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ISOMETRIES IN ORDERED GROUPS 

JiRi RACHUNEK, Olomouc 

(Received August 30, 1983) 

In [6], K. L. N. Swamy describes geometric properties of the commutative lattice-
ordered groups autometrized by means of the absolute values of their elements. The 
isometrics of lattice-ordered groups are studied by K. L. N. Swamy in [7], [8], [9] 
for the commutative case and by J. Jakubik in [4], [5] for the general case. 

In this paper the notions of the autometry and isometry are generalized to any 
ordered groups and studied for the class of 2-isolated Riesz groups in particular. 

We use the terminology and notation from the books [ l ] and [3] (in the additive 
form). 

1. We recall some notions and notations used in the paper. 
Let G = (G, + ) be an ordered group. If Л ^ G, then we denote L{A) = {x e G; 

X ^ a for each a e A} and U(A) = {y E G; a -^ у for each a e A}. For A = 
= («1, ... , a„} we shall write L(a^, ..., a„) instead of Ща^, ..., a„}). For each a E G, 
\a\ = U(a, —a). If a,b E G, a ^ 5, then [a, b] means {x E G; a ^ x ^ b}. 

We say that an ordered group G is 2-isolated if a ^ —a implies a ^ 0 for each 
aE G. A Riesz group is any ordered group which is directed and satisfies the Riesz 
interpolation property, i.e., for each a ,̂ bj E G (i,j = 1, 2) such that ai ^ bj (ij = 
= 1, 2) there exists CE G such that a,- ^ с ^ bj {iJ = 1, 2). (See [2], [3].) 

In [6], Swamy introduced the notion of an autometrized commutative group as 
a system (G, + , S, d), where 

(i) (G, + , ^ ) is an ordered group, 
(ii) G X G -> G is a mapping such that 

(a) d{a, b) ^ 0 with equality ïïï a = b; 
(ß) d{a, b) = d{b, a)', 
(y) d{a, c) S d{a, b) + d{b, c), 

and showed that each commutative lattice-ordered group is autometrized by means of 
d(a, b) = (a — b) V (b — a). The following definition describes the notion of auto­
metry in a different way to be applicable for the largest possible classes of ordered 
groups. However, in the case of lattice-ordered groups autometrized by means of the 
absolute values of their elements in the sense of lattice-ordered groups or ordered 
ones, both the definitions are equivalent. Therefore the results obtained in this part 
of the paper are generalizations of some Swamy's results from [6]. 
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Definition 1.1. An autometrized ordered group is a system (G, + , S, d), where 
(i) (G, + , ^ ) is an ordered group, 

(ii) d is a. mapping G x G -^ exp G such that for all a, b, с e G 
(a) d{a, b) Ç t/(0) and d{a, b) = (7(0) iff a = b; 
(ß) ф , Ь) = d{b, «); 
(у) J(a, с) 3 (i(a, Ь) + d{b, с). 

Theorem 1.2. Лп_у 2-isolated commutative Riesz group G is autometrized by 
d(a, b) = \a — b\ for each a, b e G. 

Proof. It is known (see [2, Thm. 2.2], [3, Thm. 1.5.13]) that in any Riesz group G 

[/(ai, . . . , a„) + t/(bi, ..., b^) = U{a^ + b^, a^ + b^ , . . . , a„ + b,„) for 
each «1, ..., a„, b^, ..., b,„ G G. Hence if a, b, ce G, then 

[a - b| + |6 - c| = (7(a - ^, Ь - a) + U{b ~ c, с - b) = 

= U{a - b + b - c, a - b + с - b, b - a + b ~ c, b - a + с - b) ^ 

Ç (У(а — с, —a -{- с) = \a — c\ . 

Since G is 2-isolated, d{a, b) Ç (7(0) and d{a, b) = U(0) iff a = b. 
Now we introduce the notion of "betweenness" in an ordered set A as follows: 

If a, b, xe A, then x lies between a and Ь iff x e U{L{a, b)) n L{U(a, b)). It is clear 
that if Л is a lattice, then x lies between a and b i f f a A b g x ^ a v b . 

If G is an ordered group, then we say that for a,b, x e G, B(a, x, b) holds iff 
|ö — b| = |ö — x| + |x — b\. 

