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ON OSCILLATION OF SOLUTIONS OF NONLINEAR RETARDED
DIFFERENTIAL EQUATION OF EMDEN-FOWLER TYPE

RUDOLF OLAH, Zilina

(Received March 2, 1983)

We want to study the oscillatory behaviour of solutions of the nonlinear retarded
differential equation of Emden-Fowler type

0 yO) + p() [y(9()]" sen ¥(9(1)) =0, nz2, v

_2_ 1 b
where p(t) and g(1) are continuous on [0, c0), p(t) > 0, g(t) < 1, lim g(t) = % and
g(1) is nondecreasing on [0, o). o

We restrict our consideration to those solutions y(t) of (1) which exist on some
interval [T,, o) and satisfy

(2 sup {|y(s)] :0 <1< s <0} >0 forany te[T,, =).

A solution y(t) of the equation (1) is called oscillatory if it has arbitrarily large
zeros, and it is called nonoscillatory otherwise.

Lemma 1 (Kiguradze). Let y(t) be a solution of the equation (1) satisfying the
condition

wWt) >0 for tel0, ),
and

y(t) £0 for te[0, ).

Then there exist t, € [0, ) and an integer 1€ {0,1,...,n — 1} such that n + I is
odd and

(3) y(1) >0 for telt, o) (i=0,....1—-1),
(=)™ Y1) >0 for te[ty, ) (i=1I...,n—1),
(4) (=) p2@ = (L + ) 0@ gor telin )

(i=0,..,0=1), 1<I<n-1.

An analogous statement can be made if y(f) < 0 and y(¢) Z 0 for t € [0, ).

Theorem 1. Suppose that y > 1, g(t) is nondecreasing and for every le
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ef{l,....n — 1} such that n + | is odd the following inequality holds:

o)

(5) limsup g(r) | s" ' '[g(s)]*" V7 p(s)ds > 0.

1= o t

Then every solution of the equation (1) is oscillatory provided n is even.
Moreover, let the following condition be fulfilled:

0 [ sy o

4

If nis odd, then every solution of the equation (1) is either oscillatory or lim y'"/(t) =
=0,i=0,1,....,n — 1. it

Proof. Let y(t) be a nonoscillatory solution of the equation (1) such that y(g(t)) >
> 0 for 1€ [tg, ®), t, 2 0. Then with regard to Lemma 1 there exist ¢, € [1,, 0)
and 1€ {0,1,...,n — 1} such that n + I is odd and (3), (4) hold.

Let Ie{l,...,n — 1}. For sufﬁciently large 1, € [t;, ), in view of (4) we obtain

) wg(n) 2 IO =11

0 W”Mmt>&

From the identity

® ) = 5 (- G0+

(_l)k g * k—j—1 (k)
+——~—7 (u —1) z®Ow)du, szt21,,

(k—Jj

where 1 £ k < n, zeC([0,®),R), we obtainfor k =n—1+1,j =1

o) 2() =3 (-1 O o) +

(i-1)!
'l)n ! nl=1 =D gy
+Gi7?ﬁf( (it o) g

Choose z(t) = y~"(1). Then with regard to (3) we have (—1)'"" 2((s) > 0, i =
=1,...,n — | and from (9) we conclude

(g>( miﬁm@_mﬂﬂWﬂ“@mw
(n—1-1)
From the last inequality using (7) and the equation (1) we obtain

j( 171 [gu) — 110707 p(u) 2i(9(u))

1

O 0= o iy
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We integrate the inequality (10) from Tto t,t > T = t,,

> ! u) — 1,477 p(u) z(g(u r u —sy "tdsdu
02 D | 100 =11 ) ) [y s
z@_%w.(— Wf@—rr“waw—ur*"WOﬂmmmu

Then, for sufficiently large ¢,
(n = (1) =(g(1) 2 [9(r) - T] r (= T)~ """ [g(u) = T]77 plu) (g(u)) du -
Since z(1) is nondecreasing we have

13Y4 ’(g(t)) _ “ u — n—1—1 u) — - 1)y u u
(1) (= rey 388 2 1000 = 7 [ = 77 o) - 71 pl)

1f z(1) increases to infinity as t — oo, then (11) yields a contradiction with (5).
We recall that the condition (5) implies

(12) J " g(1]¢ Y p(i)di = oo .

Otherwise, if the integra] in (12) converges, then

0 < limsupg(t)| s" ""'[g(s)]* " p(s)ds < 11m supf 5" ![g(s)]“™ 1 p(s) ds =0,

1= 00 t t

which is a contradiction.

The condition (12) implies that z(f) cannot be bounded above by a constant
(see Foster and Grimmer [3], Theorem 2).

Let I = 0. From (8) for j = 0, k = n, we obtain

K02 =t [T iz,

and

0z f@—W”WM@@Mw

1
—1)!

If y(1) is bounded below by a positive constant ¢, then

1)vf (= Ty pu)du, T2t,,

which is a contradiction with (6). This completes the proof.

WT) z >

Corollary 1. Let g(t) be nondecreasing and let
(13) t<[g()]) for t=2T, Te[0,), y>1,
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and

(14) lim sup g(1) f s" 2 p(s)ds > 0
t

[andee

hold. Then every solution of the equation (1) is oscillatory if n is even, and every
solution of the equation (1) is either oscillatory or lim y(t) = 0, ; = 0,1,...,n — 1
if n is odd. e

Proof. In view of (13) the condition (14) implies (5), (6) and we can apply Theo-
rem 1.

