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1. INTRODUCTION

By a left modular groupoid we mean a groupoid satisfying the identity x . yz =
= z. yx. Right modular groupoids are defined dually by xy . z = zy . x. A groupoid
is said to be bi-modular if it is both left and right modular.

The aim of this paper is to study left modular and bi-modular groupoids. The main
results are the description of all simple left modular groupoids (Theorem 3.1) and the
description of the equational theory of bi-modular groupoids (Theorem 4.6).

1.1. Example. Let S(+) be a commutative semigroup and f its endomorphism.
Define a new binary operation on S by ab = f*(a) + f(b). We obtain a left modular
groupoid.

1.2. Example. Let S(+) be a commutative semigroup and f, g its two endo-
morphisms such that f = g? and g = f2. Define a new binary operation on S by
ab = f(a) + g(b). We obtain a bi-modular groupoid.

1.3. Example. Let S(+) be a commutative semigroup. Define a binary operation
onS*by(a, b,c)(d,e,f) = (c + e,a + f, b + d). We obtain a bi-modular groupoid.
(This follows from 1.2, since we can define two endomorphisms f, g of S*(+) by
f(a,b,c) = (c,a,b) and g(a, b, c) = (b, ¢, a).) We shall see later that the variety
of bi-modular groupoids is generated by bi-modular groupoids obtained in this way.

It turns out that every left modular groupoid is medial, i.e. satisfies the identity
xy . zu = xz . yu (see 2.1). Thus the theory of medial groupoids, as developed in [2],
will be of use in the present paper.

The notation introduced in Section 1.3 of [2] will be adopted. Recall that every

term t can be expressed in the form t = Z e;x; where x; are variables and e; are ele-
i=1

ments of the free monoid over {a, /3}; for every i, e; is called an occurrence of x; in t.

If e is an occurrence of a variable in ¢, then P,(e) denotes the number of a’s and Py(e)

denotes the number of the f’s in e; the ordered pair (P,(e), Py(e)) is called the weight

of e.
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2. LEFT MODULAR GROUPOIDS AND MEDIALITY

2.1. Proposition. Every left modular groupoid is medial.

Proof. xy.zu = u(z.xy) = u(y.xz) = xz. yu.

Following [2], we call a groupoid entropic if it is a homomorphic image of
a medial cancellation groupoid. Entropic groupoids form a variety. It is proved in
[2] that an identity (¢, u) is satisfied in the variety of entropic groupoids iff the fol-
lowing is true for any variable x and any pair k, / of non-negative integers: the number
of occurrences of x of weight (k, /) in t equals the number of occurrences of x of
weight (k, [) in u.

2.2. Proposition. The variety of left modular groupoids is not contained in the
variety of entropic groupoids.
Proof. The identity

(<= u) ((pa - 7) 9) = (x(vq - ) (= - ) 9

is satisfied in all entropic groupoids. On the other hand, it is not satisfied in all left
modular groupoids. This can be shown mechanically by finding all terms ¢ such that
the identity (x(vz.u))((pg.r)s) =1 is a consequence of the left modular law;
there are just 24 such terms t and the term (x(yq . u)) ((pz . r) s) is not on the list.

3. SIMPLE LEFT MODULAR GROUPOIDS

Let p be a prime number and n a positive integer. Consider the finite field GF(p")
with p" elements. A pair (a, b) of elements of this field is called admissible if a + 0,
the field is generated by ¢ and either b = Oor b = 1 = a + a>. For every admissible
pair (¢, b) denote by U[ p", a, b] the groupoid with the underlying set GF(p") and with
the binary operation - defined by x o y = a%x + ay + b.

For every integer n > 2 define a groupoid V[n] with the underlying set {0, 1, ..., n}
and with binary operation - as follows: put 0-i = ic0 =0 for all i€ {0, ..., n};
put /(1) =2, f(2)=3,...f(n — 1) =n, f(n)=1:1if i, je{l,...,n} and f(i) =,
put'i:j = f(j); put ioj =0 in all the other cases. Further, denote by V[1] the
groupoid with the underlying set {0, 1} and with zero multiplication.

