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Czechoslovak Mathematical Journal, 34 (109) 1984, Praha 

APPLICATION OF ROTHE'S METHOD TO PERTURBED LINEAR 
HYPERBOLIC EQUATIONS AND VARIATIONAL INEQUALITIES 

JozEF KACUR, Bratislava 

(Received September 9, 1982) 

Introduction. The main purpose of this paper is to apply Rothe's method to per­
turbed hnear hyperbohc equations and inequahties. This method allows us to use 
direct variational methods in the case of hyperbolic equations or inequalities and to 
transfer some results from elHptic equations or inequalities to the corresponding 
hyperbolic ones. 

In Part I we shall be concerned with abstract perturbed linear hyperbolic equations 
which can be applied to the following equation 

(1/) T T + I {-lf^D%a,j{x)D^'u)=f{t,x,u.Vu,...,W'u) 
dr \i\'\j\^k 

for 0 < f < г ( T < oo) and x E Q, where Q cz R^ is з, bounded domain with 
a Lipschitzian boundary dQ and f(t, x, ^) is Lipschitz continuous in t, ^. Together 
with (Г) the initial conditions 

(2') u{x, 0) - Uo{x) , M ^ l = U,{x) , XEQ 
dt 

and the corresponding boundary conditions (e.g. homogeneous Dirichlet boundary 
conditions) will be considered. 

In Part II the corresponding hyperbolic variational inequality (see (6)) is considered. 
Let F, H be two Hilbert spaces with the norms || ' | | , |*|, respectively. We assume 

that F с Я, F is dense in Я and the imbedding F Q Я is continuous. We consider 
a linear, bounded operator A from F into F* (the dual space to F). By <t/, t;> we 
denote the duahty between w e F* and veV and by (w, v) we denote the scalar 
product in Я . We assume that the form <^Au, v} generates (an equivalent) scalar 
product in V. Let F(r, u) be a Lipschitz continuous operator from <0, T> x F into Я 
We consider (Г), (2') in the abstract form 

(1) ^ - ^ + A u{t) = F(t,u{t)) for a.Q. te(0,T), 
d r 
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(2) и{0) = I/o G F , ^ ^ = U,eV, 
dt 

where и : (О, Т) -> Fis an abstract function with (d^w(f)/d^^) G H. In our particular 
problem (Г), (2') and in the assertions concerning the regularity of solution we set 
Fez W2{Q) with W2{Q) a V a W2{Q) [W^ W2 are Sobolev spaces), H = £2(0), 
{Au, î̂ > = E Jß ^ùW "̂̂ w ^'^ d-̂ ' ^(^' ") = /(^' ^^ ^' ^^' • • •' ^^")-

\i\'\J\uk 

We apply Rothe's method (method of lines) to (1), (2) in the following way. Suc­
cessively, for f = 1, ..., n, we look for a solution ŵ  G Fof the linear elhptic equation 
(corresponding to (ij), i.e., we solve the variational identity 

(3) f - - ^ " 7 ' + " ' - ^ , v) + (Au, V} = (Fit, M,_,j, . j 

for all V e V, where UQ = UQ, U^^ = UQ — hU^, n is a positive integer, h = Tjii, 
ti = //1 and UQ, U^ are from (2). By means of ŵ  (i = 0, 1, ..., n) we construct Rothe's 
function 

(4) uXt) = w._i + {t - t ,_ij h-\u, - i/,_i) for r,_i g ^ ^ r^, 

/ = 1, ..., w. We prove the convergence of u„ (n -> 00) to the solution и of (l), (2), 
i.e., to the solution of the identity 

(5) [ ^ ,v\ + {A u(t), V} = {Fit, u{t)), v) 

for all t; G Fand a.e. t e (0, T). 
Analogously we proceed in the case of the corresponding hyperboHc variational 

inequahty. Let X be a nonempty, closed, convex set in F. We look for a solution и 
of the variational inequahty 

<, (^b-^S'V(-('),»-^').(.(.,..),.«-^') 
for all VEK and a.e. te{0, T), where du{t)ldtEK and w(0) = UQ, du{0)ldt = U^. 
In this case we apply Rothe's method in the following way. Successively, for i = 1 , , . . 
..., n, we look for the solutions Z^-EK of the linear elhptic variational inequalities 

