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Czechoslo?ak Mathematical Journal, 34 (109) 1984, Praha 

REGULAR FUNCTIONS OF COMPLEX QUATERNIONIC VARIABLE 

JiRi MÊSKA, Praha 

(Received March 22, 1983) 

1. INTRODUCTION 

The development of the quaternionic analysis started only recently and — in 
comparison with the complex analysis — the theory is certainly still underdeveloped 
with its best years to come. It took a long time to find a suitable generalization of the 
С — R equation to have a nice, distinguished class of "regular functions". The 
school of Fueter [2, 3, 4] in the thirties made the first and substantial step in the build­
ing of quaternionic analysis. Its up-to-date summary can be found in [6]. Regular 
functions — as mappings of R"^ into R"^ — are real-analytic, hence it is certainly 
worth while to complexify the situation and to use the full power of complex analysis 
for the investigation of the properties of the class of regular functions. At the same 
time, through this complexification, the connection with the equations of mathemati­
cal physics on the complex Minkowski space can be established (see [7, 5]). 

In the present paper the theory of analytic spaces (as described in [ l ] ) is used for 
the investigation of properties of the holomorphic extension of the Fueter equation. 
The main result proved in the paper is the fact that the zero sets of (complex) Fueter 
functions are "null surfaces" (in the sense used e.g. in general relativity), i.e. (roughly 
speaking), the "gradients" at the pomts of the surface lie in the null cone N. 

A definition of Fueter-meromorphic functions is suggested and it is shown that the 
poles of such functions have similar properties as zero sets ot Fueter functions. 

As to the contents of this paper, after introducing the basic notation, a short sum­
mary of the results is given at the end of Section 1. Section 2 contains a review of the 
necessary facts from the theory of analytic spaces. The properties of orthogonal cones, 
on which the proofs are based, are described in Section 3. Section 4 contains the 
main theorem on zero sets of regular functions, while ш Section 5 similar facts are 
proved for poles of meromorphic functions. 

N o t a t i o n . We denote the four-dimensional complex associative algebra of com­
plex quaternions by CH, its identity by io = 1, and we regard С as a subset of С H by 
identifying ce С with CIQ E CH. Then we have a direct sum decomposition CH = С ® 
@ P, where P is the oriented three-dimensional complex vector space having the 
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quaternionic units i^, ia? 13, as a basis. With the usual notation for three-dimensional 
vectors, the product of two elements of CH is given by 

vw (^0. ^ ) (VÎ O. ^) = (^0^0 - У > W, VQW + WQV + V X W) . 

3 
A complex quaternion can be written as t; = ^ vj^, ^a^ ^ ^^^ we define: 

a = 0 

v+ = Vo - i^Vj^ - 12̂ 2 - 1з̂ з̂ » 

V = Vo + iiï^i + h^2 + h^3 . 

N{v) = vv' = Yvl vl. 

N = {ve CH; there exists we CH such that vw = 0}. Then v~^ = v'^l(vv'^) for 
V e CH, N(v) Ф 0 and N = {v e CH; N(v) = 0}. A complex quaternionic function 
can be written as / = Y^fßb where fß : CH -^ С are complex valued functions. 
Define ^ 

Definition 1.1. Let Б be an open subset of CH. Let D = J] i„(5/5zj. Then a function 
f: В -^ CH is left regular (or right regular) in В iff": '^ 

1. / i s holomorphic, •-' 
2. Df ~0 {or fD = 0) in B. ' " . - ^ 

The set of left regular functions in В will be denoted by F~[B). The set of germs 
of left regular functions at a point q e CH will be denoted by F~. 

We are going to summarize now the basic results of this paper. Let К c: G" be an 
analytic cone (see Definition 2.6) and V~ its regular points. In Section 3 we define 
an orthogonal cone F^ = clos (J C(V, p)^, where C(V, p) is the tangent space to F 

at the point peV' and C{V, pf =^ {q e C\ J^d^q^ = 0 for all d e C{V, p)}. We 
shall show that F"̂  is an analytic cone and {V^}'^ = V-

Definition 1.2. The cone FisJV-orthogonal(oriV-ö>--örthogönal) iff" Fis an analytic 
cone and F = Q-̂  (or F = Q^, see Definition 3.1) for some analytic cone Q ci'N = 
= {veCH,j:vl = 0}. 

Definition 1.3. Let В be an open set in CH. Theti F cz В is an F~ zero set in В 
iff" for all be В there exist U{b) с В, feF-{U{b)) such that Уел U(b) =f~\0). 

3- • - , 

An F " zero set in В is clearly an analytic set in B. Let F = U ^a be the splitting 

of Fby dimension (see Section 2). In Section 4 we show that C(F3,^) is Л^-orthogonal 
and AT-co-orthogonal for all q e V. 
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Definition 1.4. Let В cz СИ be an open set in CH and Я с Б an open and dense 
subset of B. The couple ( Я , / ) is F~ mer amorphic function in В iff: 

(i) For all peB there exist U{p) and Ф, ^ : t/(/?) -^ CH, Ф, W holomorphic, 
"РЩр)} Ф N such that / (x ) = Ф{х)Щх) for all x e U{p) n Я, ¥^(x) ф N; 

(ii) / i s a left regular function on Я (regularity condition). 

In Section 5 we investigate the pole set Pj- of an F~ meromorphic functions. We 
show that C(Pf, q) is an AT-orthogonal and iV-co-orthogonal analytic cone for all 
p ^ Pf except some "bad points". 

