({vq, ..., 0,}) U {upvy, ugvs, ooy u0,— 1} -

It is clear that H, is a subgraph of T". Since H; + u,v, is isomorphic to K, x K,.
o(H, + uyv,) = n. This means that ¢(H,) =n — 1. Hence, (<A U B).) =
=n—1.

2. Assume that e < n. Let H, be the graph induced by E(K({uy,...,u,})u
v E(K({vy, ..., v.})) U E,, where E, is the set of edges

ulvl, UUp, vnvs Uple

UgUy, Upl3, ooy Upley g

UgUp—es UgUpyg—e> o5 Uly—q -

It is easy to see that H, is a subgraph of T". Let H,, be the graph induced by the set
of edges E(K({uy,...,u,})) v E(K({vy, ..., 0})) U {U10— s Uslys1—ps o5 Ugly—)-
Obviously, H,, is isomorphic to K, x K,, and therefore, ¢(H,;) = e. This implies.
that o(H,) = e + (n-- e — 1) = n — 1. Hence, ¢({A U B)z.) = n — 1.
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Lemma 2 ([6]). Let n = 2 be an integer, and let T be a tree of an order >n.
Then there exists u € V(T) and disjoint u-sets A and B in T such that

(a) Au B+ V(T),

(b) T — (4 U B) is connected,

(c) lAl < IB] <n< ]A U BI, and

(d) if [A ) BI #* n, then IA v B, is even.

The following lemma plays the main role in the proof of Theorem 1:

Lemma 3. Let n = 2 be an integer, and let T be a tree of an even order p > n.
Assume that there exists u € V(G) and disjoint u-sets A, B and C in T such that
AvuBuUC=WT), }AI < [BI < |C| <n< |A U B’, IA U B| is even, and if
IAI =1, then ¢(u, B) = 0. Then ¢(T") = n — 1.

Proof. Similarly as in the proof of Lemma 1, we denote a = [A[ b= ]B| and
= (a + b)[2. Moreover, we denote ¢ = [C' andd =n —c.Thusa + b + ¢ = p,
a<b=<c=<n e2n/2 and cis even.

If ¢ = n, then {C)7. = K, and thus ¢({C>r.) = n — 1. It follows from Lemma |
that ({4 U B)z.) 2 n — 1, and thus ¢(T") 2 n — 1. We shall assume that ¢ < n.
Hence, e < n.

If b + ¢ < n, then T" is complete, and thus ¢(T") = p — 1 = n — 1. We shall
assume that b + ¢ > n. Hence, ¢ > n/2.

If e £d, then n < 2e < 2d = 2n — 2¢ < n, which is a contradiction. Thus we
have proved that d < e.

Similarly as in the proof of Lemma 1, we introduce vertices u, ..., u, and vy, ..., v,.
Since e < n, we define the graphs H, and H,, similarly as in the proof of Lemma 1
(Case 2). Recall that V(H,)= V(H,) = Au B, E(H,)= E(K({uy,...,u})) v
U E(K({vy, ... v.})) U Ex, E(Hyy) = E(K({uy, ..., u,})) U E(K({vy, ..., v.})) U
U {U 0y s UaUpt1—es -+ s Uely—1}, and that H, is a subgraph of T".

We now introduce further auxiliary notions. There exist vertices ¢, ..., t. of T such
that C = {t,, ..., t.} and that

Y

[te ulz < k — &(u, C), forevery ke{l,...c}.

Define g = max (0,(a + b + ¢))2 — n + &u, B)) and h=max(l,a + ¢ —n —
—g+¢eu,B). Ifh>1,then h<a+c—n+euB)—((a+b+c)2—n+
+ &(u, B)) = (a — b + ¢)[2. Hence, 1 < h < ¢/2. We now define the vertices
Xiyoeos Xej2o Vis ooos Veya @8 FOIlOWS: Xy =t py gy Xp = lempigs oo X = 150 B < [2,
then we also define X,y = t._, X412 = te_joy, ... X2 = l(e2y+ 15 MOrEOVer, we
define y; = 1.5, Y2 = t2y-1> ---» Vej2 = ;. Finally, we define mapping f of the set
{1,2,..., d} into the set of integers as follows:

S(1) = 2[d]2] = 1. £(2) = 2[d[2] - 2. ... f([d[2]) = [4]2] ,
SdR2] + 1) = d + [d2]. f([d[2] +2) = d + [d2] = 1,...f(d) = d + 1;
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note that for a real number o, [[Q]] denotes the smallest integer m, with the property
that o < my, and [o] denotes the greatest integer m, with the property that m, < o.
We can see that the minimum (or maximum) value of f equals [d/2] (or d + [d/2],
1espectively). Obviously, the number of integers m such that [d2] < m < d +
+ [d]2] equals d (or d + 1)if d is odd (or even, respectively). The following propeity
of / will be important for us:

S f2) = 1y eu f(d) —d + 1} = {1,2,...,d} .

We shall construct an (n — I)-factor H of T" such that ¢(H) = n — 1. We shall
color the edges of H to obtain n — 1 edge-disjoint 1-factors of H, each colored by one
of n — | distinct colors, say colors wy, ..., ®,_.

Since H,, is isomorphic to K, x K,, it can be divided into e edge-disjoint 1-factors,
say F,_ o, Fy_oiir--es Fy—y. Clearly, F,_,, F,_cv1,..., F,—{ are l-factors of H,,
and we color E(F,_,), E(F,_o+1), ..., E(F,—y) by colots @,_,, @, 41, ..., ®,_1,
respectively. If e = n — 1, then we have obtained n — 1 edge-disjoint I-factors of H,.
If e < n — 1, then we denote by F, F,, ..., F,_._,; the 1-factors of H, induced by

{
Iulvl’ [ERE ueve} ]

) ;N
{Uvg, .oy Uley

respectively; we color E(F,), E(F,), ..., and E(F,_,_;) by ,, @,, ..., and ®,_,_,
respectively. Clearly, o(H,) = n — 1. Since ¢ is even, K(C) can be divided into ¢ — 1
I-factors, say F,_ .., F;_ s, ..., F,_,. Wecolor E(F,_ ), E(F,_.5), ..., E(F,_,)
by W, i1y Wy_cy2, ..., and o, _y, respectively.

We first note that for every m e {1, e d}, the edges

UgsmUg+ romy> gt 14+mUg+ 14 5(mys =+ o5 Ugt(e/2)= 1 +mUg+(c/2) = 1+ £ (m)
belong to H, and are colored by @/(u-,+- We next note that for every ke
e {1, ..., ¢/2}, the vertices
Ugtk—1+ (1) Vgtk—1+£(2)> -+ > Vg+k—1+ 1)
are mutually distinct; this follows from the fact that d < e. The edges
UgtkUgtk—1+£(1)> Yg+k+1Vg+k—1+7(2)s -+ Ugrk+d—1Vg+k—1+f(a)

belong to H, and are colored by distinct colors @1y, @215 - > @ fay—a+ 1> FESPEC-
tively.

The graph H (with colored edges) will be constructed from the graph induced by
E(H,) v E(K(C)) (with colored edges) in such a way that for every me {1, ..., d},
the edges

UgtmUgs £(my> Ug+ 14+mVg+ 1+ £(mps -+ +» Ugt(c/2)=1+mVg+(c/2)~ 1+ £(m)
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(colored by @ ¢y —+) Will be replaced by the edges
UgimX1s V1lgt rmys Ug+1+mX20 Vo2Uga 14 pmys o Ugt(cr2)—14+mXes25 Vej2lg+(cj2)— 1 + f(m)

(colored by the same color).

We can see that H is a regular graph of order n — 1 and that it can be divided into
n — | edge-disjoint I-factors (coloted by w,, ..., w,_,). We wish to show that H
is a subgraph of T". It is sufficient to prove that every edge of H — (E(H,) u E(K(C)))
belongs to E(T").