(7) (~^-~ ^v-^Л- hiAz, V- zy^ {F{t„ Uo + Y^hZj), v - z) -

i - i 

^ Z <^^j ' '̂  - ^> - i^Uo. V - z} 
J=i 

for all V E K, where ZQ = U^. Then we construct Ui = t/o + Z ^^j ^^^ hence Rothe's 

function w„ (see (4)j. Convergence of w„ to the unique solution и of (6) is proved. 
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For simplicity we set / = <0, Г>. We shall use the following functional spaces: 
W2{Q) (Sobolev space), C(l, V) (the space of continuous abstract functions from / 
into V), L^(I, V) (the space of bounded measurable abstract functions from / into V), 
Liil, V) (the space of measurable abstract functions for which Ц^Ц з̂С/.к) = 
= (J/ | |W(0| |F ^ty^^ < 00jj and C^^{Q) (the space of real functions whose r-th deriva­
tives are Lipschitz continuous in Q), whose definitions and fundamental properties 
can be found in [ l l ] . 

The problem (Г), (2'j (Part I) has been solved in [ l ] in the case / = f{t), aij = 
= aij(t, x) by using Rothe's method. The solution и possesses the properties и e 
G C(/, F), dujdt G L^(/, V) n C(/, L2), d^uldt^ e L^(l, L2) (under stronger as­
sumptions d^w/dr^ G Loo(/, V), d^ujdt^ e L^{I, L2J). In the more special cases of 
(Г), (2') this method has been used in [6], [7]. Here, we prove more regularity 
properties of the solution in the x-variable and a stronger convergence of w„ to w. 
Let 0 ^ / ^ ^ be an integer. When a^ e С'^Щ (r^ = max {0, |/| + / - k}) then 
our solution is an element of the space C(/, V) n L^{I, W2'^\Q')) for arbitrary 
Q' cz Q with Ü' cz Q (regularity in the interior of Q) and d^w/dr^ G L^[I, H). Thus, 
in the case / = к our solution satisfies (Г) for a.e. (x, t)G Q x (0, T) in the classical 
sense. Under stronger assumptions on F(t, v) (see (22)) we can prove d^ujdt^ e 
G L^(I, H), dujdt G L^(/, V) n C(/, H) and the convergence w„ -> w in the norm of 
the space C(/, Vn W^-^XQ')) and d^w„/dr^ -^ d^jdt^ in C(/, Я). The results con­
cerning the hyperbolic variational inequality (6) are analogous to those on the problem 
(1), (2) and are interesting also from the numerical point of view. Hyperbolic varia­
tional inequalities similar to our problem (6) have been solved, e.g., in [12], [13] 
by the method of penalization. We use some techniques developed in [1] —[5]. All 
results can be extended to the case а,^ = ciij(t, x) (see Remark 4). 

I. LINEAR PERTURBED HYPERBOLIC EQUATION 

A priori estimates. Throughout the paper the letter С will be used for positive 
constants. We allow С to have different values in the course of discussion. We assume 
that the form <v4w, v} represents (an equivalent) scalar product in Fand 

(8) ' <Л1/, M> = | | w p . 

The Lipschitz continuity of F(t, u) : I x F -> Я is assumed in the form 

(9) \F(t, u) - F{t\ v)\ й L{\t - f\ + \t- f\ \\v\\ + \\u - v\\) 

for all t, f el and u,veV. 
We denote 

S; = for / = 0, 1, ..., П , 
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where UQ = UQ, u^i = UQ ~ hU^ and w_2 = h^(—AUo + F(0, Uo)) + 2u^^ — UQ. 
We assume UQ e Fand U^ e V. 

The existence of the unique solution w,- (/ = 1, ..., n) of (3) is guaranteed by the 
Lax-Milgram (or Riesz) theorem. 

Lemma 1. There exists n^ > 0 and С such that the estimate ||wjp + |2,p g С 
holds for all n > Пд, i = 1, ..., n. 

