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0. H. Steinhaus observed (see [5], p. 155) that the prime number theorem im-
mediately implies the following property of the primes: for every real x > 0 one can
find a sequence g; < 4, < ... of primes such that the ratio g,/n tends to x. Motivated
by this observation we introduce the following definition:

A subset 4 = {a,, a,,...} of the set of positive integers has the property (S)
provided every real positive number x is a limit point of the sequence a,/n.

In [9] the following property of subsets of the set of positive integers was intro-
duced: such a subset A is called (R)-dense provided the set R(A4) of all rationals of
the form a/b with a, b € A is dense on the positive half-axis. If this is the case we shall
simply say that 4 has the property (R).

In this paper we study the relation between the properties (R) and (S) and obtain
some results about the classes Ty and T of all sets having the property (R) or (S)
respectively, and also about the difference of these classes.

We shall use the following notation: A(x) will denote the counting function of the

set A, i.e.
Ax)= Y 1.
asx,acA
1. We start with some simple results concerning the properties (R) and (S).

Proposition 1. Every set with the property (S) has also the property (R).

Proof. If the set A = {a; < a, < ...} has the property (S) then for every given
positive x we can find a sequence ny, n,, ... of elements of 4 such that n,/k tends
to x when k tends to infinity. Thus

..n
lim % = x.

k= dg

As all numbers n, a, belong to R(A4), the property (R) results. []

Note, however, that the properties (R) and (S) are not equivalent. Indeed, the next
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proposition implies that if 4 is the union of intervals [22", k. 22"] then it does not
have property (S). Nonetheless, it is obvious that this set has the property (R).

Proposition 2. A set A = {a, < a, < ...} has the property (S) if and only if

(1) lim &2t =1
n—ow d,
Proof. Assume that 4 has the property (S) and that, contrary to our assertion,
one has
lim sup (a,+/a,) > 1.

n—ow
Then one can find a sequence n; < n, < ... and a positive & such that none of the
intervals I, = (a,,, (1 + ¢) a,,) contains an element of 4. Because 4 has the property
(S) we can find a sequence a;, of its elements such that for sufficiently large j we have

(x —¢fd)j < a;, <(x+¢/4)j
with x = 1 + ¢/2. This immediately yields
J<(+e4)j<a,<(1+34)j<(l+e)j

and taking j = a, we see that the interval I, contains elements of A4, at least for
large k, a contradiction.

Assume now that (1) is satisfied. Then it easily follows that for every positive &
and sufficiently large real T the interval (T, (1 + ¢) T) contains at least one element
of A. If now x is a positive number and # > 0 is given then for all large integers N
we have at least one element of A in the interval ((x — n) N, (1 + n) (x — n))N),
say a;,. It follows that

|ai /N — x| < nx

and this easily implies that the set 4 has the property (S). [

Corollary 1. If a set A= {a; <a, <...} N has bounded differences, i.e.
there exists a constant B such that for all n one has a,,, — a, < B, then A has the
property (S). O

Corollary 2. If the counting function A(x) of a set A = N satisfies
A(x) = (¢ + o(1)) . x* L(x)

where ¢, o are positive constants and L(x) is slowly oscillating, i.e. L(2x)/L(x)
tends 10 unity when x — o, then A has the property (S).

Proof. One easily sees that for any positive constant B we have
lim A(Bx)/A(x) = B*,

hence one can choose B in such a way that this limit exceeds 2. Then for sufficiently
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large x we have A(Bx) > 2 A(x) and it follows that for large n the inequality a,,, <
< Ba, holds. This in turn implies that

L(a, ,)/L(a,,)

tends to unity and it suffices to observe that in view of

n+1 _ Aayq) _ (c + o(1)) a4y L(a,+y)
n A(n) (¢ + o(1)) a, L(a,)

the ratio a,,,/a, tends to unity and so we may apply Proposition 2. [J

The last corollary implies, in particular, that every set with a positive density has
the property (S). However, one can construct (see [8]) sets with positive lower density
which do not have the property (R) and so in view of Proposition 1 do not have the
property (S). In the same paper it was also proved that sequences of upper density 1
have the property (R). Note, however, that they need not have the property (S).
In fact, the union of intervals [(2k — 1)*7', (2k)*] (k = 1,2,...) has its upper
density equal to 1, nevertheless it fails to satisfy (1) and so cannot have the pro-
perty (S).