2. PRELIMINARIES 

In this section we recall, for the convenience of the reader, some basic facts from 
the theory of analytic sets. 

A subset Fof C" is analytic near p, iff there is a neighbourhood U of p and holo­
morphic functions / i , .. .,/^. in и such that Vn U is the zero set of these functions. 
A subset F с С" is locally analytic, iff it is analytic near each of its points. Let Я 
be open in C" and suppose F с: С". Then F is analytic in Я iff F i s analytic near 
each point of Я. A point p of an analytic set Fis a simple (regular) point ofViïïV 
is an analytic manifold near p. Otherwise ;? is a singular point ofV. Let V~ denote 
the set of simple points of Fand F^ the set of singular points of F. A subset IF of 
a locally analytic set Fis an analytic subset o/Fiff IFis analytic near each point of F 

L e t / be a germ of a holomorphic function at a point p e C". T h e n / = ^ ^ / ( ^ "" Pf^ 
I = (ij, ..., i„) e N" near p. ^ 

Definition 2.1, The initial polynomial of / at p is the polynomial / * = 
n 

= Y, ^i{^ ~ PY where m = min {|/|, aj ф 0} and |/ | = ^ î . 
\I\=m I j=l 

Definition 2.2. Let F be locally analytic in C" and p e V, The tangent cone of V 
at p is the set C{V, p) = {v e C"; 3pi e F, 3Ö^ E С, p^-^ p, ai{pi - p) -^ v]. 

If jE? G F~ (JP is a regular point), then this definition is equivalent to the usual 
definition of the tangent space in terms of differentiable curves [ l , 7-3C]. 

Theorem 2.3 [ l , 7-4 D] . Denote byl(V, p) the set of germs of holomorphic functions 
at p which vanish on F Then C{V, p) is the zero set of the set of all initial polyno­
mials f^ of the germs f el{y, p). 

Tiieorem 2.4 [ l , 7-4A]. / / / is holomorphic in C" near p and has Z for its zero set, 
then C(Z, p) is the zero set offp. 

The dimension o /F(d im F) is the largest dimension of any simple point. Fis said 
to have a constant dimension r (dim F = r) iff F~ is an analytic manifold of dimen-
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sion г. A nonvoid locally analytic set F с C" is reducible iff there are analytic 
subsets Fl and V2 if V such that F = F^ u F2, F ф F^, F Ф F2. Otherwise, F is 
irreducible. An analytic subset TFof a locally analytic set Fis an irreducible com-
portent 0 / F iff it is a maximal irreducible analytic subset. 

Theorem 2.5 [ l , 3-lG]. Let V be a locally analytic set in C", let M^, M2, . . . 
be the connected pieces of V~ (the number of them is clearly finite or denumerable), 
and set M^ = F-clos M^. Then V = {jM^. Further: 

i 

(a) Each M^ is an irreducible component of V; dim M^ = dim M^. 
(b) The Ml s form a locally finite set of sets in V. 
(c) / / the numbers À^, /I2, ..., jUi, 1̂2? ••• ^^^ ^^^ distinct then V — [jM^^, V" = 

i 

= \JMf^. are analytic subsets of V and dim (F ' n W") < dim F'. 
i r 

The splitting of a locally analytic set Vby dimension is the decomposition V = \J Vj 
where r = dim Fand Vj = (J M^. •'"^ 

dimMi=j 

Definition 2.6. A set V cz C" is an analytic cone iff it is analytic in C" and is the 
union of a set of lines through 0. 

If F cz C" is an analytic cone then Fis the zero set of a finite set of homogeneous 
polynomials in C" [ l , 5-9E]. The tangent cone is an example of an analytic cone. 

Lemma 2.6. Let F с C^ be a cone and let V be analytic in a neighbourhood of 0, 
then Vis an analytic cone. 

Proof. Define F^: C" -^ C", z i-> cz, с e C. F^ is the biholomorphism and maps F 
onto F Let F n U(0) be an analytic subset of U(0) and consider a point p e C". 
Then we can find such a number с e С that Fc(p) E U(0). Hence F is analytic in 
F;\U{0)), P e F~\иЩ and Fis analytic in p. 

Theorem 2.7 [1, 3-7A]. Let V cz C" be a locally analytic set, and suppose dim F = 
= p. Then for each p e V there is a neighbourhood U of p and holomorphic vector 

functions Wi, ..., w^ in U such that 

(a) Wi[x) = 0 for all г = 1, ..., m if xeV^ nU, 
(b) if X eV n U, then w,(x) e C{V, x) for all i, and the functions 

Wi{x) span C{V, x). 

The following theorem is an extension of the Remmert proper mapping theorem. 

Definition 2.8 [ l , 7-11 A]. Let X abd 7be locally compact spaces, and l e t / : X -^ Y 
be continuous. T h e n / i s semiproper into 7iff for each compact set Q cz У there is 
a compact (perhaps void) SQIKCZX such tha t / (X) = f(X) n Q. 
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Theorem 2.9 [1, 7-l lB]. Let f be a semiproper holomorphic mapping of an 
analytic space V into an analytic space W. Then / ( F j is analytic in W and 
d i m ^ / ( F ) = sup srnk^,/, qef{p), 

f(p)=q 
The zero set of a holomorphic function/ Ф 0 in an open and connected set H a C" 

is an analytic set in H of the constant dimension n — 1. Conversely, such an analytic 
set is, at least locally, the zero set of a single holomorphic function. 