Proof. From (3) for v = u^ — i/^_i and from (8) we have 

(^ ^''^ ^ ^i ~ w,-i j + (Aui, Ui - w,_i> = (F(r„ W;_i), w,. - i/,._i) 

and hence 

2 - 4 z , p + 2 - ' | z , - z,_,|^ - 2-4z ,_ . |^ + 2^Ч|м,р + 2-^ | |M, - M,_,f -

- 2 - i | | « ; _ i P ^ / r ( F ( / , , «,_,), z ,) . 

From this inequality and (9) we obtain 

| z , p ( l - C,h) + |M, |P ^ | | z ,_ iP + \u,.,f{\ + C,h) + Ch. 

Successively, from this inequahty we deduce 

(|z,p + | u , f ) ( l - C,hy й (|zo|^ + ||«о||')(1 + C,hy + С = 

= {\u,Y + \\UoV){i + c,hy + c, 
which implies our assertion. 

Lemma 2. Let AUQ e H. There exist nQ and С such that the estimate 

W^iV + h'!^ = ^ holds for all n > HQ , i = 1, ..., n . 

Proof. Let us consider (3j for i == j and i = j — 1, where v = Sj. Subtracting 
these identities we obtain 

(5,., Sj) + (Auj - Auj^i, Sj} = {sj.i, Sj) + (F{tj, uj..,) - F{tj-u t^i-ih ^j) 

and hence (see (8j, (9)) 

й 2-%Y + 2 - 1 ^ ; - i P + hC{\ + \\uj_4 + | |z,_J|) |5,| . 

From this inequality, analogously as in Lemma 1, we obtain 

||z,||^ + ||z, - z , _ , P + |5,p(.l - C,h) ^ |5 ,_ , |^ + | | z ,_ , |P( l + C,h) + C,h , 
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where the estimate [|ŵ |] ^ С has been used. From this recourent inequality we deduce 

\\z,f + \SJY й C(l + |5o|^ + ||zo|i^) й C(l + \AUo\' + \\U,f) 

and the proof is complete. 
Analogously as in (4) we construct z„(r), sj^t) in terms of z,-, 5̂ -, respectively. We 

also define the step functions üj^t), z^(t), s„(t) as follows: 

ü„(t) = Ui for ti-^ < t uti, i = 1, .,.,n , ü„{0) = UQ 

and analogously z„(t), s„{t). 

Lemmas 1 and 2 imply the a priori estimates 

(lOj \\u„{t)\\ + |z„(Oi| + \sXt)\ й С ; 
(11) l«-(OII + i---.(OII+|aO|^C; 

(12) i«„(0 - й„(0|| + hit) - z„(0| й -
ft 

for all n, tel and 

(13) \\u„{t) - uXt')\\ + |z,(0 - z^nl й c\t - f\ 
for all n and t, t' e / . 

Moreover, by the regularity results on elliptic equations (see [8]) and from (3) 
we conclude regularity for Ui in the case of (Г), (2'). Indeed, from the identity 

{Au, v) = (si, v) + {F{ti, M^-i)), V = {fi^„, v) 

(|/,,,| й С for all n , / = l , . . . , n ) 

and the regularity assumption 

(14) aijeC'''''^(Q) where Tj- = max {0, |i| + / — /c} , 0 ^ I ^ к, 

we obtain (see [8]) 

(15') i йф'){\\щ\\ + |/,,„|) g qß') 

for all n, i = 1, ..., n, where Q' is an arbitrary subdomain of Q with Q' с Q. The 
estimate (15') implies 

(15) ||w„(r)||^^^+r(ß') + ||w„(f)||^^k+,(ß,) ^ C(ß') for all tel. 

As a consequence of our notation we have d~u„[t)ldt = z„(^j, d~z„(f)/dr = 5„(̂ ) 
where d~/df is the left hand derivative. The variational identity (3) can be rewriten 
in the form 

(16) (—^'^, v\ + <АПМ v) = (F("> U «„ (t - ^\\ v\ 

96 



for all n and f G (0, T), where u„{t) = UQ for te {-Tin, 0>, Я">(г, г;) = F[t,, v) for 
^i-i < t й ti, i = 1, ...,/Î and F^" (̂r, i;) = F{0, v) for ^ е ( - Г / п , 0>. By passing 
to the limit n ^ oo in (16) we prove the convergence of u„{t) and z„{t). 