For every ke {1, ..., ¢/2},

Ug 1 kXi> Ugtk+1Xks -+ o5 Ugtta— 1%k

are the edges incident with x, in H — (E(H,) v E(K(C))). (The edges u,.x;,
Ugiks1Xps ---» and w4 41X, are colored by mutually distinct colors g,
Of2)y-15---» and Wy g4, respectively.) We shall show that these edges belong
to T".

We first show that g + h < aand g + h + d — 1 < e. Recall that d = n — c.
Ifh=a+c—n—g+euB),theng+h=<a+c—(n—1)<aandg + h +
+d—-1=Za=seleth=11fg=0,theng+h<1=Zagandg+h+d—1=
=n—c<n2=<e Let g=(a+b+c)2—n+¢eu B). Then g+ h=
=(a+b+c)2—(n—1)+ &u, B) < a2 + &(u, B). It follows from the assump-
tion of the lemma that a/2 + &(u, B) < a, and therefore, g + i < a. Since ¢ = 2,
wehave g + h+d—1=(a+b+c)2—c+euB)Se+1—c2=Ze

We first consider an arbitrary k e {1, .., h}. Clearly, g + k < a and g + k +
+ d — 1 £ e. To prove that u,,,,, X, belongs to T" forany m, 0 S m < d — 1, it
is sufficient to prove that |x,., x| < n, and that if g + k + d — 1 > a, then
[tgsisa-1> x|z  n. Clearly, [uyir, x|z = (¢ — g — k) + &(u, B) + (¢ — h +
+k)y=(a+c—g+eu,B)-—h=<(a+c—g+euB)—(a+c—n—g+
+ &(u, B)) = n. It remains to show that ||u,. s 4—y, Xk = n under the condition
that g + k +d — 1 > a, since g + h < a, we have ||uy 4q-1, Xz = (9 + k +
+d—=2—a)+eu,A)+(c—h+k<(g+h+d—-2—a)+eu A) +c<
<g+h—a+nzgn.

Assume that g + ¢/2 > e. If g = 0, then ¢ > 2e = n, which is a contradiction,
If g=(a+ b+ c)2—n+ e, B), then ¢ > n — &u, B) = n — 1; a contradic-
tion. This means that g + ¢/2 < e.

We now consider an arbitrary ke {h + 1, ..., ¢/2}. Thusg + k < e.Ifg + k < q,
then [uy e Xillr = [tgs 1> Xi[r < n. We wish to show that [ugysm Xfr < n
forevery 0 =<m=d-—1.1f g+ k +d — 1 £ a, then the result is obvious. Let
now g + k+d—1>a. Denote ¢ =min(e,g + k + d — 1). We have that
e xilr =(@—a) +eu, A) + (c—k)S(g+k+n—c—1—a)+ 1+ c—
—k=g+n—a<g+h+n—agn If g+ k+d—1=Ze we have that
[tgsrsm Xi]|r < n for every me{0,...,d —1}. Let g + k +d — 1 > e. Then
[tte> x|z = n. We shall prove that [u,, x|z < n, and thus [u,,., x| ; < n for every
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m'e{l,...,e}. Assume that g = (a + b + ¢)/2 — n + &(u, B). Since g + k + d —
—1>e, we have that k > ¢/2 + 1 — &(u, B) = ¢/2, which is a contradiction.
This means that g = 0. Hence, [uy, x|z < |uy, x,[z < n.

For every ke {1, ..., ¢[2},

ViVg+k—1+ g(1)> Vilg+k—1+£(2)s ++ > ViVg+k—1+£(d)

arc the edges incident with y, in H — (E(H,) U E(K(C))). (The edges yyy - 1+5(1)> - -

., and Yy, 44— 1 4 pg) are colored by mutually distinct colors @y ), ..., and @ @y-a+1
respectively.) We shall show that these edges belong to T".

