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L

This is a continuation of the paper [7], where the notion of the vector-covering
system of congruences was introduced and studied. We shall prove here a theorem
on such vector-covering systems in which there exists exactly one triple or exactly
two couples of equal moduli (the remaining being distinct), presenting a generalization
of results concerning disjoint covering systems in [4], [5] and [6].

I. PRELIMINARY FACTS

In our considerations we shall need some properties of the roots of unity. The
n-th roots of unity are the numbers
2mi

exp—s, s=1,2,...,n.
n

Consider the equality

r

(1) ZatCt=Oa

t=1
where a, are rational integers and {, are roots of unity. The left-hand side of (1) is
said to be irreducible if none of its proper subsums is equal to 0. H. B. Mann in [2]
proved the following very strong theorem:
If the left-hand side of (1) is irreducible, then there exist such primes p; < p, <...
... < py = rand such p;p, ... p-th roots of unity n, (t = 1,2, ..., r) that

(= one,

where o is a fixed number (if, moreover, all a,’s are positive-and we cannot choose
ps < r, then we have s = 1 and the numbers a, coincide).

Now we shall give the definition of the vector-covering systems (see [7]). Let Z
be the set of all integers; a, n € Z with 0 < a < n. The set a(n) of all numbers of the
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form a + sn, s € Z will be called a congruence (in [7], an arithmetic sequence) with
modulus n. Let a vector

€ = (01, Ugy cvny D)
with real v;’s be given. A system of congruences
(2) ainj), j=1,2...m, ny<n,<..=<n,

is called an e-covering (or vector-covering) if for all r € Z we have

m

2uifir)=1,

ji=1
where f; is the characteristic function of a(n;).

(If vy =v, =... =y, =1, then we get the well-known notion of a disjoint
covering system introduced in [1] and studied for example in [3—6].)

We have to recall some properties of vector-covering systems from [7]:

1 ([7], Corollary 1 of Theorem 2). For an &-covering system (2) we have

y Yo,
=1 n;
2 ([7]), (7)). If (2) is an e-covering system, then for all j = 1,2, ..., m we have
®) Y v—'exp {2nisa,[n;} = 0 if s=1,...,n; — 1"
t=1 N, 1 of s= n,

(this is proved in [3] for disjoint covering systems.)

3 ([7]. Corollary of Theorem 4). In every vector-covering system with v, # 0
we have n,,_, = n,,

The e-covering system (2) is said to be of type 1 if

Ny <Ny < .ooo <Ny <Ny_q=n,.

4 ([7], Theorem 6). Every (vy, ..., v,)-covering system of type 1 with all v; = 0 is

a disjoint covering system with the moduli
n;=2 for j=12,...,m—2, n,;=n,=2""1

(which is a generalization of Stein’s theorem concerning the disjoint covering systems
in [5]).

In [6] the author solved the case when in a disjoint covering system there exists
exactly one triple of equal moduli (the remaining being distinct) as follows: the
moduli are uniquely determined and

nj=2 for j=12...,m—=3, n,_,=n, ,=n,=32""3,

Our article aims at generalizing the last result for vector-covering systems of con-
gruences.

Remark. We have to mention here that for disjoint covering systems S. Porubsky
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in [4] solved the cases when there exist exactly 4, 5, 6 or 7 equal moduli (the remaining
being distinct).

Definition 1. A non-empty system (2) is called ¢-vanishing if for all r € Z we have

m

Z v fi(r) = 0.
Jj=1
By a very similar argument as in the proof of (7) in [7] we get:
Lemma 1. If (2) is a (v,, ..., v,)-vanishing system, then for all j =1,2,...,m
and s = 1,2, ..., n; we have

4) Y ki exp {2misa,fn;} = 0.
=1 n,
Lemma 2. If (2) is (vy, ..., v,)-vanishing and v; # 0, then we have n,,_, = n,,

Proof. Putj=m,s = 1in (4).
Lemma 3. Let (2) be a (vy, ..., v,)-vanishing system with all v; + 0 and n; <
<My <...<Mp_y <hy_y=n,, then for all j = 1,2, ..., m we have n;|n,,.

Proof. First of all we prove that to every n; there exists such n,, that n; l n,,.
Indeed, if this were not the case, then putting s = 1 in (4) we should have

v; .
~L exp {2mia;/n;} =0,
n.

J
which is impossible. Now, if w = m, the proof is finished. If this is not the case, then
repeat the same argument for w instead of j, and so on.

II. THE MAIN RESULTS

In what follows we shall always suppose that the v;’s are rational and all different
from 0.

Definition 2. A (v,, ..., v,)-covering system (2) with distinct congruence is called
reduced if it does not contain any non-empty vanishing subsystem.

Definition 3. A reduced vector-covering system (2) is said to be of type 2 if there
exists in it one triple of equal moduli and the others are distinct, hence (see 1.3) we
have

(5) ny <Ny <...<Mfy3 <Hfy_y3=MNy_y3 =MN,.

Definition 4. A reduced vector-covering system (2) isrof type 3 if there exist in it
two couples of equal moduli, the others being distinct; hence (see 1.3) we have

(6) Ny <Ny <...<fe_y =N < 0o <Ny <Np_y =N,,.
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Now we shall generalize the results of Theorem 3 of [6]:

Theorem. Let (2) be a vector-covering system of type 2 or 3. Then all its moduli
are of the form
(7) n; = 372",
where a = 0 or 1 and b is a nonnegative integer.

Proof. Obviously we have m = 3 and for m = 3 the assertion holds.