Lemma 3. Let AUQ e H. Then there exists и e C{l, V) with 

du 
dt 

d^u eC{I,H)nL^{l,V), ~-eL^[l,H) 

such that 

and the estimate 

u„ -^ и m 

du 

C{I,V), z„^- in C{I,H) 
dt 

dt 

takes place uniformly for t el. 

du„ du 
dt dt 

II 112 / С 
+ w„ - uP ^ -

Proof. Let us subtract (16) for n = r and n = s, where v = z^{t) ~ z^{t) (in the 
sequel we omit t). Then we obtain 

( ^ (̂ ^ - ^^)' ^r - zA + /A{U, - u,), -- {u, - и,)\ = (F^"^ U ^r(t - ^ 

- F(̂ ) и ült - - j j , z, - zA + (j^ (z, - z,), z,-z, + (z, - z j 1 + 

+ M(«r - «Г + "s - U,), -J- {U, - U,) 

We integrate this inequality over (0, t) and use the a priori estimates (10) —(13) 
and (9). Successively we obtain 

\zM - z,{tf + \\uM - иЩ' ^ с , л + л + С, Г||"г(т) - Щ{т)\\ . 

• К(т) - Ф)\ dl 
and hence 

(17) |zXO - zXfjp + ||«X0 - "XOr ^ ^1 ( ; + J )« '^ ' 

because of Gronwall's lemma. Thus, there exist z e C{l, H) and и e C{I, V) such 
that Un -^ и in C(/, Fj and z„ -> z in C[I, H). Passing to the limit for n -^ oo in (13) 
we have 

(13') |z(0 - z{t'f + |lu(0 - u{f)f й C\t - t'\ , 
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which implies (see [9], [10]) dzjdt e L^{I, H) and dt//dreL^(/, V). Passing to the 
limit for n -> 00 in the identity 

{u„{t}, v)=r (^ , v\ dt + (I/o, V) = f'(z„(r), v) dT + (C/o, v) 

we easily find out di/(r)/dr = z(r). Thus, d^u|dt^• = dzjdte L^{I, H). Passing to the 
limit for 5 -> 00 in (17) and using (12) we obtain the estimate in Lemma 3 and the 
proof is complete. 

Existence of solution. Theorem 1. Suppose (8), (9) and AUQ e H. Then there exists 
a unique solution o/(l), (2) with the properties 

и E C(I, V), ^ e L«,(/, V) n C{I, H), ^ e L^(/, H) and Au e L^(/, H) . 
dt dr 

The estimate 
(18) duJJ) _ dw'̂  

dt dt 
С + \\uXt) - u{t)f й -

takes place for all tel where u„(t) is from (4). In the case o/(Tj, (2'), when (14) 
/5 satisfied then и eL^{l, W^'^\Q')) where Q' a Q with Q' a Q. 

Proof. Integrating (16) over (0, t) we obtain 

(19) 
(z„(0, V) - [U„ v) + Г<Ло„(т), V} dT = f YF(">(T, U„ fz - ^ ' 

Lemma 3 implies 
{A W„(T), V), Î;> dt -> <Л M(T), V) dr . 

i; I d t . 

i: 
In the case of (Г), (2'), from (15) we have и e L^{l, W2^\Q')). 

Lemma 3 and (12) imply 
T\ 

u{t) и J t 

in V for all t G (0, T). Hence we have {F^"\t, ü„{t - Т/«)), г;) -̂  {F{t, u{t)), v) for all 
t; e Fand ^ G (0, T). Since (A ü{t), v}, {F'^"\t, u„{t - T/nj, г;) are uniformly bounded 
(with respect to t), by passing to the limit for n -> oo in (19) we have 

(20) {z(t}, v) -{Ui,v) + \ (A U{T), t;> dt = Г (f (T, Ы(Т)), V) dx 

and hence, differentiating (20) with respect to t we obtain (l), (2) since </4 u{t), v} 
and (F(?, u{t)), v) are continuous functions with respect to t. From (20) we have 
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du(0)/d? = z(0) = Ui and from Lemma 3, м(0) = UQ- From (i j , (2) we deduce 
AU 6 L^(I, H). The uniqueness of и is obtained in the following way. If [/j, «2 are 
two such solutions of (l), (2) then и = u^ — Ux satisfies 

