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A DIRECTED d-GROUP THAT IS NOT A GROUP OF DIVISIBILITY

A. M. W. Grass, Bowling Green

(Received September 19, 1983)

In [1], J. MoZkor asked if there exists a directed group which admits the structure
of a d-group but is not a group of divisibility. We provide such an example.

Recall that an abelian group G is a group of divisibility if there is an integral
domain A with field of quotients K such that G is isomorphic to the multiplicative
group K*[U(A) where K* = K \ {0} and U(A) is the multiplicative group of units of A.
Note that any group of divisibility is torsion-free (if x™y = 1, then x(x™"'y) = 1).

Recall that an abelian group (G, +) with a partial order < defined oniitis a directed
group if for all «, B,y € G (i) there exist A, p€ G such that 2 < o, f < p (ie, 4 <
Soe=sp&l <P =< p),and (i) if o < B, then 2 + 7 < f + 7. A directed abelian
group (G, +, <) is said to be a d-group if there is a multivalued addition @ on G,
such that, for all a, f,7,0€ G

(He@®Pp=pD«
Qedoy)=0c0p oY
(3) xe f @y implies fea @ y.
Gat+tB@r)=(@+phe(@+7)
(5) wea@® p ifand only if & = f

6)ifa,f=2y&dea@®f, then 6 = y.
and (7)) a @ £ 0

where f@y<s Gu{w}anda+ (@ y)={au+d:0ef @y} foralla, B, yeq,
and the usual properties of oo hold (see [1]).

As noted above, to construct an example of a directed abelian d-group that is
not a group of divisibility, it is enough to construct a directed abelian d-group that
is not torsion-free. We now do this.

We will write ot | Bif o £ B& B £ .

Let G = Q @ C; where Q is the additive group of rationals with the usual ordering
and C; is a cyclic gioup of order 3, say C; = {O,a,v2a}. Partially order G by:
(9.na) < (q',n’a) if and only if ¢ < ¢’ in @, where n, n’ € {0, 1, 2}. Clearly, G is
a directed group; indeed, it is a tight Riesz group (i.e., if «, § < 7,5, there is Le G
such that a, f < 4 <y, §). Note that

(*) (¢,na) | (¢',n'a) ifandonlyif g =q' &n=+=n".



Hence if « | B in G, there is a unique y € G such that y | a & y | B; we write <o || f>
for this y. Also

(t) if «>p&B|y, then a>y.
Let

{a} if a<p

— {8} if «a>p

*®f K|l B} it ofp

{6:0>a} U{ow} if a=p.

Clearly @ satisfies (1), (5) & (7), and a tedious check by cases establishes that it
also satisfies (2), (3), (4) & (6). Hence G is a d-group as required. We show three of
the more interesting cases used in establishing (2).

(ia>pB&B| 7. By(t),a>7&a> (B | y>.Hencea @ f = {B},50 (x ® ) ®
Dy=CB»: B®y =B, s0 a@(ﬁ@)/)— B[ y>. Thus @@ p)® v =
=0®(B@®Y)

(i) || B&B|7&y | a-Hencea ® B = {y},s0(a @ B) Dy = {0} U {5:5 > y}.
B@y={a},s00@(B@y) = {0} U{d:>a}.By(f),{0:0>0a} ={5:6> 7}
Thus ( a@ﬂ)®y=a®(ﬁ®y)-

(i) « = f < y. Hence x@ﬁz{oo} {6:6>0a}, so @B Dy={@:
6> a). Butifd>7.0 @ = G} ifo <y, 0@y ={6};ifo|no@y =8| v
fé=9,6@y={i>7}u{n}. Hence (¢t @ )@y =a@® . Now f @ 7y =
=fis0a@(P@y)=2Dh=(2® P D

Of course, @ could be replaced by any abelian linearly ordered group.

We note in closing that J. Mockof has kindly pointed out to us that our observation
that a group of divisibility must be torsion-free is a special case of a result of J. Ohm
[2]; viz: If K % {0} is a partially ordered abelian group, H isa linearly ordered group
and {0} » K »?J »¥ H — {0} is lex-exact (i.e., if j € J, then j > 0 if and only if:
Jj¥ > 0orj = k¢ for some k > 0), then J is not a group of divisibility. In our case,
K = C, with the trivial order, J = G and H = Q, with ¢ & { the natural maps.
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