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OSCILLATING AND ASYMPTOTIC PROPERTIES 
OF A CLASS OF FUNCTIONAL DIFFERENTIAL 

EQUATIONS WITH MAXIMA 

DRUMI D . BAINOV, A. I. ZAHARIEV, Plovdiv 

(Received November 15, 1982) 

The present paper deals with some asymptotic and oscillating properties of func­
tional differential equations of the form 

(1) x'\t} + Я x"{t - T ) + f{t, max x{s), max x'{s)) = 0 , 
seMit) seM(t) 

where т > 0 is a constant delay, M{t) ^ [fo, -foe) when te[^to, + oo), î^eR^^ 
and Я > 0 is an arbitrary constant. 

Definition 1. As a solution of equation (l) we shall consider every function x{t) e 
e C\l, R^),I = [tQ — T, +сю), tgER^ which satisfies (l) ahuost everywhere when 
t è Го- (We shall denote by C\l, R^) the space of the functions (p{t) : I \-^ R^ pos­
sessing absolutely continuous derivatives up to order к inclusively.) 

Definition 2. We shall call a continuous function (p(t) : I \~^ R^ oscillating if it 
contains a sequence of zeros approaching + oo. Otherwise, the function will be called 
non-oscillating. 

Definition 3. We shall call a continuous function (p[t) : I \-^ R^ strongly oscillating 
if there exists a sequence of points {ti]i=i such that lim f̂  = + oo and (p[ti) (p(ti+') < 

< 0 for every /. Otherwise, the function cp(t) will be called strongly non-oscillating. 

Definition 4. [ l ] , [2]. We shall call a continuous function (p(t): I \-^ R-^ ^(ф)-
strongly oscillating {k(cp) — oscillating) if there exists a real number k((p) such that 
the function (p{t) — k{cp) is strongly oscillating (oscillating). 

Definition 5. We shall call a solution x(r) of (l) correct if for every tel 

sup |x(s)| > 0 . 
seit, + CO) 

Let us consider the following example: 

(2) x"{t) + x"{t - TT) + max x{s) = 0 , 
s e [ t - 7 t , f + T c ] 
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T = я, M(t) = [̂  — 71, ^ + я ] . It is immediately verifiable that equation (2) has 
a solution x(t) = sin t — 1, which is oscillating but is not strongly oscillating. On the 
other hand, by virtue of Theorem 1 of [2], the equation 

x\t) + x\t - 7i) + x{t - я) = 0 

has only strongly oscillating solutions, which shows that the maximum influences 
the asymptotic behaviour of functional differential equations of the neutral type. 

Lemma 1. Let the following conditions hold: 
1. The function (p[t): I h-^ IR^ is continuous. 
2. The function (p(t) + Я (p(t — т) ^ с ((p{t) + À (p[t — т) ^ —c) when tel, 

where c, т and X are arbitrary positive constants. 
Let s eL Then for the set 

A = {t \ s й t й s + 2T, (p{t - x) ^ ß > 0} 

{A = {t\s ^ t S s + 2T, (p{t - T) й -ß < 0}) 

the inequality mess A ^ т holds, where ß is a constant depending solely on c, т 
and 1. 

The p roo f of Lemma 1 is given in [2]. 
We introduce the following notations: 

(3) (Lx) (t) : = x{t) + Xx{t ~ T), 

/*(^, Wo) = inf \f{t, u, v)\ when UQ > 0 , 
\u\ >uo 

M^{t) = min 5 . 
seMit) 

We shall say that the conditions (A) hold if the following conditions are satisfied: 
AL The function f(t, u, v): I x R^ i-^ (R^ is continuous and f(t, 0, 0) = 0 when 

teL 
A2. If w Ф 0, then uf{t, u,v) > 0 when teL 
A3. The set M(t) is closed when tel and lim M^(t) = + oo. : 

Lemma 2. Let the following be fulfilled: 
1. Conditions (A) hold. . 
2. For every constant с > 0, the identity 

/»+00 

(4) f^{t, c)dt = +00 
J to 

holds. 
Then every non-oscillating solution of equation (l) satisfies liminf |x(t)| = 0. 

t-^ + oo 

Proof. Let us assume that there exists a non-oscillating solution of the equation 

248 



(1) with the property lim inf \x{t)\ ^ с > 0 and, to be more precise, let us assume 

that x(t) < 0 when t ^ f*, r* el. By integrating (1) from t^ to t > f\ we obtain 

(5) i{Lx){t)y - [(Lx)(^*)]' = - I / (z ,maxx(s) , max ^'(s) dz ^ 0 . 
J J* s6M(z) seM(z) 

If we assume that [(Ьх)(?)]' ^ ĉ  > 0 when t ^ ^*, then the following inequahty 
holds when ^ ^ ^*: 

{Lx)(t)-{Lx){t*)^c,{t-t*), 

whence it follows that (Lx) [t) > 0 for sufficiently large values of f, which contradicts 
the assumption that x[t) < 0. 