àt 

^ d 
+ — 

At 

\u{t)r=2(^F{t,u,{t))-F,{t,u,{t)%^^) 

and hence 

(21) d_ 

àt 
' ^ f + i WW й c\\u{t) 

Qt \ at 

du(t] 
dt 

Integrating (21) over (0, t) we obtain 

àt I " '"' ~ Jo VI dt 
+ H^ 

Hence and from Gronwall's lemma we conclude \\u{t)\\ = 0. The estimate (17) is 
proved in Lemma 3. Thus, proof of Theorem 1 is complete. 

R e m a r k 1. We can prove continuous dependence of the solution of (l), (2) on 
the data UQ, U^ and F(t, v) proceeding analogously as in the proof of uniqueness 
(using (21) and Gronwall's lemma). 

Assertion. Let Ui (/ = 1, 2) be two solutions of (1), (2) corresponding to UQJ, U^^i 
and Fi{t, v). If 

\F,{t, v) - F2{t, v)\ й a{t) + b{t) \\v\\ for all tel and V E V 

then the estimate 

d{u,{t) - u^jt)) 
dt 

+ | |"i(0 - t/2(0|[' ^ Qe^^M 11^0,1 - ^0 ,2! ' + 

+ 1^1,1 - ^1,2!^ + max \u2{t)\ ' rV(Odr + ^a\t)dt\ 

takes place for all tel. 

Indeed, for и = u^ — U2 we deduce 

<^' ' ' d, d̂  d̂  
du{t) 

dt 
for all tel. 

Hence and from Gronwall's lemma we obtain the required result. 

R e m a r k 2. From (20) we deduce (d/dr)(z(r), v)eC(0, T). This means that the 
weak derivative z (̂̂ ) = (du(t)ldt)t exists and for a.e. t e I equals the strong derivative 
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dz(r)/d^ = d^M(r)/dr^. Thus, (l), (2) is satisfied for all t e (0, T) with the weak deriva­
tive {du{t)lât)t. 

Under stronger regularity assumptions on F{t, v) and UQ, L \ we prove d^ujdt^ e 
e L^(I, H), which together with (14j (for (Г), (2')) enables us to prove w„ -> w in the 
norm C{I, W2^\Q')) and d^u^jdt^ -^ d^ujdt^ in C(/, H). We suppose 

(22) F{U vi) ~ F{t - h, V2) F(t - h, V2) - F(t - 2h, V,) 

S h C{v)ll + a \\v^\\, \\v2\\, ||t̂ 3 h - V2 
h 

5 

Vi - Уз\\ b i - 2Î;2 + Щ 
for ail v^, V2,1^3 e V, t, (t — h), (̂  — 2/?)e/, where C(v) depends on ||i^i||, Ц̂ гЦ? Ц̂ зЦ 
and a[xi, X2, X3, X4, X5] is a continuous nonnegative function in its variables. 

In the case of (Г), (2'), provided the imbedding W2[Q) -^ C{Q) is continuous and 
\fä{t, s)\ + |/;:(r, 5)1 + |/;;(r, 5)1 й с, {с, ^ €,{€2), s E R) for |5| й C2. then (22) 
holds. 

Let Si = (sI — Si^-^]h for / = 0, 1, ..., и, where we define w_3 = 2i/_2 — М-i + 
+ /i^( —У4М_1 + F ( 0 , UQ)), AS a consequence of this definition we have |iSo| = |^^^i|-

Lemma 4. Let UQ, U^ e V and AUQ, AUi e Я. / / (22) Ï5 satisfied, then there exist 
/lo, С such that the estimate 

(23) + IsP й С 
takes place for all n > n^ and / = 1, ..., n. 

Proof. Let us consider (3) ior и = u^^v = Sj and i = j,j — 1,7 — 2. We multiply 
the equation corresponding to / = 7 ~ 1 by — 2 and then we add all three equations. 
We obtain 

(5,. - 25 .̂_i + 5,._2, Sj) + {A{uj - 2uj^^ + Wj_2), Sj} = 

= (ntp ^j-i) - 2F{tj.,, uj_2) + F{tj_2, uj_,), SJ) 

for7 = 1, . . . , n and hence, owing to (22), 

(24) {SJ - S J.,, SJ) + <Л5,, 5, - SJ.,} й 

^ C{u)h{l 4- а [ | |ы , . , | , ||t.,_2||, ||t.,_3l|, | |z,_, | | , ||z,_2||] + \\sj-,\\)\Sj\ . 