Lemma 1.3. For any elements a, b of a Riesz 2-isolated group G we have \a — b\ = 
= V{a,b) + 4 / ( - f l , -b\ 

Proof. Let a, b E G. Since G is a Riesz group, we have U(a, b) + U( — a, —b) = 
= U{a — a, a — b, b — a, b — b) = (7(0, a — b, b — a) and since G is 2-isolated, 
we obtain (7(0, a — b, b — a) = \a — b\. 

Lemma 1.4. Let G be a commutative ordered group, a, b e G. Then L{a, b) = 
= -U(a, b) -{- a + b. 

Proof. Let X G (7(a, b). Then —x + a + b^b, —x + a + b^a, hence y = 
= —x + a + be L{a, b). Conversely, let y e L{a, b), y = z Л- a -\- b. Then z + 
+ a + b ^ a , z + a + b ^ b , thus z ^ —b, z ^ —a, therefore —ze U{a, b). 
This means ye— U(a, b) + a + b. 

Lemma 1.5. For any elements a, b of a 2-isolated commutative Riesz group G 
we have \a\ + \b\ = \a + b\ r\\a — b\. 

Proof, a) Let xe \a\ + \b\. Then x = a^ + b^, a^ ^ a, —a, b^ "^ b, —b, hence 
X G |a + b| n |a — b|, and so \a\ + |b| ^ [a + b| n |a — b\. 
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b) Suppose that y 6 |a + Ь| n |a — b|. Then, by Lemma L3, yeU^a, —b) + 
+ U{ — a, b) and y e U[a, b) + U{ — a, — b), thus y = u^ + U2 = v^ + V2, where 
Ui ^ Cl, —b, U2 ̂  —a,b,v^ ^ a, b, V2 ̂  —a, — b. Hence y e U[a + b, —а-\тЬ, 
a - b, ~a - b) = U{a, ~a) + U{b, -b) = \a\ + \b\, therefore |a + Ь| n 
n |a — b| Ç \a\ + \b\. 

As an immediate consequence we obtain the following lemma. 

Lemma 1.6. For each a, b of a 2-isolated commutative ordered group we have 
\a ± b\ ^ \a\ + \b\. 

Theorem 1.7. / / G is a l-isolated commutative Riesz group, then for any a, b, x e 
E G, B(a, X, b) holds iffx lies between a and b. 

Proof, a) Let x e U{L[a, b)) n L[U{a, b)), i.e. x ^ c, for each с ^ a, b, and 
X ^ d for each d ^ a, b. Let z G |д — b\. By Lemma L3 we have z = z^ +2:2, 
where z^ ^ a, b, —Z2 S 5̂ b, hence z^ ^ x, Z2 ^ —x. If we put a -\- b = z^ Л- z\, 
then, by Lemma L4, z\ ^ a, b, thus x ^ z\. Therefore z — {a Л- b — 2x) = ẑ^ + 
+ Z2 — a — Ь + 2x = Z2 — z'j + 2x = (z2 + x) + ( —^i + x) ^ 0. Hence 
|fl - b| с (7(fl + Ь - 2x). . 

Now, if we consider Z2 such that a + Ь = — Z2 + Z2, then, by Lemma L4, 
z'2 ^ a, b holds, hence x ^ Z2. Therefore we obtain z ~ ( — a — b + 2x) = z + 
+ a + Ь — 2x = Zi 4- Z2 — Z2 + Z2 — 2x = (zi — x) + (z2 — x) ^ 0, and so 
\a - b| Ç t / ( - a - Ь + 2x). 

This means that |a — b| Ç |a + Ь — 2x|. 
From |a — b| n |a + Ь — 2x| = \a — b\ and from |a — x| + |x — b\ = 

a ~ b\ n \a + b — 2x| (by Lemma 1.5), we obtain \a — x| + |x — b| = 
a — b\. 

b) Let |fl — x| + |x — b| = |a — b\. Then, by Lemma L5, |a — b| ç 
^ \a + b - 2x|, hence \a ~ b\ Я U{a + b - 2x), \a ~ b\ ^ \-a ~ b -{- 2xJ. Let 
C2 e L[a, b). Then for c^ such that a -\- b = c^ + C2 we have ĉ  ^ a, b. Since 
— C2 G U[ — a, — b), с = Ci — C2 e |ö — Ь|. Thus, by Lemma L3, с — (a + Ь — 
— 2x) ^ 0, i.e. Cj -- C2 — Ci — C2 + 2x ^ 0. Therefore 2(--C2 + x) ^ 0 and the 
hypothesis that G is 2-isolated implies — C2 + x ^ 0. This means x e U(L[a, b)). 