Therefore [(Lx) (r)]' g 0 when t ^ f* and, taking into account that the function 
[(Lx) {t)y is monotone increasing, we conclude that the integral present on the right-
hand side of the equality (5) is convergent. 

On the other hand, it follows from the fact that lim sup x{t) ^ — с < 0 that there 

exists a point t ^ *̂ such that x(t) ^ — c/2 when t ^ t. Hence, it follows from 
condition A3 that there exists a point t^ ^ t such that max x(5) S —c/2 when 

Consequently, from (3) we obtain 
'+00 I 

f[t, max x(s), max x'(s)) dt\ 
f seMit) seMit) 

Л+00 
^ /*(r,c/2)d^ 

and hence 
Л+оо 

/ * ( ^ , c / 2 ) d r < +сю, 
hi 

which contradicts equahty 4. Thus Lemma 2 has been proved. 

Theorem 1. Let the following be fulfilled: 
1. Conditions (A) hold. 
2. Condition 2 o/ Lemma 2 /loWs. 
3. PF/ï̂ /î ^ e / f/ze inequality 

mess (M(^) n [r, ? + 2т]) ^ т 

Т/геи equation (1) Jo^s nof admit correct non-negative strongly non-oscillating 
solutions. 

Proof. Let us assume that there exists a correct strongly non-oscillating non-
negative solution x{t) of equation (l), x(t) ^ 0 when r ^ r*, Г* e / . It follows from 
equation (1) that [(Lx) {t)'\ is a monotone decreasing and non-negative function and 
hence from (5) we obtain 

'»+00 
f(t, max x(s), max x'(s)) àt < + oo . 

seM(f) seM(f) 
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Since [(Ьх)(г)]' è О when t ^ ^*, and x(t) is a correct solution, there exists 
a point t ^ r* such that, when Г ^ f, the inequality (Lx) (r) ^ с > 0 holds. 

Then, by virtue of Lemma 1, there exists a closed measurable set E ç [f, +00) 
such that when Г ^ Mhe inequality mess (JE n [r, t + 2т]) ^ т holds, and x(r) ^ 
^ ß > 0 when f e £. It follows from condition A3 that there exists a point t^ ^ ? 
such that M(t) Ç [?, + 00) when t ^ t^. 

Let r ^ 1̂ be an arbitrary point. Then, since the interval [t, t + 2т] is a connected 
set and E n[t,t + 2т] and M{t) n [r, Г + 2т] are closed sets, it follows from con­
dition 3 of the theorem that 

E n M{t) n [t, f + 2T] Ф 0 . 

Therefore, since x(t) ^ ß for t e E, we can assert that for t ^ ^̂  the inequality 
max x(s) ^ ß holds. Using the inequality 
seM(t) 

/ (r , maxx(5), max x'(5))df^ /*(r,i5)d^ 
J j ^ seMit) seMit) J j ^ 

we obtain 
p+00 

/*(r,iö)dr < + ( ^ , 

which contradicts equality (4). 

Thus Theorem 1 has been proved. 

Theorem 1 proves that the maximum, in a sense, is a generator of oscillations for 
equations of the neutral type. 

Theorem 2. Let the conditions of Theorem 1 be fulfilled. 
Then each correct solution x(t) of equation (l) is /c(x) strongly oscillating, where 

/c(x) ^ 0 for each x(t). 

Proof. It follows from Theorem 1 that (l) does not admit a correct non-negative 
strongly non-oscillating solution. Let us assume that there exists a correct non-
positive strongly non-oscillating solution x{t), x{t) ^ 0 when t ^ t*, f*G/. Then, 
by virtue of Lemma 2, lim inf \x{t)\ = 0. On the other hand, it follows from the proof 

of Lemma 2 that [(Ьх)(г)]' ^ 0 when t ^ *̂ and since x(t) is a correct solution, 
there exist a point t ^ r* and a constant с > 0 such that (Lx) (^ ^ —c < 0 when 
t è t. 

Hence we obtain from Lemma 1 

mess (A = {t\s S t ^ s + 2T, x{t - т) ^ - j ^ < 0}) ^ т 

when 5 G [f, -b 00) and, if we put k(x) = — j5, we conclude that the function x(t) + ß 

is strongly oscillating. 

This proves Theorem 2. 
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