Owing to Lemma 1 and ||zo|| + | |^-il | + ||z_2|| й C(\ÄU,\ + \ÄUO\ + \\U,\\ + 
+ \\UQ\\) we have \\zj\\ g С for 7 = —2, ...,n and analogously \\uj\\ S С for 7 = 
= — 3 , . . . , n. Thus, from (24) we conclude analogously as in Lemma 1 and Lemma 2 

(|S,p + ||s,P) (1 - C,hy й (|Sop + llsoll^) + C,th + C,, 
7=1 

which implies the required estimate (23). 
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We define S„{t), S„{t) analogously as u„(t), u„{t). As a consequence of Lemma 4 
we have 

(10') \\s„{t)\\ + \S„{t)\ й С ; 

(11') î "»(OI + \Ш è С ; 

(12') \s„{t)--s„{t)\S^; 
П 

for all t,t' el and n. 

Theorem 2. Let UQ, U^ G V, ÄUQ e Я, Ли^ e H and let VQH be compact. Suppose 
(8j, (9), (22), u{t) is a solution of (l), (2) and u„{t) is from (4). Then d^w/dr^ e 
G L^(/, H), d^ujdt^' G C(/, Я) n L<^(/, F) anJ r/ze convergence s„ -> d^'ujdt^ in 
C(I, H)for n -^ CO takes place. Moreover, in the case of (1'), (2'), (/(14) /5 satisfied, 
then и G C(/, F n W2^\Q')) and u„-^u in C{I, Vn W2'^XQ')) for n -> оэ, where 
Q' d Q,Q' a Q. 

Proof. Let t G (0, T) be fixed. From (10'), the reflexivity of Fand the compactness 
of the imbedding F Q ^ we conclude that there exists a subsequence of {s„(f)} 
(indexed by n again) and w^ e F such that 5„(f) -^ ŵ  in Fand 5„(r) ~> ŵ  in H. By the 
diagonahzation method a subsequence of {s^} can be chosen (denoted again by {s^}) 
such that s„(t) is weakly convergent in Fand strongly convergent in H for all rational 
points of/. On the other hand (13') implies that this subsequence is convergent (local­
ly uniformly) for all t e I. Hence and from the Borel covering theorem we conclude 
that s„{t) "> s{t) in H uniformly with respect to f G / . Thus, we have s„ ~> s in C(/, Н). 
Hence and from (10') we conclude s„(t) -^ s(t) in F for all t e (O, T). Thus, owing 
to (10'), s G L^[I, V). Passing to the limit for n -^ 00 in the identity 

we obtain 

{zXt),v)-{U„v)= f { s » , t ; ) d T 

dt dt 

Passing to the limit for n ~> 00 in (13') we have |s(^) — s(^')| ^ C\t — f\ for all 
t, t' G / . Hence we have (see [9], [lO]) 

МО = ЕМОеМдЯ). 
dt d r 

We find out easily that the original sequence (not only a subsequence) {s„} con­
verges to d^-ujdt^ in C{I,H). Now, we prove м„ -> м in C(/, Vn W2'^\Q')). The 
element u(t) — u^[t) {t is fixed) is the weak solution of the linear elliptic equation 
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(25) А{и{1) - u„{t)) = е„(0 = + U{t) - ^ ) + Ht' u{t)) 

- F̂ "> (( , üft - ^ \ \ + A{u„{t) - u„{t)). 

From (l2j and (22) (particularly from (9)) we conclude 

|ô«(0| й -^ + 
d4(t) 

dt^ 
О for и -> 00 

(uniformly with respect to t e / ) . From the regularity results (see [8]) we obtain the 
estimate 

(26) \\u{t) - u„(Oi^,...(fi') ^ c{\\u„{t) - «(Oil + |e„(OI) - 0 
for n -> 00 uniformly with respect to tel. Since (d^w/d^^) e C(/, H) and и e C(/, F), 
the equation 

Au{t)=-^hFit,uit)) 
dr 

yields It G C(/, Vn W2'^\Q')). Thus, the proof is complete. 