Theorem 2.10 [ l , 2-lOD]. Suppose that V a C" is a locally analytic set, dim V = 
= n — 1 and p e V. Then there exist a neighbourhood U[p) and a holomorphic 

function œ in U(p) such that 

(a) VnU{p) = œ-Щ. 
(b) / / g is a holomorphic function in U(p) such that its zero set contains V n U{p), 

then g = hœfor some holomorphic functions h in U[p). 

The function œ is called the characteristic function of F a t p. 

Lemma 2.11. Let F с C" be an analytic cone of the constant dimension и ~ 1. 
Then there exists a homogeneous polynomial со such that 

(a) V= œ-\0). 

(b) If p is a holomorphic function and p\ V = 0, then there exists a holomorphic 
function h such that p = ha>. 

(c) / / a>i and a>2 satisfy (a) and (b), then there exists CE С such that œ^ = cco2-

Proof. By Theorem 2.10 there exists a holomorphic function/ that satisfies (a) 
and (b) in some neighbourhood t/(0). First we prove that f^ = / . We can write / = 
= YjPn^ where p^ are homogeneous polynomials. Take zeVnU{0) and teC 
arbitrary but such that tz e V n 1/(0). Then 0 = f{z) = f{tz) = J^f p„{zy Hence 
p„(z) = 0 for all ne N and z e V; particularly, /o* has this property. By Theorem 
2.10(b), /o* = hf in some neighbourhood l/(0) and the required equality follows. 
Set CO = / ^ . To prove that p/co is holomorphic in z G С we can find a biholomorphism 
F,:a -^ C", 2 H-> (1/c) z such that (l/c) z e l/(0). Then p{z)jœ{z) = p(F^(z')) : 
:œ{F,{z')) = (1/cf (p(i',(z'j)/co(2')), z'eU{0). We can now use Theorem 2.10(b) 
in (7(0). To prove (c) it is sufficient to apply (b) both to cô  and 0)2-

Lemma 2.12. (i) Let h : C" -^ С be holomorphic at p e С and let g{z) = h{z). 
Then g is holomorphic at p e C". 

(ii) IfVcz C" is analytic near p, then V = {q = {q^, ..., q„); q = [q^, ..., q„) e V} 
is analytic near p and C{V, p) = C{V, p). 

Proof. In some neighbourhood of p we can write g{z) = h{z) = YJ^I{^ ~ РУ ~ 
= J]äj{z - pf and the holomorphicity of g follows. If Fis the zero set at p of / i j , . . . 

..., /г„, then F i s the zero set at p of gi{z) = h.(ß), for gi(z) = 0 iff hi(z) = 0. As 
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C{V, p) = {v; there exist Pi e V and â  e С such that (Pi - p) a^ -̂> i;} = C{V, p), 
the lemma is proved. 

3. THE ORTHOGONAL CONE 

n 

Let us consider the Hermitian scalar product (u, v) = Yj ^i^h u, v e C", and the 
i = i 

regular bilinear form co(w, v) = Y,UiVi in C". Let T с С" be a vector subspace of C". 
The orthogonal subspace (ш-orthogonal subspace) is defined to be the set T^ = 
= {ze C"; {Z z) = 0} (Tj- = {z; œ(T, z) = 0}). Clearly we have {T^f = T and 
(7^^)^ = T. Our main aim in this section is to define the orthogonal analytic cone 
(see Definition 3.1) that has similar properties (Theorem 3.8j. 

Definition 3.1. Let F с С" be an analytic cone. The orthogonal cone to F i s the 
cone V^ = clos ( и С(у, p)^). The w-orthogonal cone to V is the cone V^ = 

peV-

= clos ( и C{V, p}i). 
peV-

Remark 3.2. Let V a G" be an analytic cone of a constant dimension. Then 
V' = v^, v^ = {v)i, {vr = vi. 

P r o o f follows immediately from Lemma 2.12 (ii) and from the special case of the 
subspace V. 

Denote 
p, :C^"-^C\ p, :{z,z')^z, 

P2:C'"-^C\ p , : ( z , z ' ) f - > z ' . 

Definition 3.3. Let F be an analytic cone. The cone F = clos ( U P x C{V, p)i) c= 
с C^" is called the blanket of F ^"^" 

Theorem 3.4. Let V cz C^ be an analytic cone. Then: 
(i) F is an analytic cone and dim V^ = n. 

(ii) F = p,{9) and p-,\p) = p X C{V, p)i for all реУ-. 
(iii) P2 • ^"^ ^" ^^ ̂  semiproper mapping and Pzi^) = У^-
(iv) Fj" and V^ are analytic cones. 
(v) If V=\JVi is the splitting of F (see Theorem 2.5), then 9 = \j% Fj- -

= {){Vi)i F^ = U F ^ 

Proof. First we prove the theorem with the additional assumption dim F = r. 
Set PF = [ и J? X C{V, p) i] u [ и P X C"] с C^\ Obviously Ж is a cone. We 

peF- peV 
want to show that PFis an analytic cone. As dim F = r we can apply Theorem 2.7 
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to F at о 6 F. Let w^, ..., w^ be holomorphic mappings satisfying the conditions 
(a) and (b) of the theorem in a neighbourhood L/ э 0. Define QI :U x C" -^ C, 
gi(z, z') = co(wi(z), z') for / = 1, ..., m and W^ = {(z, z')eU x C", g^z, z') = 0, 
/ = 1, ...,m} n{V X C"). The set W^ is analytic in (7 x C". We have Wn{U x 
X C") = Wi, hence by Lemma 2.6, PFis an analytic cone. It follows from [1, 3-21] 

that F = clos(PF\(F^ X €''))= l ^ - c l o s ( ^ \ ( F ^ x C")) is an analytic cone. If 
we show that W\ V^ x C" is an analytic manifold of dimension n, then dim F = п. 
For an arbitrary point pEV~ we can choose U(p), U[p) n V a F " , ŵ -̂ , ..., w,-̂ , 
/ i , . . . , / „ - , such that Wi^{q), ..., w,/^) span C(V, q) at all ^ G U{p) n Fand 

F n [ / ( p j = {z,A(z) = . . . = / „ _ , ( z ) = 0} and г п к ( Л , . . . , Л _ , ) = : п - г . 