Corollary 2. Let g() be nondecreasing and let

(15) t=[g(t)]) for 12T, Te[0,0), y>1

(16) lijn sup g(t)’ro [9(s)]"= 27 p(s)ds > 0

t

B

hold. Then every solution of the equation (1) is oscillatory if n is even, and every
solution of the equation (1) is either oscillatory orlim y(t) = 0,i = 0,1,...,n — 1
if n is odd. e

Proof. In view of (15) the condition (16) implies (5), (6) and we can apply
Theorem 1.

Theorem 2. Suppose that y = 1, g(t) is nondecreasing and
(17) lim sup g(t)f [9(s)]" "2 p(s)ds > (n ~ 1)1,
1= 00 t

Then every solution of the equation (1) is oscillatory if n is even, and every solu-
tion of the equation (1) is either oscillatory or lim yi(t)=0,i=0,1,...,n—1
if nis odd. e

Proof is similar to that of Theorem 1. Let I€{1,...,n — 1}. From (11) we get
(= Dz = Dz o) = 71| = T) 7 o) = T o,
t

and since g(f) < t we have a contradiction with (17). Let I = 0. The condition (17)
implies (6) and we find that lim y() = 0. The proof is complete.

t— oo

If g(t) = ¢, then (17) implies the result of Canturia [2, Theorem 2.3].

Example. Consider the retarded differential equation

(18) YO() + 1P PR =0, 1> 0.
The condition

jﬁww*wwmw
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which guarantees that every solution of the equation (1) is oscillatory is not satisfied
for the equation (18). Nevertheless, the conditions (13), (14) or (15), (16) are satisfied.
So every solution of the equation (18) is oscillatory.

Now we return to integral sufficient conditions.
Let S denote the set of functions ¢ € C([0, o) x R, R) such that for every re
e [0, ) the function ¢(t, -) is nondecreasing,

o(t,x)x 20 for te[0,), xeR,
and the equation

x'(1) = —ol(t, x(1))

has no solution which satisfies (2)

Lemma 2 [7]. Suppose that ¢ € S, ¢, ty € [0, w). Then the inequality

o

lx(l)| >c+ f |(p(s, V(s))] ds

14

has in the set C([#,, ), R) no solution which satisfies the condition
x(t) £ 0 for e[ty ).

For a proof see [7, Lemma 1.6].

Theorem 3. Suppose that y 2 1 and that for every le{l,...,n — 1} such that
n + lis odd and for arbitrarily small ¢ > 0 the following identity holds:

(19) r P [g((]07 1 p(i) di = oo

Then every solution of the equation (1) is oscillatory if n is even.

If in addition (6) holds, then every solution of the equation (1) is either oscillatory
orlim yP(1) =0,i=0,1,...,n — 1 if nis odd.

13 0

Proof. Let y(t) be a nonoscillatory solution of the equation (1) such that y(g(z)) >
> 0 for t € [t, ), t, = 0. Then with regard to Lemma 1 there exist t, € [, )
andl€{0,1,...,n — 1} suchthatn + lisodd and (3),(4)hold. Letle {1, ...,n —1}.
Now in the same way as in the proof of Theorem 1 we get

2(g(1)) 2 K[9(1) - T] f " (= Ty [g) =TI pw) (g()) du,
T > t,, where K = 1/(n — I)! (1!)". '

The condition (19) implies (12) and the condition (12) implies that z() increases
to infinity as t — oco. Then for sufficiently large ¢ we have

2/(9(1) 2 K[9(x) — T] J‘w (u — Ty~ [g(u) — T]4 7 p(u) [2(g(u))]* =7 du
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where 0 < ¢ < 1, and

0O 2 k[ = 1 Lo = 1t [ T ]

9(1) = T gu) —
Choose x(t) = z'(g(u))/(9(u) — T). So x(t) is a solution of the above inequality and
with regard to Lemma 2, ¢ ¢ S where

(1. () = K(t = TP~ [a(0) = IO~ 0717 p(0) (0]~ sem x(0),

and the equation
(20) xX(1) = —o(t, x(1))
has a solution x(t) which satisfies (2). From the equation (20) we have

x(12)

13
KJ. (t =Ty "' [g(r) = T]4= D7 17¢ p(r) dt =J —lljedv, t3>652T,

93 x(13)

and as t; — co we get a contradiction with (19).
Let I = 0. In the same way as in the proof of Theorem 1 we find that lim y(z) = 0.
This proves the theorem. fo

Corollary 3. Suppose y = 1. Let

(21) lim inf — > 0,
t— 0 g ()

(22) j o] g dt = 0, e >0

hold. Then every solution of the equation (1) is oscillatory if n is even, and every
solution of the equation (1) is either oscillatory or lim y)(f) = 0, i = 0,1, ...
. n— 1lifnisodd. )

Proof. With regard to (21) the condition (22) implies (19), (6) and we can apply
Theorem 3.

Corollary 4. Suppose y = 1. Let

(23) lim inf g’_ft) >0,
(24) J'w " 9] " p(t)dt =00, £>0

hold. Then every solution of the equation (1) is oscillatory if n is even, and every
solution of the equation (1) is either oscillatory or hm y"’(t) <0,i=0,1,...,n—1
if nis odd.

Proof. With regard to (23) the condition (24) implies (19) (6) and we can apply
Theorem 3.
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