R e m a r k 3. We have used regularity results in the interior of the domain Q. If 
dQ E C^ and if we have, e.g., homogeneous Dirichlet boundary value problem (in 
the more general case see [8]) then the results obtained hold true for Q (instead of Q'). 

R e m a r k 4. All the results can be obtained also in the case a^ = aij(t, x) under 
the assumptions 

ач- G LJQ) I in Theorem 2 we need ^ G LJQ) ]. 

The proofs are technically more complicated (in this direction see also [1]). 

11. HYPERBOLIC VARIATIONAL INEQUALITIES 

Applying Rothe's method we reduce the solution of the hyperbolic variational 
inequality (6) to the solution of the elliptic variational inequalities (7). Existence and 
uniqueness of the solutions ZIEK [i = 1, ..., n) of the variational inequality (7) is 
guaranteed, e.g., by [12] (Theorems 8.1, 8.2). By means of z^ (i = 1, ..., n) we define 

i 

Ui = UQ + Yj^^i f̂ ^ 1 ^ Ï ^ n and UQ = UQ, u-i = —hU^ + UQ, W_2 = 

= h^( — ÄUo 4- F(0, UQ)) + 2W_I - MO? where UQ, U^ are from (2). In this part 
we shall assume UQ G F, l/^ еК. Analogously as in Part I we define u„{t), u„{t), z„{t), 
z„{t), s^t) and s„{t), 
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A priori estimates. Lemma 5. Let U^ еК, ÄUQ e H and let (8), (9) be satisfied. 
Then there exist HQ and С such that the estimate 

(27) ||M;|| + ||z,.|| + |5,| è С 

holds for all n > HQ and i = I, ..., n. 

Proof. Let us consider (7) for i = j , i = Zj, v = Zj^i and i = j — I, z = Zj^^, 
V = Zj. Subtracting these inequalities we obtain 

l̂ ;!̂  + h~\A{Uj - Uj^i), ZJ - Zj_,} й 

and hence 

й 2-%\^ + 2 - i | s ,_ iP + hL(i + | k - i | | + | |z;-, | |) |s, . | . 

From this estimate analogously as in Section I we obtain 

(28) (l̂ -̂l̂  + | |z,.p)(l - C,hy й \\zoV + Ы^ + СгТТ^ h\\z,\\^ + C^ й 

g C(l + \\Uo\\' + | | [ / ,P + \AUo\' + t'h\\z,\\'). 

In particular we have 

||z,P ^ Ci + C/X Hl^^r ' 
i= 1 

which implies (Gronwall's lemma) \\zj\\^' ̂  С for all n, ; = 1, ..., n. Hence and from 
i 

Ui — UQ + hYjZj the estimate ||w,|| ^ С follovt's. Thus, (28) implies the required 
result. -̂ "̂  

As a consequence of Lemma 4, analogously as in Part I, the a priori estimates 

(29j ||u„(0|| + \\z„{t)\\ + \s„{t)\ è С ; 

(31) \\u„{t) - t\{t}\\ + | z„ (0-z„ (ON-; 
n 

(32) \\u„{t) - иХГ)\\ + |z„(t) - z„{t')\ й C\t -^ f\ 

hold for ail n and t, t' e / . We rewrite the inequality into the form 

(33) 

for all t e (0, Г) . 
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Before passing to the limit for n -^ сю in (33) we prove the convergence of {u„{t)] and 

Lemma 6. Let U^ еК, AUQGH and let (8), (9) be satisfied. Then there exists 
ueC{I,V) with dujdt e L^{I,V) n C{I,H), d^ujdt^ e L^{I, H) such that u„-> и 
in C(/, V) and z„ -^ dujdt in C(/, H). The estimate 

d u„{t) du{t) 
dt dt 

takes place for all n and t E I. 