Set / ; (z , z') = / i (z ) , / = 1, . . . , (n - r). The zero set of Л , . . . , / « ' - , , gi^,...,gi^ 
in [/(pj X C" is F n {U{p) x C"j = ( Ж \ V x С") n (U{p) x C") and 
r n k ( / ; , . . . , / ; _ „ ^,v . . . , ^ J = « in Vn{U(p) X C"). Hence PF\(F^ x C") is an 
analytic manifold of dimension n. The proof of (i) is complete. 

We have V~ x {0} c= V, hence F x {0} с Fand F = p^(V). 
To prove that ^2 * ^ "^ ^" is a semiproper mapping it is sufficient to demonstrate 

the following assertion: 
(w, v) E VSc с e С =^ {cu, v)eV. 

For ueV~ the implication holds as C{V,u) = C(V, cu). If ueV^, then there 
exist (w„, t;„) -» (м, г;), w„ e F~, (w„, Î;„) G F. We know that (cw„, t̂ „) G Fand (cw„, i;J -> 
-> (cw, i;). Hence (cw, v) e V. 

As ^2 is Ö continuous mapping we have P2(W\{y^ x C")) c: Р2(У) ^ 
c: c los(p2( l^ \ (F ' ' X C")). By Theorem 2.9, jf72(F) is analytic in C", hence closed. 
So we immediately obtain p2(f^) = clos ( p 2 ( ^ \ ( F ' ' x €'')))= Fj-and (iiij is proved. 

Part (iv) follows from Theorem 2.9 and Lemma 2.12. 
Now we can return to the general case of F By Theorem 2.5 we can split V = 
к 

= \jVi where F̂  are irreducible analytic cones, dim F,- = Ui and d^m (Fy n U F,) < 

< dim Fj, 

f = clos( и P X C{V,p)i) = c los (U и P X C(F,i7)i) = 
k к 

= Clos ( и и î  X C(F, p)t) = (JVi. 
i=l Vi- i = l 

Similarly V^ = \J (F^)^ and V^ = \J V^. We can now apply the special case of 
i i 

dim F = r (as F/s are irreducible and hence of a constant dimension). The proof 
of the theorem is complete. 

Theorem 3.5. Let V be an analytic irreducible cone. Then V, V^ and V^ are ir­
reducible analytic cones and dim V^ = dim F"̂  = rnk p2 \ ^ 
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Proof. Suppose that F i s not irreducible. By Theorem 2.5 and because F i s an 
к 

analytic cone, V = \J clos Fj-, where F̂  are connected pieces of F , clos F̂  are 
i=l 

irreducible analytic subsets of F and dim (clos F,) = n (we use Theorem 3.4 (i)). 
Set V = W^u W2, FTi = clos Fj, W2 = [J clos F; and P^ = {ре V~, p x 

X C(V, p)^ cz Wi cz V] for / = 1, 2. Let p e F~ be an arbitrary point. Then there 
exists U{p) с V~ such that V{p} = {U{p) x C")nVcz V". The set V{p) is a con­
nected neighbourhood of p, therefore V{p) a WÏ or V{p) a W^ and P 

1? P2 ^^^ 

open in V~. As PFi" u If2~ = ^~ we have P^ u P2 = ^~- % assumption we also 
have W{^ n Pfi~ = 0. Hence P^ n P2 = 0. But this is impossible as V is connected 
(Fis irreducible). 

If Fj- = Fl u F2, then by Theorem 3.4, F = pä 4^ i ) ^ Pi^^i)^ a contradiction. 
The irreducibility of F"̂  follows from the irreducibility of Fj". The last part of the 
theorem follows from 3.4(iii) and 2.9. 

Proposition 3.6. Let V cz C" be an irreducible analytic cone and V be the blanket 

of V. Then there exists an analytic cone W cz V such that: 

(i) dim W < dim F 

(ii) Let Wi= {qe V; pï\q) с W} and W2 = {q e FJ-; p2\q) c: IF}. Then W, 
is thin in V and W2 is thin in Fj". 

(iiij If{p, q) e V\ IF, then œ{p, C{V^, q)) = 0, (p, C{V\ q)) = 0. 
Proof. By Theorem 3.4(i), Fis an irreducible analytic cone of the constant dimen­

sion n. Denote Q^ = rnkp i , Q2 = ^nk p2, where p^ : V-^ V, P2 ' У-^ Fj", and 
Mi = {qEV~; mk^Pi = ^ J , i - 1,2. By Theorem [1, 4-7F], V\M^ and F \ M 2 
are analytic sets. As I^is irreducible we have dim (FxM^) < dim F, / = 1,2. Set 
W= Pi\V'') u P2\{V^y) u ( K M J U ( F \ M 2 ) . Clearly IF is an analytic cone 
and dim IF < dim F 

To prove that (V^)~ \ clos IF2 is dense in ( F J " ) " it is sufficient to demonstrate that 
for all qE{V^)~ and for all open neighbourhoods U{q) cz (Fj")~ there exists an 
open set P cz U{q) such that P n IF = 0. Denote U{q) = P2\U{q}). U{q) cz V is 
open in F As IF is a proper analytic subset of the irreducible analytic set F we have 
that U{q)\ Wis an open and nonvoid subset of Й Choose an arbitrary open P с 
c= Û(q) \ W. Set P = P2{P)' As rnk„ P2 = Q2 at all UEP and dim lJ{q) = Q2 we 
conclude that P is an open subset of Fj" [ l , Apendix II, 7F]. Moreover, P n И̂2 = 0 
which completes the proof that IF2 is thin in Fj". The proof that W^ is thin in F is 
quite analogous. 

