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Czechoslovak Mathematical Journal, 34 (109) 1984, Praha 

ASYMPTOTIC EQUIVALENCE OF SECOND ORDER 
DIFFERENTIAL EQUATIONS 

JAROMIR KUBEN, Brno 
(Received July 19, 1982) 

1. INTRODUCTION 

In this paper the asymptotic properties of the linear differential equation 

(1) [p{t) xj ^ q{t) X = 0 

and the perturbed differential equation 

(2) ip{t) у'У + q{t) y = f{t, y, y') 

are compared. We shall suppose that p, q e C^(j), p is positive on j,fE C^(j x R^), 
; = {ÎQ, ОС). Here JR is the set of real numbers and С^{Л) is the set of real continuous 
functions defined on A. 

Notation 1. Let M^ be the set of all noncontinuable solutions of the equation (1) 
and M2 the set of all noncontinuable sollutions of the equation (2) that exist for all 
large t. Suppose that M2 Ф 0. 

Let fiE C^{j)' The symbols О and о have the usual meaning; i.e., z(t) = ^ K O ] 
denotes that there exists k> 0 such that \z{t)\ ^ |/c/x(r)j for large t, and z(t) = 
= o[/x(f)] denotes that there exists h(t) such that z(t) = fi(t) . h(t) and lim h(t) = 0< 

t-*O0 

Definition 1. We shall say that the equations (1) and (2) are fiQ-asymptotically 
equivalent if for each x e M^ there exists у e M2 such that 

(3) x{t) - y{t) = o[/io(0] . 

and if for each y e M2 there exists xe M^ such that (З) holds. We shall say that the 
equations (l) and (2) are weakly ii^-asymptoticaUy equivalent if for each xeM^ 
there exists y e M2 such that 

(3') x'it)-y'{i) = o[nM' 
and conversely. 

The equations (l) and (2) will be called strongly (/XQ, fiiyasymptotically equivalent 
if for appropriate x(t) and y(t), (З) and (3') hold-
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If M2 is the set of all noncontinuable solutions of the equation (2), we shall speak 
about the complete asymptotic equivalence of some type. 

The asymptotic equivalence was studied by many authors, e.g. [ l ] —[20]. Our 
method is similar to that of [17] but is applied to the perturbed linear differential 
equation with nonconstant coefficients. In [17], the perturbed linear system with 
constant coefficients is considered. Some of our results are comparable with Theorems 
2 —4 in [19], but the types of perturbations considered below are more general. 

Notation 2. In the sequel, let u(t) and v(t) form an appropriate fundamental system 
of the equation (1). Put 

с = p{t) [u{t) vXt) - u'{t) v{t)] 
and denote 

w,(f) = \и^Щ + \v^'\t)\ , / = 0, 1 . 

Here ii^'\t) denotes the /-th derivative, / = 0, 1; i.e. u^^\t) = u(t). 

2. EQUIVALENCE OF NONHOMOGENEOUS LINEAR 
DIFFERENTIAL EQUATIONS 

Let in {2)f{t, y, y') = a(t), where a e C°(j). Then (2) has the form 

(4) Ы^)У7 + Ф)у = <^). 
Let to ^ ^ ^ 00, to й 11 й ^- The method of variation of constants gives for each 
solution y(t) of the equation (4) the relation 

(5) y{t) = Ci u(t) + C2 v(t) — c~^ u(t) v(s) a(s) ds + c~^ v{t) u(s) a(s) ds , 

where c^, с2 are arbitrary constants. The choice ^ = 00 or rj = со is possible iff the 
corresponding integrals are convergent. Differentiating (5) we get an analogous rela­
tion for y'{t): 

(5') j;'(t) = Cj u'{t) + C2 v^t) ~ c~^ u'{t) v{s) a{s) ds + c~^ v\t) u{s) a{s) ds . 

Theorem 1. The equations (1) and (4) are completely ßo-asymptotically equi­
valent (completely weakly p^-asymptotically equivalent, completely strongly 
(MOJ P'i)-asymptotically equivalent) iff' there exists a solution yo{t) of the equation 
(4) such that Уо{г) = olfio(t)] W ( 0 = ^[i"i(0]' Ĵ o XO = ^{.1^Ш i = 0, l). 