We shall prove by induction: Suppose that m > 3 and that the assertion of Theorem
is true for all natural numbers smaller than m. We shall distinguish two cases:

A. Let (2) be of type 2. Then putting j = k, s = 1 in (3) we get
(8) Um—2 €Xp {2mia,,_,[n,} + v, exp {2nia,,_/n,} +
+ v, exp {2mia,/n,} = 0.
Because the v;’s are rational, (8) is of the form (1). The only primes not exceeding
r = 3 are 2 and 3, thus according to Mann’s theorem, there exist such 6-th roots of

unity 5, that
{, = exp {2mia,/n,} =oan,, t=m—2,m—1,m

and « is fixed. Therefore the equality (8) can be rewritten as follows:
Um—2Mm—-2 + Um—1Mm—1 + Ol = 0 >
where the numbers #, are from the set
{exp i3, exp 2mi/3, —1, exp 4mi/3, exp 5mi/3, 1} .

Considering these numbers #, as vectors in the plane and using elementary geo-
metrical considerations we can easily show that their linear combination with real
coefficients may be 0 only in the following cases:

a) The vectors 7, are edges of a directed equilateral triangle.

b) They are edges of an equilateral triangle in which one edge is directed oppositely
to the others.

c) All n;’s are parallel. However, then at least two of them are equal, which is im-
possible, because we have supposed that (2) is a reduced system.

First, consider the case a). Here also the vectors {, are edges of an equilateral
triangle; hence possibly after a suitable permutation of numbers a,,_,, d,—1, dn
we get

2mi 2mi 2mi

— Qy-y = — d, + —, thus a,_, = a, + n,/3;
m Ny 3

2mi 2mi 4mi

P B + 3 thus a,_, = a, + 2n,/3.
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Therefore, the last three congruences in (1) are:

(9) ap + nm/3(nm)’ am + 2”:11/3 (nm)w am(nm) .

The above mentioned elementary geometrical considerations imply that v, _, =
= ,,_; = v, Therefore, replacing the congruences (9) in (2) by a single congruence
a,(n,/3) we get a (vy, ..., v,_,)-covering system.

This new system is, due to 1.3, of type 1, hence due to 1.4 it is a disjoint covering
system with moduli of the form 2°, ¢ natural. Thus, the moduli of (2) must be of the
form (7) and the assertion of Theorem follows (for this case). (Remark. In this
case (2) is a disjoint covering system.)

Now take the more complicated case b). We have [v,,_,| = [0,—s| = |v.], however,
one of these numbers — say v,, — has the sign opposite to the others.

Join to (1) two equal congruences

am+1("m+1) = am+2(nm+2) = ay + nm/2(nm)
and put v,.; = Uy, Upsz = — U, Obviously
afn;) j=12...mm+1,m+2

isa (Vy, .- Ups U+ 1> Uns 2)-cOvering system. Due to

exp {2ni(a,, + n,/2)[n.; = —exp {2nia,,/n,}
(8) yields the equation
Up_ 2 €XP {2Miy [Ny} + Uy €XP {271y 1[Ny + Vpy 2 €XP {2Miy 4 5[n,) = 0.

The vectors appearing here are edges of a directed equilateral triangle (and v,,_, =
= U,_; = Uns,), hence by the same considerations as in the case a) we get that the
congruences d,,—(Mp-2), @y 1(Mp—1) a0d @y 2(M,42) can be replaced by a single
congruence a,,_ (1,/3). By a similar argument it can be shown that the congruences
ap(n,,) and a,,; (1,4 ) can be replaced by a single congruence a,,(n,,/2). In this way
we get a new (Uy, ..., Up_3, U2, Uy)-COVEring system

(10) ay(ny), s pe3(Np=3)s A 2(Mf3)s A(nf2)

Because (2) is of type 2, (10) contains at most two couples of equal moduli and
consists of m — 1 congruences. Now, if (10) is reduced, then owing to the induction
hypothesis its moduli as well as the moduli of (2) are of the form (7).

Suppose (10) is not reduced. According to Lemma 2 and 1.3 a vanishing subsystem
of (10) contains exactly one of the last two congruences, hence (due to Lemma 3)
all its moduli are divisors of n,,2 or n,,/3. The remaining congruences form a system
of type 1, thus its moduli are of the form 2¢; hence also one of the numbers n,,/2, n,,/3
is of the form 2° and therefore all the moduli of (10) are of the form (7).

If (10) contains no vanishing subsystem but contains two equal congruences — say
a,(n,) = a(my), h < k — then by deleting the latter we get a (vy, ..., U,_q, Uy + U,
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Upggs oves U gs Uk gs oo s v,,,)-covering system, which due to 1.3 is of type 1 (v, + v, *
% 0 since we have supposed that (10) does not contain a vanishing subsystem),
hence its moduli are (see I.4) of the form 2° and the assertion of Theorem follows for
the case A.

B. If (2) is of type 3, then using similar considerations as in part A (see also the
proof of Theorem 6 in [7]) we can prove that

U1 = Uppy Q=g = dp + nm/2 (or Ap—q = Ay — nm/z)'

Thus, replacing a,,_4(n,,-,), a,(n,) in (2) by a single congruence a,,_,(n,/2) we get
a (vy, ..., Upy-)-covering system. If this new system is reduced, then it is of type 1, 2
or 3 and hence according to the induction hypothesis and 1.4 all its moduli as well
as the moduli of (2) are of the form (7).

Obviously this new system cannot contain any vanishing subsystem, because then
(2) would, too. If it contains equal congruences, then proceed as in part A.

The proof of Theorem is complete.

Remark. Not every vector-covering system of type 2 is a disjoint covering system.
For example, the system 1(2), 1(3),0(6), 1(6),2(6) is a (1, 1,1, —1, 1)-covering
system of type 2. Obviously, the same can be said on systems of type 3.
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