3.1. Theorem. The only simple left modular groupoids are, up to isomorphisni,
the following ones:
(1) U[p", a, b] where p is a prime number, n 2 1 and (a, b) is an admissible pair;
(2) V[n] where n = 1;
(3) the two-element semilattice.
These groupoids are pairwise non-isomorphic, with the following exception:
Ulp.a,b] ~U[q", c,d] iff p=4q, n=m, b =d and ¢ = h(a) for some auto-
morphism h of the field GF(p").

The proof of this theorem will be divided into several lemmas.
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3.2. Lemma. The groupoids U{p", a, b] are, up to isomorphism, the only simple
left modular cancellative groupoids. We have U[p", a. b] ~ U[q", ¢, d] iff p" = q™,
b = d and ¢ = h(a) for some automorphism h of GF(p").

Proof follows from 2.1 and from Propositions 5.5.4 and 7.2.1 of [2].

3.3. Lemma. The groupoids V[n] (n 2 1) are, up to isomorphism, the only
simple left modular zeropotent groupoids.

Proof follows from Proposition 7.5.1 of [2].

3.4. Lemma. Let H(o, f1, f,) be a simple algebra with one binary and two unary
operations such that H(s) is a commutative idempotent medial groupoid and
f1, f2 are two automorphisms of H(o). Then either H(c) is cancellative or H(-) is
a semilattice.

Proof follows from Proposition 11.4 of [4].

3.5. Lemma. If 3.1 is not true then there exists a simple left modular groupoid G
with the following properties:
(1) G is infinite;
(2) G is not cancellative;
(3) G is not zeropotent;
(4) the mapping f(a) = aa is an automorphism of G;
(5) if (x) is a term containing a single variable x and if the mapping a — 1(a) is
injective then this mapping is an automorphism of G;
(6) G satisfies either the identity xx . yz = yy . xz or the identity xy . zz = xz . yy.

Proof follows from Theorems 7.9.3 and 1.1.1 of [2] and from the following fact
which can be easily proved. If t(x) is a term containing a single variable x, then in
any medial groupoid the mapping a — #(a) is an endomorphism; moreover, any two
endomorphisms of this form commute.

3.6. Lemma. Let G be as in 3.5. Define two binary relations pg, g on G by
(a,b) e pg iff ax = bx for all xe G, and (a,b)€ q¢ iff xa = xb for all xeG.
Then p; = q; = idg.

Proof. Since G is simple and infinite, GG = G. This together with the mediality
of G implies that p; and q¢ are congruences. If p; = G x G then G is a right unar
and so G is finite, a contradiction. Hence p; = idg. We can prove q; = idg similarly.

3.7. Lemma. Let G be as in 3.5. The mapping g(a) = a.aa is an automorphism
of G.

Proof. If this is not true then, as follows from 3.5(5), g is not injective. Since
Ker(g) is a congruence different from idg, we get that there exists an idempotent o
of G with g(a) = oforalla e G. We have ao = a(a . aa) = aa . aa = f*(a),0.0a =
=a.o00 = ao, R, = f? = L% and we see that both R, and L, are automorphisms
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of G. Now, define a new binary operation + on G by a + b = Rj '(a) Ly'(b).
It is easy to check that G(+) is a medial groupoid and o is its neutral element. Con-
sequently, G(+) is a commutative semigroup. However, a + L,R; '(aa) =
= R;'(a) Ry '(aa) = Ry '(a . aa) = R;'(0) = o, and we have proved that G(+)
is an abelian group. In particular, G is a quasigroup, a contradiction.