Proof. Evidently, M2 is the set of all noncontinuable solutions of the equation 
(4) so that the equivalence is complete. Each solution of this equation can be expressed 
in the form 

y{t) = x{t) + yo{t) , 
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where x{t) is an arbitrary solution of the equation (1). This implies the assertion of 
the theorem. 

Theorem 2. Let there exist ^, r], t^ ^ ^, rj ^ oo, such that 

(6) u{t) v(s) a{s) ds - v(t) u(s) a{s) ds = ö[/io(0] 

or 

(6') u'{t) v{s)a{s)ds - v't) u{s)a{s)d{s) = ö[/ii(r)] 

or both (6) and (6') hold. 
Then the equation (4) has a solution yo(t) with the property yo{t) — О[ДО(0] 

or y'o{t) = o[/xi(0] or yf{t) = o[fi,{t)l i = 0, 1. 

Proof. The assertion is an immediate consequence of the relations (5) and (5'). 

Corollary 1. If the hypotheses of Theorem 2 hold, then the equations (1) and (4) 
are completely fiQ-asymptotically equivalent or completely weakly ß^-asympto-
tically equivalent or completely strongly [fiQ, lÀiyasymptotically equivalent, 
respectively. 

3. EQUIVALENCE OF NONLINEAR DIFFERENTIAL EQUATIONS 

In this chapter we shall give sufficient conditions for the types of asymptotic equi­
valence defined above. We shall suppose that the following hypotheses hold: 

(7) {\)f{t,r,s)eC%jxR^); 
(ii) there exists a nonnegative function F(t, r, s), Fe C^(j x jR^), which is 

nondecreasing in r and s for each fixed t ej such that 

\f{t, r, 5)1 й F{t, \r\, \s\) . 

Here R+ is the set of all nonnegative real numbers. 

Notation 3. Let JQ, J^ be positive functions, /^ e C^{j), i = 0, 1, such that 

(8^')) иЩ=ОуЩ, v<%t)=OlJlt)], i = 0,l. 

For example, we can take J,- = Wi, f == 0, 1. 

Theorem 3. Suppose that (7) holds and let for any fc ̂  0, 
/•oo 

\u{s)\ F [ S , к Jo{s), к Ji(s)] ds < 00 
J to 

and 

(9̂ >̂) u^%t) Г \v{s)\ F[s, к Jo(s), к J,{s)] ds - o[j.(t)] , / = 0, 1 . 
J to 
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Let for each solution y e M2, 

(io<^>) /%t) = o [ j , ( 0 ] , -̂ = 0 , 1 . 

Then the equations (l) and (2) are strongly (ßo, ß^yasymptotically equivalent for 
each pair of functions ßo, ßi, such that for any /c ^ 0, 

(11'") |«''*0)| г | Ф ) | fb, к J ois), к J,(s)-] ds + 
J to 

+ \v^'it)\ \u{s)\ F[s, к Jo{s), kJ,(sy] ds = o[/x,(r)] , / = 0, 1 . 

/ / F does not depend on r or s, the assumptions (9) and (10) or (9') and (10') can 
be omitted. In this case, the equations (l) and (2) are weakly fi^-asymptotically 
equivalent or fiQ-asymptotically equivalent for each function Hi or ц^ satisfying 
( l l ' ) o r ( l l ) . 

Proof. I. Let у e Mj . Consider a nonhomogeneous linear differential equation 

{pz')' + qz=f[t,y{t\y'{t)\ 

that possesses the solution y{t). For appropriate /c > 0 and t^ ^ t^ we have 

k ' ' ( 0 Ф ) / ^ ' J'(^)' >''(^)] ds + v"\t) u{s)f[s, y{s), уЩ ds g 
I J tl J f I 

й y%t)\ I | ф ) | F[s, к Jo{s), к J^isJ] ds + 

/*00 

Theorem 2 guarantees the existence of a solution z(r) such that z^^^(^t^ = оГи(^)], 
/ = 0, 1. Then, x{t) = y(t) — z(t) is the desired solution of the equation (1). 