2. Metrical theory of the classes Tg and T \ Ts.

For every infinite set A of positive integers let us define the dyadic value o(A4) of A by

)

o) =3 ) 27",

where (i) denotes the characteristic function of A. (Cf. [4], p. 17—18 and [11].)
The function ¢(A) gives a one-to-one map of the family U of all infinite subsets of the
positive integers onto the interval (0, 1] = I. If Lis a subfamily of U then we denote
by o(L) the set {¢(A4) : A€ L}. In this section we shall consider metrical and topo-
logical properties of the sets o(Ts) and (T \ Ts). The fundamental properties of
the set o(Ty) were deduced already in [9] where it was shown, in particular, that it
is a homogeneous F;-set, residual in I, and of Lebesgue measure one. For the
Hausdorff measure of the set I \ o(Ty) the inequality dim (I \ ¢(Tg)) = % was obtained
there. .

(We recall that a subset M of I is called homogeneous provided its density is the
same in every subinterval of I, i.e. for every such subinterval J the exterior measure
of J n M equals d.m (J), where d is a constant independent of J, and m(J) denotes
the length of J. One can show that either d = 0 or d = 1 (see e.g. [2], [10]).)

The following theorem describes the fundamental metrical and topological pro-
perties of the set o(Ty):

Theorem 1. (i) The set o(Ts) is a homogeneous F ,4-set in I*).

*) Note that the Conference on Number Theory in Caradice 1979 A. Schinzel showed that
o(Ty) is a Gy 5-set.
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(ii) The set o(Ty) is of the first Baire category in I.
(iii) The set I\ o(Ts) is of measure zero and its Hausdorff dimension is equal
to one.

Proof. Forn =1,2,3,...andj =0,1,...,2" — 1| put
If;j) — (j 2—71, (J + 1) 2—-1:]
and observe that all numbers in a given interval I’ have the same sequence of the
first n dyadic digits (we shall consider only those dyadic expansions which contain
infinitely many digits equal to 1). If those digits are ¢, ..., &, = &, then we shall say
that the interval I3/ corresponds to the sequence & To show that the set o(Ty) is

homogeneous it is sufficient to prove that if

Lol

x =Y g(x)27 e o(Ty)

k=1
then forallm = 1,2, ...
Xm = Z Ek+m 2—k € Q(TS)
k=1
(see [2]).

But it is easy to observe that if x = ¢(4), A € Ty then the set 4,, = AN\{1,2, ..., m}
as well as the set 4], consisting of all differences a — m, where a € 4,,, belong to T,
and clearly o(4,,) = x,,. Thus o(Ty) is in fact a homogeneous set.

Now define for k = 1,1 < m < n the set A(k, n, m) as the union of those intervals
14 which correspond to sequences ¢, ..., &, with the following property: if m + 1 <
< ry < ... <r, £ nare the indices bigger than m for which ¢,, = 1, then

[roefrs — 1] S 1/k
holds for s = 1,2, ..., t.
Each of the sets A(k, n, m) is closed in the set E = I \ D, where D denotes the set

of all dyadic rationals. Moreover, it is easy to infer, with the use of Proposition 2,
that

(2 Eno(Ts) = n1 U N Ak,n,m),
k=1m=1n=14+m
which implies that E n o(T) is a F,; set in E as well as in I. Because of
oTs) = D U (E n o(Ty))
the assertion (i) results.

To prove (ii) note that D is countable and so it is sufficient to prove that the set
E n o(Ty) is of the first category, and to prove this it is enough (using (2)) to show that

B(m) = (o% A(1, n, m)

is for m = 1,2, 3,... a nowhere dense set in I, i.e. for every interval J < I there
exists a subinterval of it disjoint with B(m). (Cf. [3], p. 43.) If J is such an interval,
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choose an integer n = 1 + m such that for a certain j the interval I'/) is contained
in J and, moreover, in its corresponding sequence &, ..., &, not all terms &, ,,
€m+ 24 ---» &, vanish. Denote by M the maximal index r < n for which ¢, = 1, consider
the sequence

Epy oo &y 0,...,0, 1

of length n + 2M, and denote by J’ the corresponding mterval Then J' c IV < J
and obviously J' is disjoint with B(m).