Take any z = [p, q) e 9\ IF and any v e C{y,^, q). We shall show that a){p, v) = 0. 
Denote by dpi(z), djt72(2) the differential mappings of p^ and P2 at the point z e Î . 
From z ^ IF it follows that in some neighbourhood U[z) of z we have p^ and P2 
of maximum rank ^i and Q2. Hence djp,(z)"^ (0) = C(p,~^(|7j(z)), z), i = 1,2, 
dp,{z)-'{0) n dp2iz)~' (0) = 0, and dp,{z) (C(f, z)) = C{V, p\ Ap^^) (C(f, z)) = 
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= C{V^,q), In this situation we can find w e C{V, z) such that dp2{^){^) ^ v, 
0 Ф t?! = dpi{z) (w) e C{V, p) for an arbitrary v e C(FJ', q). Clearly w = {v^ ь) с 
с: C^'\ By the definition of the tangent cone there exists a sequence z„ = (p„, q^j ç 
eV\W and a sequence a„e С such that a„(z„ - zj -> w. Hence a„(^^ ~ ^j ^ y, 

By Theorem 3.4 we have: 
(A) co{p, q) = 0 since peV and p e C(V, p); 
(Bj œ{p„, q„) = 0 since p„ e F~ and ;?„ e C{V, p^); 

(Cj CO(Ï;I, ^j = 0 since peV and r^ e C{V, p). 

We can now compute: со[р, v) = €о{р, lim a„{q„ - ^jj = hm a„(X)(/?„, ^„ - gj = 
== (by (Aj and (B)) = lim а„(ш(р„, - ^ ) + ш(р, ^)) = lim a„co{p - p„, ^j = 
= co(lim {p ~ p,,) a„, q) = co{v^, ^) = 0 by (C). This completes the proof. 

Theorem 3.7. Let V be an analytic cone. Then{V^f = Vand {V^)t = V-

Proof. Because of Theorem 3.4(v) we can assume that Fis irreducible. By the last 
proposition (iii) we have F \ W^ cz {V^)t and by (ii), V с (FJ-)^. We have yet to 
prove the second inclusion (Fj-)^ ci F Let Ж and W2 be the exceptional sets as in 
Proposition 3.6 and rnk P2 = Q- Choose {p, q) e P^\ W. Since rnk p2 = Q on some 
neighbourhood U(p, q) cz V\ Ж and dim t̂  = n we have dim (рГ^(^) n U{p, q)^ = 
= n — Q. By Theorem 3.5 we have dim^ V^ = Q, therefore dim C(V^^, q)^ = n — Q 
for qe{V^)~. However, by Proposition 3.6 we have (p2^{q) (^ U[p, q)') cz 
с C{V^, q)t X q. Hence we have proved that some open part of C{V^, q)^^ x q 
lies in Vn {C" x q). As C(V^, q)^ x q is irreducible we have C{V^, ^)i x ^ cz F 
Thus we have proved that C(V^, q)^ с F for any q E V^\ W2- Now we can write 
iV^)t = clos и C(Fi , q)i = clos U C{Vj;, q)i c= F Finally, {V^Y = 

= {Kty = (^j")« = к completing thus the proof of the theorem. 

Corollary 3.8. Let Fez C" be an irreducible analytic cone and suppose that 
dim F + dim F"̂  = n. Then V is a linear subspace of C". 

Proof. Let Fbe of dimension r and p e F~ . Then dim C{V, pY = n — r and by 
the assumption also dim V^ = n — r. As V^ is irreducible (see Theorem 3.5) we 
have V^ = C(F, p)-'. Thus (see Theorem 3.7) F = ( F ^ = (<^(K P ) Y = ^ ( ^ ' P ) 
and the assertion is proved. 

In the remaining part of the section we give a new expression of V^ for F с С", 
dim F = п — 1. 

Définition 3.9. Let F с С" be an analytic cone of constant dimension {n — 1). 
The homogeneous polynomial со satisfying the conditions (a) and (b) of Lemma 2.11 
is called the characteristic polynomial of V. Denote by h^^ the mapping 
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\dz^ dz„ 
h,, : С" -^ C\ z h-> 

Theorem 3.10. Let V cz C" be an irreducible analytic cone of constant dimension 
(/I — 1) and CO the characteristic polynomial of V. (ij Assume st со ^ 2. Then 
V^ = clos~hJV), V^ = clos h^iV). 

(iij If St CO = 1, then Fj" = (с/ЦО); с e C}, V^ = {chjQ)\ с e C}. 