II. Take X e M^ and consider the integral equations 

(12) y{t) = x{t) - C-' u{t) v{s)fls, y(s), z{s)] ds -

/•00 

- c- ' v{t) M(S) / [S , y{s}, z(s)] ds , 

z{t) = x'{t) - C-' u'{t) г v{s)fls, j(s), z(s)] ds -
- C- 1 r 'O) г U(s ) / [ s , >'(s), 2(S)] d5 , t ^ t , . 

where /̂  ^ 0̂ will be chosen later. 
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Let C2<fi, oo) be the set of all pairs of continuous functions defined on (f^, oo). 
For g e CjOi, oo), let 

Pn{9)= max 11 (̂011. neN; 
t 6 < f i , r i + n > 

here II'Ij is some convenient norm in R^. Then p„ is a pseudo-norm and C2<ri, oo) 
with the topology induced by the family of pseudo-norms {]7„)̂ == i is a Fréchet space. 
Denote 

^ .W -W = W^ ^'Л e C2< ,̂ ^ ) : |ф'(0| ^ Ö ^r(0' '̂ - 0, 1} , 
T ^ 0̂- There exists /c > 0 such that [x, x ' ] , [w, w'], [t?, i;'] e ^i,{to). Let Q ^ 2k and 
choose fi so that 

M |w(s)| F[s, Q Jo{s), g J^{sJ] ds S 

and 

\u^%t)\ Г \v{s)\ F[s, Q Jo(s), g Ji(s)] ds ^ i k\c\ J^t), Г ^ ^̂  , f = 0, 1 • 

Let T: ^Jyti) -> ^e(^i) ^^ ^" operator, Tcp = [TQ^ , Т^ф], cp = [ф^, (p^'] and 

(Т,ф)(0 = x '̂XO - C-' u^%t) Г ф ) / [ 5 , cp\sl cp\s)] ds -

- с- ' ."'(О u(s)/[s, <?>°(s), ф'(^)] ds , i = 0, 1 . 

The convergence in C2<^i, oo) is the uniform convergence on each compact sub-
interval of (^1, oo). If Ф e ^j,(^i), then 

|(r,(p)(0| ^ ic J,(0 + jcj-^ \k\c\ Jit) + |c |-^ к J , ( 0 ^ = 2/c J,(f) ^ 

^ ^ ^/(0 ' ^ ^ ^ ^ / = 0 , 1 . 
Therefore, Г J^/fi) c: ^^t^). 

Let {ф„}^=о ^ ^e(^i) ^^^ ^" "^ Фо in the Fréchet space €2(^1, 00). Let /2 > 1̂ 
and e > 0. Denote m = max Wo(r), t e (r^, /2)- Choose Г3 > 2̂ such that 

r m 5 ) | F [ s , ^ J o ( 5 ) , ö J , ( 5 ) ] d 5 < ^ ' . 

Put 

^ = m mj —LJ - , U 

14m |M(s)|ds 2m \v{s)\ds 

As <p„ -> фо uniformly on <^i, Гз>, we have for large n, e.g. N ^ n, and ^ e <^i, з̂>? 

|/[t, <p°(f), ç>„40] - / [ * , 9 ^ , <pj(0]| < 5 • 
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Thus 
|(Го<р„)(0-(То<Ро)(0|е 

^ \c\'^ \u{t)\ Г | ф ) | \f[s, cp°{s}, (Plis)-} - f[s, ç'ois), <РШ ds + 

+ | c | - ' KOI J \u{s)\ | / [ s , cp^M viis)-} - f[s, <p'o{s), çl{s)-]\ ds < 

< \c\"''^ m& \v{s)\ ds + 

+ \c\-^m Г \u{s)\ \f[s, cp'„{s), <p„'(s)] - / [ 5 , cp',{s), cp^,{s)]\ ds + 

+ 2|c|"^ m \u{s)\ Fis, Q Jo{s), Q J I ( S ) ] ds < ~ + |c|~^ тВ \u{s)\ ds + - ^ г 
Jf3 ^ Jti 4 

for n "^ N and r e (f^, 2̂>- This estimate imphes that TQ is continuous. The same is 
true for Tj and, therefore, T is continuous. As the functions of T^J(ti) are uniformly 
bounded together with their derivatives, they are equicontinuous at each t^t^t^.^y 
Ascoli's theorem T^J^t^ is relatively compact in C^2ih^ ^ ) - Therefore, as J'^(^i) is 
convex and closed in C^2ih^ ^)^ T has a fixed point in J'g(^i). This assertion is 
due to Tychonoff's fixed point theorem — see e.g. [24], p. 45. 