3.8. Lemma. Let G be as in 3.5. Then G does not satisfy xx .yz = yy . xz.

Proof. Suppose that G satisfies xx.yz = yy.xz. Then c¢(a.bb) = bb.ac =
=aa.bc=cb. aa) for all a, b, c € G; by 3.6 we have q; = idg and so a . bb =
= b.aaforalla,beG. Put acb = g~ '(a)g~'(bb) for all a, be G. Then G(o) is
a medial groupoid, a o b=g~'(a.bb) =g '(b.aa)=boa,aca =g '(a.aa) =
= 4. G(-) is a commutative idempotent medial groupoid, ab = g(a).f " g(b) for all
a,beG and g,f 'g are two commuting automorphisms of G(o). Moreover, the
algebra G(s, g, f~'g) is clearly simple. Evidently, G(s) is not cancellative and so it
follows from 3.4 that G(-) is a semilattice. However, in [1] all simple semilattices
with two commuting endomorphisms are found and from the description it follows
that the groupoid G iseither finite or zeropotent or not left modular, a contradiction.

3.9. Lemma. Let G be as in 3.5. Then G does not satisfy xy . zz = xz . yy.

Proof. Suppose that G satisfies xy . zz = xz . yy. Let a, be G. Then a . bb = cc
and b.aa = dd for some ¢,de G and we have (aa)(e.bb) = (ae)(a.bb) =
= ge.cc = ac. ee and (aa)(e. bb) = (bb)(e.aa) = (be) (b.aa) = be.dd = bd .
. ee for every e € G. Hence (ac, bd) € pg and so ac = bd by 3.6. Now, (aa) (b . bb) =
= (bb)(b.aa) = bb.dd = bd . bd = ac . ac = aa . cc = (aa)(a . bb) = (bb).
.(a.aa).

Put h(a) = (aa)(a . aa) for all a € G, so that h is an endomorphism of G com-
muting with f and g. Suppose that 4 is injective. Then h is an automorphism of G
by 3.5(5). Put aob = h™' f(a). h™"' g(b). Then G(o) is a commutative idempotent
medial groupoid, ab = hf ~'(a) - hg ™ '(b) and the algebra G(c, hf =", hg ™) is simple.
We can derive a contradiction similarly as in the proof of 3.8.

Hence h is not injective, so that there exists an idempotent o with h(a) = o for all
a € G. Let us prove that o is a zero of G. There are three cases:

Case 1: L, is not injective. Then o is a left zero of G. Moreover, ao = a .00 =
= 0.0a = o, so that o is a zero.

Case 2: R, is not injective. Then o is a right zero and 0 = a0 = a .00 = 0. oa.
Hence L, is not injective and, again, o is a zero.

Case 3: Ly, R, are injective. Then by Proposition 1.1.1 of [2] there is a simple
groupoid H containing G as a subgroupoid and satisfying the same identities as G,
such that L, and R, are automorphisms of H. Put a + b = Ry '(a). Ly"(b). Then
H(+) is a medial groupoid and o is its neutral element, so that it is a commutative
semigroup. Let a e H. There are elements b,ce H with Ry'(a.aa) = bb and
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¢ = o(R;'(a). Ry '(a)b). We have o= h(R;'(a)) = Ry '(aa).bb = Ry '(a)b.
.R5'(aa) = Ry'(a)(R;'(a). Ry '(a) b) = Ry '(a). Ly'(¢) = a + c. We see that
H(+"’) is an abelian group and so G is cancellative, a contradiction.

