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1. INTRODUCTION

The majority of stability analyses of numerical methods for Volterra integral
equations of the second kind

t

(1) W(1) = (1) + f K15, y(s)ds, 120,

0

were based on the simple linear test equation

() (1) = g(1) + /lj.'y(s) ds, t=0,

o

where /4 is a complex number and Re (1) < 0 (see, for example, [1—3]). It is the
purpose of this note to present a stability analysis of some methods for the numerical
integration of (1) based on the more general test equation

3) ¥(1) = g(t) + f k(s) y(s)ds, 120,

where Re (1) < 0 and the functions g and k satisfy certain conditions which will be
given later.

Denote by h > 0 a fixed step size and define the grid {;}{2, by t; = ih,i = 0, 1, ....
We are interested in the following class of the so called 6-methods:

@) Yo = go + A[(L - 0)’§:k(t,,, oy + 0 glk(t,,, t ]

-1 o .
i=01..,0€e[0,1](Y =0, ¥ =0). Here, g, = g(t,) and y, is the approxima-
i=0 i=1

tion to Y(t,), where Y is the solution of (1). For 6 = 0, 6 = 4, and 6 = | these are
direct quadrature methods based on the left rectangular rule, the trapezoidal rule,
and the right rectangular rule, respectively. It is easy to check that the local discretiza-
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tion error of (4)
-1

no(tys h) = Y(1,) — g, — Ah[(1 — 0)2 k(t,—q, 1, Y(1;)) + OZ k(t,, ti, Y(t:57]

satisfies 7,(1,, h) = O(h) for 0 % % and ny(t,, h) = O(h*) for 0 = % uniformly in 1,
as h — 0. Consequently, this method is convergent with order one for 6 * § and
with order two for 6 = 1, i.e.

O(h 0 %
- [ 0

1
2>
1
2

asn — oo, nh = 1,(see [1, 4]). |

In the next section we examine the behaviour of the solution Y of (3) and the
approximate solution {y,}., when the method (4) is applied to (3), for a fixed step
size h > 0. It turns out that both Y and {y,};%, are bounded and the last tound is
uniform in h and 0.

2. STABILITY ANALYSIS
We have the following bound on the solution Y of the equation (3).

Theorem 1. Assume that ’g(t)| G < o and k(t) 2 0 for t 2 0. Assume also

that Re(2) < 0. Then the solution Y of (3) satisfies |Y(1)] £ G(1 — |2|/Re(2))
fort 2 0.

Proof. Putting z(t) = [(k(s) y(s) ds, the problem (3) can be written as
2(1) = 2 k(1) (1) + k(1) g(r), 120,
z(0) = 0.

The solution Z of this equation is given by

(1) - Lk(s)g(s)exp< Lk(r)dr)ds, (20.

Let A = a + bi. It follows that

200 = ~(6lo) /(=49 ex_p”(a ICGEE

< —(Gla) [1 ~ exp (a J (:k(r) dfﬂ < —Gla.

Taking into account that the solution Y of (3) is given by Y(t) =2Z(t)+ g t) we
obtain |Y(1)| £ G(1 — |#|/Re(2)), 1 = 0, which is our claim.

Remark. It is impossible to bound the solution Y of (3) by a constant independent
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of A. To see this, let us consider the problems

~t

1) = /‘.,,J ¥(s)ds + sin(z), +=0,
[

_r(t)=iJ"y(s)ds+ sin(1), 20,

where 4, - i as n - o, Re(4,) < 0, with solutions Y, and Y, and observe that Y
is unbounded and Y, > Y as n — oo uniformly on any compact interval [0, T],
T>0.

Our next theorem establishes a bound on the solution {y,} %, of the equation (4)
applied to (3).

Theorem 2. I'n addition to the conditions given in Theorem 1, assume that0 < o <
b k(r) < Q < o fort = 0. Then there exists hy > 0 and a constant M = 0 inde-
,..,for he

B

€ (0, hy] and 0 e [0, 17.

Proof. The method (4) applied to (3) yields

©on=1

(3) va = g, + Ah[(1 —O)Zky +92k,y]

n=0,1,.... where ki = k(t;). Subtraciing ¥Yn+1 and y, we obtain

1+ (1 — 0) Ahk, e
Yn+e1 = ( ) n+ Ins 1 g

1 — 02hk,., 1 — Oihk,,,’

n = 0, 1, .... This is a recurrent equation of the first order, its solution being given by

Vo = "-IM i gdi+1 — G = 1+(1_9))“th
" \izo 1 — 0Ahk,,, S0 1 — OAhk;yy j=i+1 1 — 0Ahk;,

>

n=0,1,...(see [5]). Hence,

M||O|+2GZ |1+(1"0)Ahk|’