At the same time, we have proved that the system (12) has a solution. Evidently, 
y\t) = z(t) and y(t) is a solution of the equation (2). Moreover, [y, > '̂] e ^^(^i) so 
that we have found a solution for which y^'\t) = ö[j,.(f)], / = 0, 1, without using 
(10) and (10'). The relations (U), (11') and (12) imply that (3) and (3') hold. 

If e.g. F does not depend on s, then part I is the same as above. In part II define 

^ , ( T ) = {cp = [<p«, <p̂ ] 6 C°<T, ex.): \(p%t)\ é Q Jo{t), \срЩ й Щ} ' 
where 

ф{1) = |x'(0| + H"-' \u'{t)\ \v{s)\ F[s, в Jo(s)]ds + 
J to 

/*00 

" M 4 0 I J Hs)\F[s,gJo{s)]ds. + с 

The rest of the proof requires no essential changes. 

Theorem 4. Suppose that (7) holds and let for any fc ^ 0, 

(|M(S)| + \v{s)\) Fis, к Jo{s), к / i (s)] ds < oo . Г 
Jtc 
По 

For each у еМ2 let (10) and (10') hold. 
If F does not depend on r or s, the assumption (lO) or hQ'\ can be omitted. 
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Then the equations (l) and (2) are strongly {^IQ, ^^-asymptotically equivalent 
for each pair of functions {.to, Â i such that for any /c ^ 0, 

) 
{\u^%t) v{s)\ + \u{s) v'^) F[s, к Jois), к Ji(s)] ds = O[A(,(0] , г = 0, 1 . 

The p roof is similar to that of Theorem 3. 

Remark 1. We can always put e.g. fii ~ Ji, i = 0, 1, in Theorems 3 and 4. 

4. SPECIAL CASES OF PERTURBATIONS 

Suppose that 
(13) \f{t,r,s)\uh{t)\r\ 
or 
(13') \f{t,r,s)\uk{t)\s\, 

where h, ke C^{j) are nonnegative. 

Lemma 1. / / (8), (8') and (13) hold, then each solution y{t) of the equation (2) 
exists on the whole interval] and 

/O(^) = О Гj.(t) exp Г I, Jl{s) h{s) d s l , f = 0, 1 , 

where /̂  is a positive constant. 

Proof. Let (^ti, T), t^ ^ tQ, be the right-hand maximal interval of existence of 
y{t). As 

(14) y{t) = c, u{t) + C2 v{t) - C-' u{t) I v{s)f[s, y{s), /(s)] ds + 

+ c-4{t){' u(s)fis,y{s),y'{s)]ds 

with appropriate constants c^, Сг, we have for t e <fi, Г) 

\y{t)\ g fei Jo{t) + h J oit) г h(s) Jj^s) \y{s)\ ds , 

where k^, /̂  are positive constants and /̂  does not depend on y{t). Using a generalized 
Gronwall's inequality — see [22] — we obtain an estimate 

\y{t)\ й k,h Jo{t) exp Г W 4 ( s ) h{s) ds . 

Differentiating (14) and substituting the preceding result we obtain an analogous 
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estimate for y'(t). This imphes that T = oo. If ^̂  > ^Q, we put t = - 5 in the equation 
(2) and we show in the same way that y{ — s) exists on < —^i, —^o)- Thus, y(t) exists 
on 7. 

Lemma 2. / / (8), (8') and (13') hold, then each solution y{t) of the equation (2) 
exists on the whole interval] and 

= 0 , 1 , y(i)(t) = О Г J,(0 exp Г /, Jo(s) J,{s) k{s) d s l , / = 0 

where /2 is a positive constant. 
The p roo f is analogous to that of Lemma 1. 

Theorem 5. Suppose that (13) holds and j ^ Wo(s) h(s) ds < со or that (13') holds 
and j ^ >Vo(s) Wi{s) k{s) ds < 00. 