Proof, (i) Clearly 
doj F Ф 0 as St — = St CO - 1 

and CO is the characteristic polynomial. Denote by p the complex line defined by the 
points p G С and 0 e C. We have Fj" = clos U C(F, p)i = clos U C(F, p)i = 

peV- peV-\hco-H0) 
= Clos и и C(|/, zji = clos и h^(p) = clos h^{V). 

peV-\hoj-HO) zep peV' 
(ii) Clearly F is a linear subspace and the assertion is obvious. 

4. ZERO SETS OF LEFT REGULAR FUNCTIONS 

Assume that / : CH -> CH is holomorphic in some neighbourhood of 0 and 
/ = X/a^a- The functions f^ are holomorphic and in some neighbourhood of 0 we 

a 

can write Д = Y^^aj^^^ I eN"^. Set Aj = ^a^ji^- T h e n / — Y^AjZ^ is the expansion 

of a function / into the power series. Denote / * = ^ Aji^ where m = min {|/|, 
Л Ф О } andP„ = Y. ^i^'- ' " ^ " 

Proposition 4.1. Lef / : СЯ -> СЯ be holomorphic in some neighbourhood of 0 
a^d let f — ̂ P „ be t/ze described expansion into homogeneous polynomials. Then 

feF- iffP^lF-forallneN. 

Proof. Denote Qn-i = DP„ = J] Ki^l^^a) Лг Qn-i is a homogeneous polynomial 

of degree {n - 1) and D / = D ^ P ^ = E DP„ == ZÔ„-1- Clearly D / ^ 0 iff e„-1 ^ 

= 0 for all n e iV and the proposition follows. 

Proposition 4.2. Let V be a germ of F~ zero set at a point q e CH and let V = 
3 

— \J V^be the splitting of Vby dimension. Assume that F3 ф 0. 

(i) There exists a left regular homogeneous polynomial p such that the zero set 
of p contains C{V2, q). 
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(ii) / / q 6 Vi then C{V^, q)"- c= N and C{V^, q)t с N. 

Proof. L e t / : U{q) cz CH -^ CH be a left regular function such that U{q) n V = 
= f~^{0) n U{q). Let œ^, ..., со,- be the characteristic functions of the irreducible 
components of V^ (see Theorem 2.10). Then F3 = {z, co[z) = co^z) . . . o)i{z) = 0} 
and there exist k^,..., ki such t h a t / = (o]^ . . . œ^g where 0̂  ф 0 on every irreducible 
component of F3. By the last proposition / * = {co^f^ •.. {(^^f^ ö̂ * is a left regular 
homogeneous polynomial. By Theorem 2.4, С(Кз, (̂ f) = {z; co*(z) = 0}. We see now 
tha t /* = 0 on С(Кз, q) and the first part of the proposition is proved. 

M qe Vf then F3 is irreducible at the point q and we have С(7з, ^) = {z, Û>*(Z) = 
= Y^^a^a = ^ } ' where со is the characteristic polynomial of F3. By Theorem 3.10, 

a 

^(^3» )̂ш = {̂  ЕЦ^/^^а) <^(0); С e C} = {c ^i„a„, c e C } . To prove the second 

part of our proposition it is sufficient to show that Y^^iJa e N. We already know that 
a 

f = cD^g and / * = (co*)̂  б'* ̂  ^g • Assume that g^ = (œ'^'f g^ where /c ^ 0 and 
^1 Ф ОопС(7з, g). Then 0 = / ) / * = D{{œ^f^'g,} = (Z«Â)( / + fc) ( co* /^^" ' ^ + 

a 

+ (co*)^+^ Döfi. If (/ + /с - Ij > 0 then (ш*)^^^"^ ф О in СЯ and we can cancel it 
in the last equation. We obtain 0 = {J]aJ^)(l + kjg^ + со* D^fi. On C{V, q) we 

a 
have 0 = (S^a^a) (̂  + ^)9i- ^У our assumption on g^ there exists z G С(7з, q) 

a 

such that gi{z) = 0 and {Y,^Ja)^N follows. As N = N, the second part of the 
proposition is proved. '^ 

3 
Theorem 4.3. Let Vbe a F' zero set in В cz CH and letV = U V^ be the splitting 

a = 0 

of V by dimension. Then С(Кз, q) is an N-orthogonal and an N-œ-orthogonal 
cone for every qeV. 

Proof. Let qeV^ be an arbitrary point. By Proposition 4.2 (i) there exists pe 
EF-{CH), Z - p-\0) = U^a, such that C{V^, q) с Z^. By Theorem 3.7 we have 

a 

to prove that C{V^, q)i с N for С(7з, q) = (С(7з, q)i)^. With respect to Theorem 
3.4 (v) it is sufficient to prove that Z3 cz N. But Z3 = clos (J C{Z^, z)i cz iV by 

Proposition 4.2 (iij and we have proved that С(Кз, q) is an iV-co-orthogonal cone. 
The proof that С(7з, q) is an iV-orthogonal cone is quite analogous. 

Remark 4.4. N"- = N and ДГ;̂  = iV, where iV = {г; G СЯ; Y.^1 = 0}. 

Proof. By Theorem 3.10, 

Nt = clos h^{N) = clos f ^ , ..., ^ ^ (TVj = (2zo, 2zi, 2z2, 2Z3) [N) = N 

and N-^ = clos / ï ^ ^ ) = N = N. 
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Example 4.5. Let us suppose that g is a line in N. Then Q = {c X^ai«} for some 
a 

^ = Z^aia^N. We have Qt = {z, ^a^z^ = 0}. Set p^ = (^^^zj Л + . Then p^ e 
a 

EF-{CH) for D]7^ = ЛЛ+ = 0 and Qi = PÄ\0). 