Similarly, if J^ is an arbitrary element of U(a, b), then for J2 such that a + b = 
= di + ^2? W6 have ^2 eL(a, b), hence also <i = J^ — (̂ 2 ^ |<̂  ~" ^|- Thus d — 
— ( —a — Ь + 2x) ^ 0, i.e. (ii,— ^2 "" ^1 + ^2 "~ 2x ^ 0, and by the fact that G 
is 2-isolated, we obtain d^ ^ x, and so x e L[U[a, b)). 

But this means that X lies between a and b. . 

Theorem 1.8. / / G is a [non-commutative) 2-isolated Riesz group, a, b, xe G, 
a S b, then the following conditions are equivalent: 

(i) X e [a, b], 
(ii) |a — b| = |b — x| + |x — û|. 
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Proof, (i) => (ii): If X e [a, b], then \a - b\ = U{b - a), \b - x\ = U{b - x), 
|x— a\ = U[a — x). Furthermore, in any ordered group the identity U[b — x) + 
+ U{x - a) = U{b - a) holds. 

(ii) => (i): Let a, b, x e G, a ^ b and \a — b| = |b — x| + |x — a\. G is a Riesz 
group, hence U{b - a) = U(b - x, x - 6) + U(x — a, a - x) = U{b — a, b — 
— X + a — X, X ~ Ь + X — a, X — Ь + a — x). Suppose that x ф [of, b]. Then at 
least one of the following cases occurs: 

a) X < ß, b) Ь < X, c) fl II X, d) b \\ x. 
a) If X < a, then — x < — x + a — x and — a < — x. Hence — Ö < — x + a — 

- X , thus b - a < b — X -^ a ~ X. But then jb - xj + [x - (̂ | с |Ö - Ь|, a con­
tradiction. 

b) If Ь < X, then similarly b — a < x - b + x ~ a, hence \b — xj + |x - a\ a 
cz ja — b|, a contradiction. 

c) Let a II X and b — x + a ~ x ^ b — a. Then — (x — a) ^ x — a and the 
fact tfiat G is 2-isolated yields x — a ^ 0. Hence b — x + a — x :^ b — a, therefore 
|b ~ xj + |x — a| с \a — bj, a contradiction. 

d) If b II X, then analogously x — b + x — a ^ b — a, hence jb — x| + 
+ |x — a| c: |a — b|, a contradiction. 

No te . It is clear that for a commutative case, Theorem 1.8 is an immediate con­
sequence of Theorem 1.7. 

For autometrized ordered groups we shall now consider two types of linearity 
that are generalizations of the corresponding notions for lattice-ordered groups. (See 
[6]-) 

In the following the expression d(a, b) means \a — b\. 

Definition 1.9. If Л is an /i-element set (n ^ 3) of mutually distinct elements of an 
autometrized ordered group G, then A is called : 

a) D'linear, if there exists a labelling (p^, ..., p„) of A such that 
/ j - i 

d{Pi.Pn) = E 4 j ? p P r + i ) ; 
j' = 1 

b) B-linear, if there exists a labelling (p^, ..., p„) of A such that B(pi, pj, pi,) for 
all 1 S i < J < k й n. 

Lemma 1.10. For any elements a, b of a commutative ordered group G we have 
\a ± b\ ^ \a\ - |b|. 

Proof. Let XG |a -h b\. Suppose that ze \b\ and y = x + z. Since x ^ a + b, 
— a — b, z ^ b, —b, we have y ^ a + b — b = a, y ^ —a — b + b = —a, 
hence y e |̂ z|, and so x e |a| — |b|. Similarly for \a — b\. 