Then the following implications are true: 
(i) / / all solutions of (l) are bounded, then the equations (l) and (2) are com­

pletely WQ-asymptotically equivalent. 
(ii) / / all solutions of (l) have bounded first derivatives, then the equations (1) 

and (2) are completely weakly Wi-asymptotically equivalent. 
(iii) / / all solutions o / ( l ) are bounded together with their first derivatives, then 

the equations (l) and (2) are completely strongly (WQ, W^yasymptotically equi­
valent. 

Proof. The assertions are immediate consequences of Theorem 4 and Lemmas 1 
and 2. 

Further we shall suppose that 

(15) \f{t,r,s)\^a{t)9i\r\) 
or 
(15') \fit,r,s)\^b{t)hi\s\), 

where a, b e C^{j) are nonnegative, g, he C^(R+) are nonnegative and nondecreasing 
and g{r) > 0 for r ^ M ^ 0, h{s) > 0 for s ^ iV ^ 0. 

Lemma 3. / / (15) holds and J^ drjg^r) = 00, then each solution of the equation 
(2) exists for large t. If, moreover, all solutions of the equation (1) are bounded 
and jTo ^0(5) (̂•̂ ) ̂ ^ < ^5 ^^^" ^^^ solutions of (2) are bounded for large t. 

Proof. Let y{t) and (r^, T) have the same meaning as in the proof of 
Lemma 1. Suppose that T < o o . Denote ^^(f) = max w,(s), se<^t^,t}, t ^ t^, 
i = 0, 1. Clearly, cpt is nondecreasing. As y{t) fulfils (14), we get 

|><0| g к <Ро{Т) +\с\-' <Ро{Т) Г Wo{s) a{s) gl\y{s)\] ds , 
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where К — max [\ci\, [̂ аЦ- Bihari's inequahty — see [23] — gives an estimate 

\y{t)\ й G - ' W ( p o ( T ) ] + \c\-^ (Po{T)i WQ[S) a(s)âs 

where G{u) = JM dr/^(r) and G ^ is the inverse function. Differentiating (14) we 
further get 

\y'{t)\ й к <pi(r) + \c\-' ф,(Т) Г Wo(s) a{s) g[\y{s)\] ds . 

Thus, y{t) and y'[t) are bounded but this contradicts the assumption T < со. The 
remainder of the lemma is now evident. 

Lemma 4. 7/(15') holds and J^ dsjh[s) = oo, then each solution of the equation 
(2) exists for large t. If, moreover, all solutions of the equation (l) have bounded 
their first derivatives and Jj^ Wo(s) b[s) ds < oo, then all solutions of (2) have 
bounded their first derivatives for large t. 

The proof is the same as that of Lemma 3. 

Using Theorem 4 and Lemmas 3 and 4 we obtain 

Theorem 6. Suppose that (15) holds, WQ is bounded and | ^ Wo(s) a(s) ds < oo, 
JjJ dr/öf(r) = 00. Then the equations (l) and (2) are completely WQ-asymptotically 
equivalent. 

Theorem 7. Suppose that (15') holds, w^ is bounded and J^ Wo(s) b(s) ds < oo, 
J^ ds//z(s) = 00. Then the equations (l) and (2) are completely weakly Wj^-asympto-
tically equivalent. 

Г 
J и 

Lemma 5. Let (7) hold and 

WQ(S) F [ S , Я WO(S), À w^(sy] ds < 00 
' to 

for any Я ^ 0. Let there exist Яо > 0 such that 

1 r°° 
(16) sup - Wo(s) F[s, Я Wo(s), Я Wi(s)] ds = 5 < \c\ 

Аб<Яо,оо) ^ J ti 

for an appropriate t^ ^ tQ. 
Then each solution у of the equation (2), y{ti) == y^, j ' (^i) ~ ^ i ' ^̂ -̂̂ -̂̂  /^^ 

^ ^ 1̂ a?îJ y^%t) - 0[w^(r)], / = 0, 1. 

Proof. Let <^i, T) and К have the same meaning as in the proof of Lemma 3. As­
sume that T < 00. From (14) we obtain 

\/%t)\ й к wit) +\c\-' w,(0 Г Wo(s) Fis, \y{s)\, \y'is)\] ds , 
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^e<ri , T), / = О, 1. Denote 

(17) (р(т) = К\с\ + Г Wo(5) F[s, \y{s)\, \y'{s)W ds , 

T6<fi, T). Then 

(18) | / ' ->( r ) |^ | c | -^w,( t )^ (T) , f e < t i , T > , f = 0 , l . 