This proves that o is a zero of G. By Proposition 3.4.1 of [2] there exists a com-
mutative semigroup S(+) and its two commuting endomorphisms p, g such that o
is a neutral element of S(+), p(0) = q(0) =0, G = S, ab = p(a) + q(b) for all
a,be G and such that the algebra S(+, p, q) is generated by G. Let r be a con-
gruence of S(+, p, q) which is maximal with respect to r N (G x G) = idg. If s is
a congruence of S(+, p, q) such that s o r then, by the maximal property of r,
s M (G x G) # idg, sothat G x G < s(since G is simple); since 0 € G and S(+, p, q)
is generated by G, we get s = S x S. This shows that r is a maximal congruence
of S(+, p, q). Now it is clear that an algebra S,(+, p,, q,) isomorphic to S(+, p, q)/r
has the following properties: S;(+, o) is a commutative monoid, p,, g, are two
commuting endomorphisms of S,(+, o), the algebra S,(+, p,, q,) is simple, G = S,
and ab = p,(a) + q,(b) for all a, be G. According to Theorem 2.1 of [3], S,(+)
is a semilattice with the least element 0. Now, from the description of simple semilat-
tices with two commuting endomorphisms (see [1]) we see that G is either finite or
zeropotent or not left modular, a contradiction.

The contradiction induced by 3.8, 3.9 and 3.5(6) proves Theorem 3.1.

3.10. Corollary. For every cardinal number n denote by a(n) the number of

isomorphism classes of simple left modular groupoids with n elements.

(1) If n is infinite then a(n) = 0.

(2) If n is a positive integer which is not a prime power then a(n) = 1.

(3) a(2) = 3, a(3) = 3, a(5) = 6.

(4) If p is a prime number, p > 7 and i* + i
alp)=p+ 2.

(5) If p is a prime number, p 2 7 and there is no i with i> + i
a(p) = p.

(6) If p is a prime number and i* + i = 1 (mod p) for an integer i then a(p*) =
=@ —p)+1.

(7) If p is a prime number and there is no i with i* + i = 1 (mod p) then a(p®) =
=@ -p)+3

(8) If p is a prime number and n 2 3 then
a(p’) =1+ (l/n)z|,u(n/m) "
Proof. The result is an easy consequence of 3.1 and some simple considerations
concerning finite fields.

Let us remark that if p = 7 is a prime number then it is easy to see that i* + i =1
(mod p) for an integer i iff j> = 5 (mod p) for an integer j€ {0, ..., p — 1}.

1 (mod p) for an integer i then

it

1 (mod p) then

3.11. Corollary. There are only countably many minimal varieties of left modular
groupoids.
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4. THE EQUATIONAL THEORY OF BI-MODULAR GROUPOIDS

Given a term {, an integer n = 0 and terms u,, ..., u,, we define two terms
Ly(t,uy, ..., u,) and Ly(1, uy, ..., u,) as follows:

Li(t) = Ly() = ¢t;

Li(t,uy,...,u,) = Ly(t,uy, ...;u,—y)u, if n =1 is odd;
Ly(t,uy,..ou,) = u,L(t,uy,...,u,—y) if n > 1 is even;
Ly(t,uy,..ou,) = u,Ly(t, uy, ...u,—y) if n = 1 is odd;
Ly(t,uy,...ou,) = Ly(t,uy, ..oy iy_y)u, if n > 1 is even.

4.1. Lemma. Let n, m = 0 and let p be any permutation of the set {1, e Zn +
+ 2m + 1}. The identity
L:(’% 25y 32n+1) . Ll(}’s Zon+m+1s Z2n+2m> -+ 22n+2) =
= Ll(xv Zp(1)s =+ o» Zp(2n+1)) . Ll(y’ Zp(2n+2m+1) <+ o> Zp(2n+2))
is satisfied in all bi-modular groupoids.

Proof. Every permutation p is a composition of transpositions of the form i «
< i+ 1, and so it is enough to prove the identity for these transpositions only. Let p
be a tranposition i« i + 1. If i £2n — 1 and i is odd, then the identity is & con-
sequence of the left modular law. If i < 2n nad i is even, it is a consequence of the
right modular law. For i = 2n + 1, it is a consequence of the medial law. If i > 22 +
+ 1, then similarly the identity is a consequence either of the left or of the right

modular law.