The first part of (iii) is easy. In fact, by Corollary 2 to Proposition 2 the family U
of all subsets on N with density 4 is a subfamily of Ty, thus o(U) < o(T) but o(U)
coincides with the set of all dyadically normal numbers and so by a theorem of
E. Borel (see e.g. [4], pp. 190—193) is of measure one. Hence ¢(T5) is of measure one.

To evaluate the Hausdorff dimension consider for a given number a € (0, 1) the
set A = U A,,, where for k = 1, 2, ..., A, denotes the set of integers contained in the

interval [2" 2¥ + [a 2¥]]. One easily sees that the lower density of A is equal to a,
and Proposition 2 implies that 4 does not have the property (S). This shows that
no subset of A can have this property, and so if we denote by W the family of all
infinite subsets of A4, then

o(W) = INo(Ty) .

Now we note that Theorem 1 of [6] implies that if

o(4) = Zlek 27%
k=

then the Hausdorff dimension of W equals

log H (& + 1)

dim W = lim inf —*
n— oo nlog 2
and a short computation leads to
dmW=a.

This implies dim (I \ ¢(Ts)) = a, but a was an arbitrary positive number less than 1
and so finally we get

dim (I\o(Ty)) = 1
as asserted. [J

We obtained an analogous result for the set (T \ Ts), however, we have been
unable to obtain the exact value of its Hausdorff dimension.

Theorem 2. (i) The set o(Ty \ Ts) is a homogeneous G;,s-set as well as a F,5,-set

inl.
(i) The set o(Tx \ Ty) is a residual set in I.
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(iii) The Lebesgue measure of o(Tg \ Ts) equals zero and its Hausdorff dimension
is g%.

Proof. The homogeneity of ¢(Tg\ Tg) follows in the same way as that of o(Ty)
proved in Theorem 1.
In [9] it was shown that ¢(T) is a F,s-set and Theorem 1 (i) implies in view of
o(Te N Ts) = o(Tx) 0 (I o(Ts))

our assertion (i). To prove (ii) it suffices to apply part (ii) of the previous theorem and
the fact, established in [9], that ¢(Tg) is residual in I. Moreover, the first assertion
of (iii) follows immediately from part (iii) of Theorem 1.

Now we prove the assertion concerning the Hausdorff measure. For k = 1, 2, ...
let A,, be the set of all integers from the interval [2%¥,22¢*1], and denote by 4
their union. We first show that the set 4 has the property (R). To do this, note first
that for k =1,2,...;j=0,1,...; and 0 £ r £ 4*J the numbers

(#4941t = & 4 i
belong to R(A) and their set is dense in the union of intervals
U [4", 2. 4"] .
n=0
Moreover, fork = 1,2,...;j = 0,1,2,...and 0 £ r < 4*J the numbers
@+ )2 . 4 =424 2.4
lie in R(A) and their set is dense in
U [4”/2, 4"] .
n=0

Thus R(A) is dense in the half-line [, ), and taking inverses we obtain that R(A)
is dense on the positive half-axis. This shows that A has the property (R).

Now let2m; — 1 < 2m, — 1 < ... be an arbitrary sequence of odd integers about
which we assume

(3) mr+l _mrgz (r=192"-~)
and
“ lim (m, . — m,) = .

Now define, form = 1,2, ...,

_ 0 if mE{ml, mz,--'}
Arm-1 = {22m—1 1, g2m=1 4 9 2%m _ 1} otherwise

and put
A* = Avu U 4am-1-

m=1
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Clearly the set A* has the property (R) and, as the quotients of its two consecutive
terms are infinitely often equal to 2, it cannot have, in view of Proposition 2, the
property (S).

Denote now by F the family of all sets C satisfying

A c F c A%,

Then F = Ty \ Ty and so to obtain the last assertion of our theorem it is sufficient
to show that the Hasudorff dimension of Q(F) is g%. This we shall now establish.
We shall apply the following result, which follows from Theorem 2.7 of [7]:

Let D be a subset of the set N of all positive integers and let E = N \ D. For every
de Dlet g e {0, 1} be given. If Z denotes the set of all numbers

x =3 gx)27% el {g(x)=0,1}
k=1
for which ¢,(x) = ¢, holds for d € D, then the Hasudorff dimension of Z equals the
lower density of the set E.

We apply this to the case when D = 4 U U 4,,,-, and put for de D
m=1

e — 1 if ded
4710 otherwise .

Then clearly o(F) = Z and, since an elementary computation shows that the lower
density of E is g%, our assertion follows. []
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