If ф(т) < |c| ÀQ for each т e {t^, T), then 

(19) i/'^(0| ^ ^ >̂ .(0 ' ^ ^ <^' T) , i = 0, 1 . 
If there exists TQ e (r^, T) such that CP{TQ) ^ |c| AQ, then ф(т) ^ |c| AQ ^^r т e <То, Т). 
Relation (16) gives 

1 Г sup - Wo(s) F[s, Я Wo(s), A Wi(s)] ds = 5^ ^ 5 < |c| . 
Яб<Ао,сх)) Я J f̂  

Put Я = |cl~^ <P(T), T e <To, T). Thus 

f Wo(s) F[5, Ic]-^ ф(т) Wo(s), j c j - i ф(т) wi(s)] ds g lc|-^ S ф(т) . 

We obtain from (17) and (18) that 

ср{т) йК\с\ + \с\-'S ср{т), т е < Т о , Т ) . 

Therefore, 

Ф)^ М^ 
i - H - s 

since |с|"^ S < 1. Relation (18) imphes 

(20) \/'\t)\u- ^ ^ ^ l { t ) . tEit.^T), TG<To,T), i = 0 , l . 
1 - \c\- s 

But this estimate does not depend on т, thus, (20) holds for each t E {t^, T). As (19) 
or (20) holds, we get that y^^\ i = 0, 1, are bounded on (r^, T). This is a contradiction 
and hence necessarily Г== oc. At the same time we have obtained that y '̂̂  = 
= 0[w,.(f)], Î = 0, 1. 

Theorems. Let the assumptions of Lemma 5 hold. Then the equations (l) and (2) 
are strongly (WQ, W^yasymptotically equivalent. 

Proof. The assertion is an immediate consequence of Theorem 4 and Lemma 5. 
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5 PERTURBATIONS OF NON OSCILLATORY EQUATIONS 

In this chapter we shall use some special properties of nonoscillatory second order 
linear diiferential equations. For these properties and the concept of the principal 
solution see [25], pp. 350-370. 

Theorem 9. Suppose 
i) p, q, qo e C^Oo^ oo), P > 0, qo й 0; 

ii) Wo, Wi cire respectively a principal and a nonprincipal solution of [p(r) w']' 4-
+ qo{t) и = 0; 

»iO Is |"o(0 "iWl Ш - ^o(0| àt < CO. 
Then 

i) it can be supposed that 

(21) UQ > 0 , UQ й 0 , W i > 0 , u[ > 0 , re<fo, oo); 

ii) the equation (l) is nonoscillatory; 
iii) each principal or nonprincipal solution XQ, X^ respectively of the equation ( l ) 

satisfies x,- -̂  %,W;, / = 0, 1, where к-, are appropriate constants. 

Proof. Theorem 9 is a consequence of Corollary 11.6.4 and Theorem 11.9.1 
of [25]. 

Lemma 6. Suppose that 
i) 0̂  ^ 0 on <Го, oo) and j ,"^ g{t) ds < oo; 

ii) CE C^{tQ, oo), с > 0 is nondecreasing, lim c{t) = oo and c'[t) is nondecreasing. 
Then '"^^ 

C-'{t) Г C(5)^(5)d5 = 0(l) 
J to 

For the p roo f see [16] and [21]. 

Theorem 10. Suppose that 
i) the assumptions of Theorem 9 are satisfied and UQ, U^ are chosen so that (21) 

holds; 
ii) p{t)ul{t) is nonincreasing; 

iii) |/(r, r, 5)1 S F{t, |r|), where Fe C^(j x R^), F(t, r) is nondecreasing in r for 
each fixed t ej; 

iv) ĵ °̂  UQ{S) F [ S , к Wi(5)] ds < 00 for any /c ^ 0; 
v) for each у E M2 the identity y{t) = ö[wi(r)] holds. 

Then the equations (l) and (2) are u^-asymptotically equivalent. 