Lemma 4.6. Denote N^ = {z e CH; az = 0], a EN. Then N^ a N and N^ is 
a linear subspace of dimension 2. 

Proof. Let T^iCH -^ CH, z i-> az be a hnear mapping. Clearly T„{CH) a N, 
Ker T^ = N^cz N. So we have dim T^CH) ^ 2 and dim Ker T^ й 2. It follows 
that dim T^CH) = dim Ker T^ = 2. 

Example 4.7. Suppose that a EN and В a N^ (see the last lemma), and that В is 
a finite set. Denote Q = \J {cb; с E C} a N and Ра,в{^) = ^ П (LK^a^ where 

beB ' be В 

Пь > 0 are arbitrary integers. Then Ра,в^ F~{CH) and pä^{0) = Qt = [J {z; 

ZzX = 0}. 
Proof. 

Dp«,« = Z / - i^,« = Z (Zb.iJ A П (Zb^ Ĵ""') (Zb.z.)""- ' = 0 
a OZ^ Ьб5 / ) 'eß\ (e} 

as Ьа = О for all Ь G Б. 

5. THE SET OF POLES OF LEFT REGULAR FUNCTIONS 

A meromorphic function on an open set Б с C" is a pair (Я, / ) , where Я is a dense 
open subset of В and / is a holomorphic function in H with the following property: 
For each pEB there is a neighbourhood L/ of p and holomorphic functions Ф and ^ 
in V such that the zero set of *F is nowhere dense in V and f = Ф1^ in U n 
n H\ 4^~\0) [1,6-lA]. It is shown in [1,6-1K,L] tha t /may be extended to be holo­
morphic in an open subset Hf c^ В such that the complement Pj- = B\Hj- is a. no­
where dense analytic set in B. Set Zf[a) = {p E B; there exist z„ E H, z„ -^ P^fi^n) ~^ 
~> a}. Then Zj-(a) is an analytic set in J5 [1,6-1L] and P^ = Zj(oo). In L4 we proposed 
the definition of a F " meromorphic function {H,f) in Б с CH. Set, like in the case 
of meromorphic functions, Zj-^a) = {p E B; there exist z„ E H, z„ -> p, f{z^ -^ a] 
for every a e CH. Denote Pf = Zy(oo), Zf = Zf(0). In the case of a left regular 
function/in В с: CH, Zj- is its zero set and Pf = 0. The following proposition gives 
some definitions equivalent to L4(i). 

Proposition 5.1. Let В c CH be an open set. Let H cz В be open and dense in B. 
Then the following properties of a mapping f : H -^ CH are equivalent: 
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A) For all ре В there exist U{p) and holomorphic mappings Ф, W : U[p) -^ CH, 
4'(U(p)) Ф N such thatf= Ф1¥ in U{p) пН\Т~^{му 

B) There exist meromorphic functions f^ such that f = ^/«/а-
a 

C) For all peB there exist U(p) and holomorphic mappings Ф : U{p) -^ CH, 
W : U{p) -^ C, U(p) Ф Z^ such that f = Ф]^ in U{p) nH\Z^ and dim (2ф n 
nZ^n U{p)) < 3. 

Proof. A => B. Set / = Y^iJ^ in H. But / = Ф/^ = Ф . W^KW . «F+) in U{p) n 
a 

n H \ ! F ~ ^ ( N ) and therefore f^ are meromorphic functions. 
В => C. For every p e В there exist U(p) and holomorphic functions Ф ,̂ 'f̂ a 

in [/(jf?) such that /^ = Ф^'^^ in U(p) n H\Z^^. Set 'f' = П^^а and Ф -
a 

= 1;(/аФа П "^ß)- Then / = Ф1¥ in [/(p) nH\Z^. If dim (2ф n Z^ n C/(/7)) = 3 

then we can divide both Ф and W by the characteristic functions of Zф n Z^ff n U(p)' 
We repeat this process, if necessary, until the condition C) is satisfied. 

С => A. As we have С imbedded in CH, by identifying Сэс with cig e CH we have 
nothing to prove. 

Proposition 5.2. Let В a CH be an open set, let H a В be an open and dense 
subset and let f : H -^ CH be a F~ meromorphic function. Then there exists Hf, 
H с: Hf cz B, such that: 

(ij We can extend f to be a left regular function in Hj-. 
(ii) В\Н^ = Pf and Pj- is an analytic set in B, dim Pf = 3. 

(ni) Assume that f ^ Ф1¥ is an expression off in some neighbourhood U{q) of 
q G Pf satisfying the condition 5.1С. Then Pf n U(q) = Z^, and(Z^^ n V[c\) = 
= (Zфjз, where Zf = (j(Zf)^ and Z0 = \J(Zф\ are the splittings of Zf ana Z0 
by dimension. ^ . oc, 

Proof. By Proposition 5.IB there exist meromorphic functions /^ such that 
f = Yjafa iî  ^' We can extend Д to be holomorphic in ß\Pf^. Set Hf = B\ UP/«-

Then we can ex tend/ to be a left regular function in Hf (we use the identity theorem 
for the holomorphic mapping D/). Clearly B\Hf = (JPf^ — Pf- As dim Pf^ = 3 

for the meromorphic function/^, it follows at once that dim Pf ~ 3. To prove (iii) 
we use the fact that dim {Zф n Z^ n U{p)) < 3. 

In what follows we want to show that the description of poles of/~ meromorphic 
functions is in many ways similar to the description of F~ zero sets. 