6 )
( ) l_)n ‘ Bi’kﬁ,ll i=0 j= .+1 |1 — 0)]1k1+1|

n = 0,1, .... On the other hand, the equation (5) can be written as y, = ihz, + g,

where
n—1

=1 =0)) kiy; + sz.‘)’n
i=0 i=1
n = 0,1, .... Subtracting z,,, and z, and eliminating ¥,+; and y, from the resulting
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equation we obtain

1 + (1 "“0) lhk,, z + (1 - 0) kngn + 0ku+lgn+1

T ok, " 1 — Oihk,, ’
n = 0, 1, .... Hence, noting that z, = 0 we get

B, ;i‘ (1 = 0)kig; + 0k;y19:4: "IZI‘ 1+ (1 — 0)Ahk;

"% 1 — 0ihk,, j=itt L= @ik,
n = 0,1, .... In view of this relation and the relationship between y, and z, we obtain
(7) ‘yn‘ < |)~h| QGn_Zl nl:[l |LM;'_I(!| + G,

i=0 j=i+1 'l — Oﬁ,hkj+,|
n=0,1,.... Forany ¢ € [w, Q] (and fixed 1, Re (1) < 0) let us consider the functions

de(h, 0) := |1 + (1 — 0) Ah¢|, W(h, 0) := |1 — 02h¢].

For any fixed 0 &[0, 1) the function ¢, attains its minimum value |Im (1)/|4|| for
he = —Re (2)]((1 — 0) &|2|>). In view of the assumptions on the function k it is
clear that there exists hy > 0 such that for all he (0, he] the following inequality
holds:

¢k1(h9 0) =< ¢¢,,(h, 9) < 1.

The largest value of h, for which this inequality is satisfied for any function k satis-
fying the assumptions of the theorem can be computed from the condition ¢,,(f,. 6) =
= ¢o(hy, 0), which leads to the formula

b= —2Re(I((1 - O) |4 (0 + 2)).
It is also clear that Y, , (h, ) 2 ¥,(h, 0) > 1 for any h > 0 and 0 & (0, 1]. Hence,

putting g,(h, 0) = ¢,(h, 0)/¢,(h, 0) and Q = max {2G, QG}, in view of (6), (7),
and the relation g,,(h, 6) < 1, which holds for any 6 € [0, 1] and h (0, hy] (h, = ),

we obtain
Q—’—J—)‘h +6G, h=1f|,
(8) lyn| < 1 - qw(h’ 9)
- 1
—— + G, h>1/|}],
e > 14|

n=0,1,.... Let us set D:= {(h,0): 0e[0,1], he(0, hy]} and define the (conti-
nuous) function n,, : D — [0, o) by

_

n 5’ h <1,

. = qo\h,

R I
1 — q,(h,0) o
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We will show that n,, is bounded on D. We have

1 < 2|1 — Blhol?
1= q,(h,0) = |t = 02ho)* — |1 + (1 = 0) Jho|?’
hence,
[ 24| (1— 29ahcz2) + 0;11[2 Ho?) < 1)1,
n(h, 0) < —2aw + |A|* ho*(20 — 1)
1 21 = 2aho + 0’2 Ko?) .
—2aho + |2* K?w?(20 — 1)’

Here, a = Re (). Next we define 6* by I}.h,,.l =1, i.e.
0* =1 + 2Re (1)/(|2| (0 + Q)) .

We may assume without loss of generality that w + Q > 4, hence 6* > 4. We
consider the following cases:

1. 8 €[0, 4] Then there exists a constant M; > 0 such that
204 (1 — 20ahyw + 6%2]* h*w?)

olh, 0) =
all: ) —2aw + |A]* hyw?(20 — 1)

< —M(|2|/a) -

2. 8e(4, 1] and h e (0, min {hy, 1/|4|}]. Then there exists M, = 0 such that

22 (1 - 2a0]]}] + @?)
—2aw + |A|* ho*(20 - 1)

3. 9e[0* 1] and he(1/|4], hy)- Then

na(h, 0) < < —M,(|4|/a) .

2 —4aw
o(h, 0) < + +
oll: ) —2ahw + |A]> K*0?(20 — 1)  —2a0 + |2|* ho?(26 — 1)

+ |]* w?h
—2a0 + |A* ho?(20 — 1)

< —(|4/aw) + 2 + (1/(26* - 1)).

However, we have (1/(20* — 1)) < (o + Q)/(» + Q — 4), hence
no(h, 0) £ —M;(|4|[a) + M,

for some nonnegative constants M; and M.
Combining all these inequalities and taking into account (8) we immediately see
that there exists a constant M = 0 independent of A, 6, and A such that

|yl = M(1 - |2]/Re (3)),

n = 0,1, .... Thus the theorem is proved.



Remark. It follows from the proof of this theorem that the approximate solution
{ya)aio given by (5) for 6 = 1 is bounded for any h > 0. This property is similar
to the A-stability property of numerical methods for ordinary differential equations.
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