Theorem 1.11. / / G /5 a 2-isolated commutative Riesz group, then its n-element 
subset A is B-linear if and only if A is D-linear. 
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Proof, a) The assertion, that any ß-linear subset is also D-linear can be proved 
formally in the same manner as in [6, Theorem 3] for lattice-ordered groups, 

b) Let Л be a D-linear and let (p^, ..., p„) be its labelhng such that 
n - 1 

liPl - Pn\ =ll\Pi- Pi+l\ • 
i=i 

If 1 ^ I < fc ^ П, then by Lemmas 1.6 and LIO 
k - i k - i 

\pi - Pk\ = | Z ( P t ~ Pt+i)\ ^ Z | p ^ - Pt-^i\ = 
t=l t=l 

i-1 n - 1 

= \pi - Pn\ - Œ\pt- Pt+i\ + T\pt- Pt+i\) ^ 
t=l t=K 

i - 1 fi - 1 

^ l(pi - Pn) - (Z(i^f - Pt+i) + Z (P t - Pt+i)\ = \Pk - p\. 

I.e. 
fc-i 

\Pi - Pk\ = Zl^^t - Pt+i\ • 
t=i 

Now, if i < j < /c, then 

j - i k - i 

\Pi - Pj\ =l.\Pt- Pt+l\ , \Pj - P/c| = Z \Pt - Pt+l\ , 
t=i t=j 

hence \р^ - pj\ + \pj - pj] = \pi - p^j, therefore Б(р^, pj, p,,) holds. 

2. Swamy introduced the notion of isometry in a commutative lattice-ordered 
group in [7] and studied properties of the isometries especially in [8] and [9]. 
Jakubik studied the isometries of any (non-commutative) lattice-ordered groups 
in [4] and [5]. 

In this part of the paper, we shall show that the notion of isometry can be general­
ized to any ordered groups. Further, we shall obtain some properties of isometries 
of ordered groups, in particular, of 2-isolated Riesz groups. 

Definition 2.1. a) If G is an ordered group, then a bijection/ : G -» G is said to be 
an isometry in G if 

(1) Va, beG;\a-b\ = \f{a) - f{b)\. 
b) An isometry / is called strong if 
(2) Va, b G G; /( t /(L(a, b)) n L{U{a, b))) = U{L{f{a)J{b))) n L(l/(/(a), /(b))). 

Theorem 2.2. Each isometry in a 2-isolated commutative Riesz group G is 
strong. 

Proof. Let a,b,xeG and let / be an isometry in G. Then x ef{U{L{a, b)) n 
n L{U{a, b))) holds if and only if x == f(y), where y lies between a and b, and (by 
Thm. 1.7) this is equivalent to B[a, y, b), i.e., to [a - bj = |a - j j -b |y - b|. 
Since / is an isometry, the last condition is equivalent to \f{a) - / (b ) | = \f{a) -
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- f{y)\ + \f{y) - f{b)\ = \f{a) - x| + |x - f{b}\, and this holds if and only if 
B{f{a),x,f(b)). 

Note . Jakubik proved in [5] that if a bijection / of a lattice-ordered non-com­
mutative group G onto G satisfies the condition (l) (where |x| = x v — x), then 

VX, y EG- /([X A y, XV y'])= [/(X) л f{y\ / (x ) V / (y) ] . 

The question if the condition (1) implies the condition (2) also in the case of an 
arbitrary (non-commutative) 2-isolated Riesz group G is open. 

Theorem 2.3. / / / is an isometry in a 2-isolated Riesz group G, a, b e G, a ^ b, 
f{a)Sf{b), then fila, b]) = [ / (a ) , / (b) ] . 

Proof. It is clear t h a t / " ^ is an isometry in G as well. Hence, by Theorem 1.8, 
/ ( x ) € [ / ( a ) , / ( b ) ] if and only if \f{a)-f{b)\ = \f(b)-f{x)\ + | / (x) - / ( a ) | 
and this is equivalent to the condition |a — b| = |i) — x| + |x — a| and (by Theorem 
1.8) to the condition x e [a, fo]. Therefore x e [a, fe] if and only i f / (x) e [ / ( Й ) , / ( Ь ) ] . 

Theorem 2.4. / / / is an isometry in a commutative 2-isolated Riesz group G, 
a,beG,au b,f{b) й f{a), then f {[a, b]) = [ / (b) , / (a ) ] . 

Proof. If X 6 [a, b], then |a - b| = |b — x| + |x — a|, hence | /(6) — / ( a ) | = 
= | / (a) - / ( x ) | + | /(x) - / ( й ) | , and so / ( x ) € [ / (b) , / (a)] . The inclusion [/(b), 

/ ( a ) ] ç / ( [ a , Ь]) can be obtained similarly by means of/~^. 
An isometry/ in an ordered group G is called a 0-isometry iff{0) = 0. 