Proof. We shall show that the hypotheses of Theorem 3 are satisfied. Theorem 9 
allows us to choose a fundamental system XQ, X^ of the equation (1) so that Xi ^ u,-, 
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i = о, 1. Put JQ = Ui. Then 
/•oo f»co 

\XQS)\ F [ 5 , к t/i(s)] ds ^ m^ «0(5) F[5, к Wi(5)] ds < 00 , 
J to J fo 

where mj > 0 is a constant. Further, wjt/o -> QO monotonously since (WI/WQ)' == 
= c/pwo > 0, and (wi/t/ö)' is nondecreasing. Then, using Lemma 6, we obtain 

\xo{t)\ \^i{s)\ ^[5, /c Wi(s)] ds ^ m2 t/o(0 "i(^) ^ [ ^ ' ^ ^i(^)] ^^ = 
J Го J to 

= ^l(0 ^2 " ^ f ^ Î t.o(.) F[5, /< . ,(5)] d5 = oiuM , 
Wl(OJfo"o(s) 

where m2 > 0 is a constant. The proof is complete. 

Theorem 11. Let the assumptions i) and ii) of Theorem 10 hold. Let f{t, r, s) 
satisfy condition (13) and 

/*oo ^s 

UQ(S)UI(S) h(s)QXp \ 11 ul((j) h((7) da ds 
J to J to 

< 00 

where /̂  > 0 is the constant from Lemma 1. 

T/z /̂i the equations (1) anrf (2) are completely u^-asymptotically equivalent. 

The p r o o f is similar to that of Theorem 10. Lemma 1 must be used. 

6. EXAMPLES 

Example 1. a) (t'^yj + 2t^y = h{t) y, t ^ l.Put u{t) = t~\ v{t) = Г ^ If h e 
e C°<1, 00) and jf t~^\h(t)\ dt < 00, then the complete strong (t~^, r"^)-asymptotic 
equivalence holds by Theorem 5. 

b) (t^yj -h 2t^y = k{t) y\ t^L 
Analogously, if ke C^<1, 00) and Jf ^"~ |̂fc(r)| dt < 00, then the same assertion 

as in a) holds. 

Example 2. ( f "• VO' + ß^'^'^y = Д^' У^ У'1 t ^ 1, а^ - 4ß < О, Put 

u(t) = Г«/^ cos ^^"^^ ~ ''''> In t, КО = Г «/̂  sin ^^"^^ " "̂ '̂  In f. 
^ ' 2 ' " 2 

We can take Jo{t) = r " / ^ /^(r) = Г^/^~^ 
a) If (15) holds and a ^ 0, J^ (l/^f) = 00, Jj" s"^/^ a(s) ds < 00, then the complete 

/•"""^^-asymptotic equivalence holds by Theorem 6. 
b) If (15') holds and a ^ - 2 , J^ (l//z) = 00, Jf 5"°̂ /̂  b(s) < 00, then the complete 

weak ^"""^^"^-asymptotic equivalence holds by Theorem 7. 
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Example 3. y" - fir^y = f{t, y, У), t ^ 1, ja > i. Put u{t) = t^'^ cos {ii - \У^^ . 
. in t, v{t) = t'^^ sin (AI - iY^^ In t. We can take Jo(0 = ^'^^ « îW = ^~'''^-

a) Let \f{t, r, s)\ й h{t) |r|" \s\^ (x, ß ^ 0, a + ß S h he С\1, со). If 
Jf 5(«~/̂ +i)/2 /2(5) ds < 00, then the strong {t^^^, r~^''^)-asymptotic equivalence holds 
by Theorem 8. 

b) Let \f{t, Г, 5)1 й 4 0 (kl" + НО' OSoc, ß uh keC\l, 00). If Jf s^^^^ '̂̂  ^ 
. Â:(5) ds < 00, then the same assertion as in a) holds. 

Example 4. y" + q(t) y = f{t, y, /), t ^ t^. Let \f{t, r, 5)] ^ /i(r) |r|, /i e С^<Го, oo) 
and 

/•00 /*00 

5|^(5)| d5 < 00 , 5^ /1(5) 
J to J to 

ds < 00 . 

Put qç) = 0, Wo(0 == Ь Wi(0 = ^ iî  Theorem 11. Then the complete f-asymptotic 
equivalence holds. 
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