4.2. Lemma. Let n, m = 0. Then the following two identities are satisfied in all

bi-modular groupoids:

(1) Ly(x, 24 vy Zanas) - Ly(vs gy <o tizn) = Li(Ws 205 oo Zaman) - Li(X, s ooy i)

(2) La(x, 215 s Zam) - Lo(0s thys ooy iz 1) = LoV, 215 oo Zam) - Lo(X, g5 ootz e ).
Proof. Denote these two identities by E, ,, and F, .. Since F, , is dualto E, ,, it is

enough to prove E, .. E, , is just the right modular law. We shall proceed by in-

duction on n + m.
Let n > 0 and m > 0. Since E,_, ,,— is satisfied by the induction assumption,

an application of 4.1 gives

Ly(x, gy s Zag1) - Ly(Ds thys ooy i) =

= Ly(z, . X2y, Z3, ooy Zageq) - Ly(uy . yus iz, ooy Uzm) =

= Lty yuy, 23y ooy Zonsy) - Ly(23 - X205 U3y ooy Ua) =

= Ly(y, 245 «-es Zags1) - Ly(%, iy ooy Uzm)-

Letn =1landm = 0. Then(z2 . le) zZ3.y = (23 .XZy)Zy.y = YyzZy. (23 Sxzp) =
= yz;.(2; . x23) = x23.(2; . yz,) = x23 - (z2 - yzy) = (22.y2;) 23 . X.
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Letn = 2 and m = 0. We already know that the identity E, _, , is satisfied and so
Ly(x,zq, oo Zogsy) - ¥V = YZapar - Li(x, 24, o0 25,) =

= VZan+1 - Zanl(X, Ziyeens :2:,—1) = Ll(-\" ESTREEN :2,,—1) . (:211 . ."5zn+x) =

= Ll(y’ Zyseens ZZn—l) . (zZn . xz2u+1) = XZgp+1 - (ZZH . Ll(y' ESTIEEN :Zn—l) =

= Ll(y’ Zyseens 22n+1) .- X

If n = 0 and m > 0, we already know that E,, , is satisfied, so that

xzy Ly uy, oo ugy) = Ly(youy, oo tigy,) 2y - X =

= Ll(ya Ugs ooy Uppy, Zl) X = L1<X, Uy ooy Ugms Zl) V=

= vz, . Li(x, uy, ..., uy,).

4.3. Lemma. The following identities are satisfied in all bi-modular groupoids
for any n 2 0:
(1) yz . Ly(x, 24, ooy Zagey) = ¥X . Ly(2, 24, oy Z2041)s
(2) Li(x, zq, -ovs Z2y) - ¥2 = Ly(2, 24y s Z2,) - ¥,
(3) La(x, 24y ooes Zagsy) - ¥Z = Ly(¥, 240 oy Z2041) - X2,
(4) vz . Ly(x, 2y, ..., Z20) = x2 . Ly(y, 245 -y Z20)-

Proof. The last two identities are dual to the first two and so it is enough to prove
(1) and (2). (1) follows from 4.2, since

¥z . Ly(x, 2, ooy Zagey) = Ly(X, 240 ooy Z250) 2.y =

=Lz, 2y 00 Zage1) X . ¥ = ¥x . Ly(z, 2q, ..y 249)-
The identity (2) is just the left modular law in the case n = 0; if n > 0, it follows
from (1):

Li(X, 2y, oy 22) - 92 = (2, - Ly(X. 2y, o0y 2202y)) (¥2) =

= (yz. Ll(x, Zyyeeos Zon-1)) Zon = (WX . Li(2, 24, ooy 2502 1)) 220 =

= Ly(z, 2y, ..., 22,) . YX.

We denote by T the equational theory of bi-modular groupoids, i.e. the set of pairs
(1, u) such that the identity ¢ = u is satisfied in all bi-modular groupoids.