Consider an arbitrary ke {1, ..., ¢/2} and define ¢ = min(e,g + k — 1 +d +
+ [d/2]). To prove that each of the edges Vb, sx—1+ (1) --» YVilg+k—1+ (@ Delongs
to T, it is sufficient to prove that ||y, v,|r < n. Clearly, |y, vz = (¢2 — k) +
+eu, A)+ (b —a)2+ ¢ <c/2—k+s(u A+b-a)2+@g+k—-1+d+
+[d2])Sg+n—c+(n+b—a)2+eu A —1.1fg = 0, then ||y, verf|r <
Sn—c+(m+b—a2sn—-b+(n+b-a)f2=n—(n—(a+b)2=
If g=(a+b+c)2—n+¢eu B), then |y,v.[r=(a+b+c¢c)2—c
+(m+b—a)2+eu A)+euB)—1=b+n-—c)f22b+(n— b)2
=(n+ b)2 <n.

Thus the proof of the lemma is complete.

l1+_=

Now, we are ready to present the proof proper of Theorem 1.

Proof of Theorem 1. The case when n = 1 is obvious. We shall assume that
n = 2. Let m denote the odd integer with the property thatn — 1 < m < n. Since p
is even, we have p =2 m 4 1. If p = m + 1, then G" = K, and therefore qJ(G") =
=p—1z2n-1.

Let now p > m + 1. Assume that for every connected graph G’ of an even order p’
with the property that m + 1 < p’ < p, it is proved that ¢((G')") = n — 1.

Let T be a spanning tree of G. Since p is even and p > m + 1, we have that p =
> m + 3. It follows from Lemma 2 that there exists u € V(G) and disjoint u-sets U
and W in T such that Uu W+ V(T), G — (U u W) is connected, |U| |W|
=m< [U v WI and ,U ) W‘ is even. Since m < n, according to Lemma 1 we have
(KU U W) 2 n — 1.

We distinguish the following cases and subcases:

1. Assume that !V(G) o VA, W)l = m + 1. Since p and |U V) W| are even, it
follows from the induction hypothesis that (p((V(G) UuWhe)=n— 1.
Hence, ¢(G") 2 n — 1.

2. Assume that IV(G) U v W)| < m. Since |U ) W\ is even, IV(G) —
—Uuw)|sm-1

2.1. Assume that there exist disjoint u-sets ¥; and V, in T such that ‘V l |V2| =<
<mandV, UV, = V(T) — {u}.Since p — Lis odd, |V;| < |V,|. Denote ¥, = ¥; u
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U {u}. Then |V,| < ]V2| < n. Since Vo U ¥V, = V(G) and p 2 n + 2, it follows from
Lemma 1 that ¢(G") Z n — 1.
2.2. Assume that for arbitrary disjoint u-sets V; and V, in T'such that |V1| =< |V2‘ =<

< m, we have V; UV, % V(T) — {u}. Since IUI < |W| <m< |U U W,, it is not
difficult to see that there exist disjoint u-sets A’, B’, and C’ in T such that IA’| <
<|B|=|c|sm<|4UB|and 4 UB UC = V(G)— {u}.

2.2.1. Assume that n is odd and |[C'| = n. Then K(C' U {u}) is the subgraph
of G" induced by C' U {u} and ¢(<C U {u}>g.) = n. It follows from Lemma 1
that (<A’ U B').) 2 n — 1, and therefore, ¢(G") = n — 1.

2.2.2. Assume that either n is even or |C'I < n. If |C’] is odd, then we put 4 = A’,
B =B and C'u {u}. If C' is even, then |A’[ < |B’|, and we put 4 = A’ U {u},
B =PB and C = C'.

We have that A, B, and C are disjoint u-sets in T which fulfil the assumptions of
Lemma 3. This implies that ¢(T") = n — 1. Hence, ¢(G") 2 n — 1, which completes
the proof.

Let n = 2 be an integer. Theorem 1 asserts that for every connected graph G of an
even order =n, there exists a set of n — 1 edge-disjoint 1-factors of G". For the cases
n = 2,3, and 4 Theorem 1 was known before: the case when n = 2 was proved
in [3] and [8], the case when n = 4 was proved in [5]; the case when n = 3 follows
from the fact that the third power of every connected graph is hamiltonian-con-
nected ([7]).
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