Definition 5.3. Let {Hf,f) be an F " meromorphic function in В с CH, let q e Pf 
and l e t / = Ф/'Р be an expression of/satisfying the condition 5.1С in a neighbour­
hood U{q). A point qePfis Si bad point iff dim (Z^^* n Z^^*) = 3, where Ф*, W^ 
are the initial polynomials of Ф, W at the point q. 
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Remark 5.4. The bad points are thin in Pf as Z j n Pj. is thin in P^. 

Proposition 5.5. Let {Hj.,f) be an F~ meromorphic function in В and assume that 
qePj- is not a bad point. 
(ij Then there exists an F~ meromorphic function {Hg, g) in CH such that 

C(Pf, q) = Pg and g is the quotient of two homogeneous polynomials. 
(ii) IfqePJ then С{Р^, q)^ c= N and C{Pf, q)t c= N. 

Proof. Following Proposition 5.2(iii) we have, in some neighbourhood of U(q), 
f = ф1^, Pf = Z.y and C(Pf, q) = {zeCH; ï '*(z) - 0}. If we use the regularity 
condition on / we obtain 0 = В(Ф/'^; = D((l/'FJ Ф) = ((ВФ) W - (DW) Ф)1Т^ = 
= ((ВФ*) Wg - (DWg) Ф* + powers at the point q of degrees higher than st Ф* + 
+ St *F* — 1)1 W^". As ï ' Ф 0 in a neighbourhood of q we can multiply the last 
equality by T^: 0 = ((ОФ*) *F* - (Dï^*) Ф* + powers of degrees higher than 
st Ф* + St !F* ~ 1) = F. Using the last equality only for the initial polynomial on 
the right hand side we obtain 

(1) О = Р^ = {Т>Ф1)Ч>*-{В^:)Ф:. 

Set g = Ф'1\Ч^^. Then (Ij is the regularity condition for g and g is an F~ meromorphic 
function. As q is not a bad point, the expresion Ф*/^* satisfies the condition 5.1С, 
and by 5.2(iii) we have proved (i). 

Consider now qePJ. Denote by ш the characteristic function of P j at the point q. 
Then C{Pj, q) = {z, œ'^^z) = Yj^a^a = 0}. We must verify, as in the proof of Pro-

position 4.2(iij, that Deo* = Y}^ao^^^' ^У 5.2(iiij we have / = Ф/^, »F = w^ô, 
a. 

where ^ | P^ ф 0. Write »F* = [p'')^ (5* = (co*)̂ "̂ ^ b\ where b' \ C{P^, q) ф 0. 
Using (1) we obtain 

0 ~ (/)Ф*) (co*ĵ -̂ ^ b' - (/ + k) (Deo*) (co*j^+^-i Ь'Ф1 - (ш*)^^^ {рЬ') Ф* . 

If / + /с + (— 1) > О then we can divide the equation by (co*)^^^~^: 

0 = (DФ*) ш*^' - (/ + к) (Deo*) Ь'Ф1 - eo*(D(5') Ф* . 

On C{Pf, q) we have 

(2) 0 = (/ + k) (Deo*) сЗ'Ф* . 

Since q is not a bad point and ô' | C{Pf, 0) ф 0 we can choose z e C{Pf, q) such that 
è'{z) Ф'^(z) Ф 0. If we apply (2) at such a point z we obtain that (Deo*) e N and the 
proposition is proved. 

Tlieorem 5.6. Let {HfJ) be an F~ meromorphic function in В and Pj- its set of 
poles. Assume that q e Pf and q is not a bad point. Then C{Pf, q) is an N-orthogonal 
and an N-œ-orthogonal cone. 
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Proof. The proof is quite similar to that of Theorem 4.3. By Proposition 5.5(i) 
there exists an F " meromorphic function g such that C[Pj^, g) = Pg. Denote by S g 
the set of bad points of g. Using Proposition 5.5(ii) and Remark 5.4 we have 
C{Pj., qY = clos и C{Pg, zY = clos (J C{Pg, zY с N. The proof is complete. 

Z€Pg-\Sg 

Example 5.7. Suppose that a e N and В a N^ (see 4.6), and let Б be a finite set. 
Denote Q = \J {cb; ceC} cz N^ a N and /а,в{^) = ^ / П (^«^a)""' where n̂ , > 0 are 

beB ' beB 
arbitrary integers. Then fa,B is an F~ meromorphic function and Pj-^ ъ — Qt = 

beB 

Example 5.8. Suppose that Q cz AT is an irreducible analytic cone, dim Q = 3. 
Then g = iV (as iV is an irreducible analytic cone) and 0 ^ = 0 ^ = ^ (see 4.4). 
Set/;v = ^^/(M^))^* Then/^ is an F~ meromorphic function and P^-^ = A'̂ . 

Proof. 

D / . = Zi . / - (z-^ / (N(z))^) = 
a dz^ 

Example 5.9. Set ß = TV n {z; ZQ = Z3 = 0} = {z; ZQ = Z3 = 0, z^ + Z2 = 0}. 
Clearly Q Ф N^ for any aeN and Q is the union of two lines. Then Q^ = {z e CH, 
zl + zl = 0} as {QtY = Ô by Theorem 3.10. Set 

^2 _j_ ^2 Zi + Z2 

Then / is an F meromorphic function and Pf = Q^. 

Proof. 

A / - i i ^ i - Ь^2\ ^ у . -'ф\ + z\) - lzX-Ч^х ~ 4^2) 
dz\ z\^zl ) Мл' {zl + zlY 
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