4.4. Lemma. Let t be a term, x a variable and e an occurrence of x in t.

(1) If P,(e) — Py(e) = 0 (mod 3) then either (t,ux .v)e T for some terms u, v or
(t, Lyi(x, zq, ..., Z3,)) € Tor (t, Ly(x, zy, ..., 2,,)) € T for some variables
Zyy e 2y (M 2 0).

(2) If P,(e) — Pyle) = 1 (mod 3) then either (1, xu)e T for some term u or
(1, Ly(x, 2y, ..., Z2,41)) € T for some variables z,, ..., z5,., (n Z 0).

(3) If Pye) — Py(e) = 2 (mod 3) then either (t,ux)e T for some term u or
(1, Ly(x, 24, ..., Z3,41)) € T for some variables z, ..., 25,., (n Z 0).

Proof. If t = x then (1) takes place with n = 0. We shall proceed by induction
on the length of ¢.
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First, let P,(e) — Py(e) = 0 (mod 3) and e = «f for some f. Then P,(f) — Py(f) =
= 2 (mod 3). By induction, there are two possibilities. If (¢;, ux) € T'then (t, ux . t,) €
eT. If (ty, Ly(x, 2y, .05 25041)) €T then (1, Ly(X, 2y, ..., 25541, 1,))€ T and we
are through if 1, is a variable. So, let t, = 1,,1,,. We have (1, L,(x, zy, ..., z,
.yytp;) € Tand 5o (1, Ly(tyy, Zys -y Zops 1) - Xtpp) € T by 4.3(3); by the medial law
we get (1, 23,4, . v) € T for some v.

Let P,(e) — Py(e) = 0 and e = Bf. Then P,(f) — Py(f) = 1 and, by induction,
there are two posibilities. If (15, Ly(x, zy, ..., z5,+,)) € T, we can proceed similarly
as in the previous case. So, let (1, xu) e T.Then (¢, t, . xu) € T. If ¢, is not a variable,
1, = ty,ly,, then (¢, ty,x . t,u) € T. If u is not a variable, u = u u,, then (¢, u x .
.uyty) € T. If 1, and u are both variables, then (t, L,(x, u, t,))e T.

Let P,(e) — Py(e) = 1 and e = Bf. Then P,(f) — P4(f) = 2 and, by induction,
there are two possibilities. If (5, ux)e T then (f, 1, .ux)e T and so (t,x .uty)e T.
If (13, Ly(X, 2y, «ooy Z2449)) € T then (1,15, Ly(x, 24, ..., Z3,4+4)) € T and so
(t, x . Ly(ty, 24, ..., Z3044)) € T by 4.2.

Let P,(e) — Pye) = 1 and e = af. Then P,(f) — P4(f) = 0. By induction, there
are three possibilities. If (¢, ux.v)e T then (f, x(u . t,0))e T. If (t;, Ly(x, zy, ...
o Z3,)) €T then (t, Ly(X, 2y, ..., 22,) . 1) €T, (1,122, . Lo(x, 24, ..., Zp—q)) €T
and we can proceed as in the case e = Bf. If (t,, Ly(x, z,, ..., z3,)) € T then
(t, Ly(x, 2y, -5 Zams 1)) € T and it is enough to consider the case when ¢, is not
a variable, 1, = 1,41,,. But then (t, Ly(t5,, 2y, ..., Z2,) - 121x) € T by 4.3(2), so that
(t, x . t31Ly(t22, 245 ..oy 22,)) € T

In the case P,(e) — Py(e) = 2 the proof is similar.

Let a term ¢, a variable x and a number i€ {0, 1,2} be given We denote by
Qi(x, t) the number of occurrences e of x in 7 such that P,(e) — Py(e) = i (mod 3).