Theorem 2.5. Let f be a 0-isometry in an ordered group G. Then for each a e G 
( i ) a , / ( a ) è O ^ / ( a ) = a; 

(ii) a , - / ( a ) è O ^ / ( a ) = -a; 
(iii) a , / ( a ) g o =>/(«) = a; 
(iv) a , - / ( a ) ^ 0 = > / ( a ) = -a. 

Proof, (i) U{a) = \a\ = |a - 0| = | / (a) - / ( 0 ) | = | / (a) | = U{f(a)), thus a = 

= /(4 
(ii) U{a) = U{-f{a)), hence a = -f{a). 

(iii) Щ-а) = \a\ = |a - 0| = | / (a) - / ( 0 ) | = | / (a) | = [ / ( - / (a ) ) , thus a = / ( a ) 
(iv) U{-a) = U{f{a)), and so a = - / ( a ) . 

Theorem 2.6. Letf be a strong 0-isometry in G.IfO ^ ae G, then 
(i) / ( a ) = a of{-a) = -a; 

(ii) f{a) = - a of {-a) = a. 

Proof, a) "=>": S ince / i s a strong isometry, we have/(t/(L(a, —a)) n 
nL(U(a , - a ) ) ) = [ / (L( / (a) , / ( -a ) ) ) n L( l7( / (a) , / ( -a) ) ) . Moreover, | / ( - a ) | = 
= | / ( - a ) - 0| = | / ( - a ) - /(0)1 = I-Û - 0| = | - a | = U{a), that is a = 
= / ( - a ) V - / ( - a ) . Thus if/(a) = a, then C7(L(/(a),/(-a))) = C;(L(a,/(-a))) = 
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= U{f{--ü)), L{U{f{a)J{^a))) = L{U{aJ{~a))) = L{a), and hence f{V{-a) n 
n L{a)) = U(f{~a)) n L[a). But OeU{-a)n L{a), thus 0 = / (0) e ОД-а)) n 
n L(ß), therefore/( — a) ^ 0. Thus, by Theorem 2.5 (iii),/( — a) = -a holds. 

"<=": Analogously from ~a = f{a) л —f{a) and from Theorem 2.5 (i). 
b) Equivalence (ii) can be proved similarly. 
A translation of a group G is any mapping fg : G -^ G (where g e G) such that 

xv-^ X + g for each x e G. 

Theorem 2.7. Any translation of an ordered group G is a strong isometry in G. 

Proof, a) The condition (1) from the definition of isometry is trivially satisfied. 
b) Let a, b, X, g eG. Then x e fg[U(L{a, b))) n L{U(a, b))) if and only if x — g e 

e U{L[a, b)) n L[U{a, b)), this holds if and only if x e U(L{a -\- g, b -{- gj) n 
n L[U{a + g, b + g)) and this is equivalent to x EU(L{fg{a), X(b))) n L{U{fg{a). 

Theorem 2.8. / / / is an isometry [strong isoFnetry) in an ordered group G, then 
there exists a unique 0-isometry (a strong 0-isometry) h in G such that f[x) = 
=- h(x) + f{0)for each x e G. 

Proof. It is clear that the bijection h is a 0-isometry. L e t / be a strong isometry. 
Then the assertion follows from the fact that the composition of any two strong 
mappings is also a strong mapping, and from Theorem 2.7. 

If G is an ordered group, then the set of all isometrics (strong isometrics, 0-iso­
metries, strong 0-isometries, translations) in G is an ordered group with respect to 
the composition of mappings and with respect to the order relation " ^ " such that 
f S g if and only if f{x) ^ g[x) for each x e G. 

Let us denote by /(G) the ordered group of all isometrics and by r(G) its subgroup 
of all translations of G. 

Theorem 2.9. Let G and G' be ordered groups and let there exists a bijective 
mapping cp :/(G) ->/(G') such that 

(a) cp is a group isomorphism; 
(b) (p is an isomorphism of ordered sets; 
(c) the restriction cp on T(G) is a mapping of T(G) onto T(G'). 

Then the ordered groups G and G' are isomorphic. 

P r o o f is analogous to that of Theorem 2 in [9] for lattice-ordered groups. 
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