1.5. Lemma. Let t, u be two terms and x a variable. Moreover, let h be an endo-
morphism of the groupoid of terms. Then

Qol(x, tu) = Qu(x, 1) + Qy(x, u),

Ql(x’ tu) = Qo(xa t) + QZ(X, u),

Qz(xy ’“) = Ql(X, z) + Qo(’ﬁ u),

Qo(xs ’7(1)) = Zy(Qo(ya 1) Qo('xy h()’» + 04(y. 1) Qa(x, h()")) + Q,(y, t) Ql(x9 h(}’))),

04(x. h(t)) = 2(Qo(y, 1) @, h(¥)) + Q4 1) Qolx, h(1)) + Qaly, ) Qallx, h(¥))),

Qa(x, h(t)) = g(QO(Y 1) Qa(x, h()) + Q4(y, 1) Qu(x, () + Qa(y, 1) Qolx, 1(¥))),
where y ranges over all variables.

Proof is easy.

4.6. Theorem. Let t, u be two terms. The identity t = u is satisfied in all bi-
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modular groupoids iff Qi(x, 1) = Qix,u) for all variables x and all i€ {0, 1,2}.

Proof. Denote by T (as above) the equational theory of bi-modular groupoids
and by D the set of pairs (1, u) such that Q(x, ) = Q(x, u) for all variables x and
all i € {0, 1, 2}. We must prove T = D. It follows directly from 4.5 that D is a fully
invariant congruence of the algebra of terms. Moreover, the pairs (x .yz,z . yx)and
(xy . z, zy . x) evidently belong to D and so T < D. It remains to prove that if (¢, u) €
€ D then (t,u) e T. This will be proved by induction on the sum of the lengths of ¢
and u. If one of the terms 1, u is a variable then t = u and so (1, u) e Tis clear. So,
let ¢, u be not variables.

First, suppose that (7, xa) € T and (u, xb) € T for some variable x and some terms
a, b. Then evidently (a, b) € D and so (a, b) € T by the induction assumption, so that
(t,u)e T If (1, ax) e Tand (u, bx) e T, the proof is analogous.

Evidently, there exists an occurrence e of some variable x in t such that either
P,(e) — Pyle) = 1 (mod 3) or P,(e) — Py(e) = 2 (mod 3); it is enough to consider
the first case. Since (1, u) € D, there is an occurrence f of x in u with P,(f) — Py(f) =
= 1 (mod 3). By 4.4, either (1, xa) € Tet (u, xb) € T for some terms a, b (and we are
through) or there are variables z,, ..., z,,,; such that either (1, L,(x, 2y, ..., Z3,41)) €
e Tor (u, Ly(x, zy, ..., Z35+1)) € T. It is enough to consider the case (1, Ly(x, z,, ...
eews Zau+1)) € T. Then P,(g) — Py(g) = 2 (mod 3) for any occurrence g of any variable
in t different from e. Since (1, u) € D, P,(9) — P4(g) = 2 (mod 3) for any occurrence g
of any variable in u different from f. Now it easily follows from 4.4 that there exists
a variable y and terms a, b such that (¢, ay)e Tand (¢, by)e T.

5. FREE BI-MODULAR GROUPOIDS AND THE NUMBER OF VARIETIES

Let X be a non-empty set. We denote by Cy(+, 0) the free commutative monoid
over X. For every tetm 1 in variables from X we define a triple H(1) = (H(t), H,(t),

H,(1)) of elements of Cx as follows. Express t in the form 1 = ) e;x; and for every
j€{0,1,2} put Hj(1) = Y {x;; P,(e;) — Py(e;) = j (mod 3)}. 7!

5.1. Theorem. Let X be a non-empty set. Denote by F the set of triples (a, b, ¢) €

€ C} satisfying the following two conditions:

(1) if b=c=0 then aeX;

(2) either the length of a is odd and the lengths of b, ¢ are both even or the length
of a is even and the lengths of b, ¢ are both odd.

Define a binary operation on F by (a,b,c)(d,e,f)=(c+e, a+f, b+ d).

Then F is a free bi-modular groupoid over the set {(x, 0, 0); x € X}.

Proof. Denote by A the groupoid of terms over X and by G the groupoid with the
underlying set Cy and with the binary operation (a, b, ¢)(d, e, f) = (c + e, a + f,
b + d). It is easy to verify that F is a subgroupoid of G containing the elements
(%, 0, 0)(x € X) and that H is a homomorphism of 4 into G such that H(x) = (x, 0, 0)
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for all x € X. Consequently, H is a homorphism of A into F. Evidently, H(t) = H(u)
iff Q(x,1)=0Q(x,u)forall xe X andallie {0, 1,2} andso it follows from Theorem
4.6 that H(A) is a free bi-modular groupoid over H(x). It remains to prove H(A) = F
This follows from the following five observations.

Observation 1: If (a, b, c)e H(A) then (a + x, b + y, ¢ + z)€ H(A) for any
x,¥,z€X. Indeed, if (a,b,c) = H(t) then (a + x, b+ y, ¢ + z) = H(u) where
u = y(x.zt).

Observation 2: If (a,b,c)e F and ¢ = 0 then (a, b, c) € H(A). Indeed, let a =

=Y x;and b =Y y, Then m is even, n is odd and (if m # 0) we have (a, b, ¢) =
i=1

i=1

= H(t) where t = Ly(L(yy. X1s - ey Xn)s Y25 ones Y)-

Observation 3: If (a, b, c)e F and b = 0 then (a, b, ¢) € H(A). This is similar to
the second observation. '

Observation 4: If (a, b, c)e F and a = 0 then (a, b, c)e H(A). Indeed, let b =
=Y x;and ¢ =Y y,. Then n and m are both odd and we have (a, b, c) = H(t)
i1

i=1
where t = Ly(X{, V1, .0y Y Xou ooy X,)-

Observation 5: If (a, b, c)e F and b, ce X then (a, b, c) € H(A). Indeed, let a =

= Y x;, 50 that n is even. We have (a, b, ¢) = H(t) where t = bLy(c, x,, ..., X,).

i=1

5.2. Theorem. The variety of bi-modular groupoids has uncountably many
subuvarieties.

Proof. Let us fix a variable x. For any even number n = 2 fix two terms t,, u,
such that H(t,) = (nx + 4x, x, x) and H(u,) = (nx, 3x, 3x). For any subset M of
{2,4,6, ...} denote by V), the variety of bi-modular groupoids satisfying the identity
(t,, u,) for all n.e M. In order to prove that the varieties ¥, are pairwise different, it
is enough to show that (1,, u,) is not implied by the set I, = {(t,,u,); m * n} U
U{(x.yz,z.yx),(xy .z, zy . x)}. Suppose, on the contrary, that there exists a proof
ag, ..., a, from 1, to u,, such that (a,_, a;) is an immedaite consequence of an identity
from I, for any i€ {1, ..., k}. It is enough to prove by induction on i that H(a;) =
= (nx + 4x,x,x). For i =0 this is clear. Let H(a;) = (nx + 4x, x, x), where
i < k.If(a;, a;,,)is an immediate consequence of either the left or the right modular
law, it is clear that H(a,, ) = (nx + 4x, x, x). Suppose that (a;, a,, ) is an immediate
consequence of (¢, u,) for some m = n. Then there exists a substitution f such that
either f(t,,) or f(u,) is a subterm of a;. Now, f(u,,) cannot be subterm of a;, since
H(f(4,,)) = (p, g, r) where p, g, r are of length >2. For the same reason, if f(t,) is
a subterm of a; then f(x) = x, so that f(t,,) = t,. Now, H(t,,) = (mx + 4x, x, x) and
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it is easy to see that if w is any term such that t, is a proper subterm of w and if
H(w) = (a, b, ) then at least two of the elements a. b, ¢ have lengths =2. Hence
1, = a; and so m = n, a contradiction.
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