'+\\Un{t)-u{t)\\'u 
С 

Proof. Let us consider (33) for n = r, v = z^{t) and n = s, v = z^[t). Subtracting 
these inequalities we obtain [t is omitted) 

V dt 
,) , г, - 2, + {А{щ - ÖJ, z, - z,> ^ ( F « U i7. [t - ^ ) ) 

„.,(,,,.(, _!)),,,_,,) d (^r - ^s) 
dt 

z, + z. 

Hence and from (31), analogously as in Lemma 3, we obtain the required result. 
The assertion dujdt e L^{l, V) follows from (32) after passing to the limit for и -> oo. 
The proof is complete. 

Theorem 3. Suppose (8), (9) and UQ E V, U^ E K, AUQ E H. Then there exists 
a unique solution of the hyperbolic variational inequality (6) with the following 
properties: 

UEC{IV), ^ G C ( / , H ) n L ^ ( / , X ) , 1 | е Ь Д / , Я ) . 
dt dt^ 

The estimate 

i«„(0 - u{t)r + 
takes place for all n and t EI. 

Proof. Integrating (33) over (r^, Г2), 0 < t^ < t2 < T, WQ have 

d M„(r) du 
dt dt n 

(34) d-z„{t) m , V - è„(() ) dt + iA u„{t), V - z„(t)> dt ^ 

> 'UF^">UüJt-~\Y i;-z„(t))dt. 

Owing to (30) there exists a subsequence of {s„(t)} and s E L 2 ( / , H) such that s„ -^ s 
in L2(/, H). Passing to the limit for n -» 00 in the identity 
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{z„{t),v)~{U,,v)= r(5(T),t;)dt 

and using z{t) = du{t)ldt we easily find out s(t) = d^w(r)/dr^. Hence and from 
Lemma 6 we conclude 

for П -^ 00 and arbitrary veK. From (30) and Lemma 6 we conclude that there 
exists a subsequence of {z„} (we use the index n again) such that z„ -^ âujât in L2(/, V) 
(moreover, w* — weakly in L^(/, V)). Hence and from Lemma 6 we obtain 

{Ä u{t), V ~- z„{t)y dr -> /A u{t), V ^ \ dr for n 
Jti \ ^ W 

00 

and for all ve K. Finally, from the estimates (30) —(32), (9) and Lemma 6 we easily 
obtain 

Г (F^-^U rJt -~)y^- Ш) àt - ПЩ u{t)), V - ^ ) ) d/ 

for П -> 00. Thus, taking the limit for n -> oo in (34) we obtain (6) since t^, (2 el 
are arbitrary. For fixed t e (0, T) there exists a subsequence {z„Jj)] such that z^^J^t) -^ 
-^ Wt in F because of (30). On the other hand, z„ (̂?) -> du{t)lât in H and hence ŵ  = 
= du[t)ldt. Thus, the original sequence z„(r) weakly converges to du[t)ldt in F for 
all t e I. Since z„(f) e К (for all n and t e / ) and К is a closed convex set, dw(r)/dr e X 
for all ^ G / . Lemma 6 implies dt/(0)/d^ = z(0) = L/̂  since 2„(0) = U^. Similarly we 
have w(0) = UQ. The uniqueness of such a solution can be proved from (6j by 
a standard procedure. When 1/1,1̂ 2 ̂ re two solutions of (6) then и = u^ — U2 satisfies 
the inequality 

dt^ dt 

Integrating this inequality and using (8), (9) we hiave 

dM(() 

dt 
||"(Oir ^ с jj|u(t;|| dw(TJ 

dt 
dr 

Since dw(0)/d^ = 0 and w(0) = 0, owing to Gronwall's lemma we conclude u(t) = 0 
which implies uniqueness. The proof of Theorem 3 is complete. 

R e m a r k 5. All the results in Section I and Section II hold true if we assume 
(8'j there exists a > 0 such that {Au, v} + (x(u, v) is an equivalent scalar product 

in F instead of (8). 

105 



References 

[1] M. Piiltar: Solution of evolution equations of hyperbolic type by the method of Rothe. 
To appear. 

[2] K. Rektorys: On application of direct variational methods to the solution of parabolic 
boundary value problems of arbitrary order in the space variables. Czech. Math. J., 21 {96) 
1971,318-339. 

[3] J. Kaciu-, A. Wawnich: On an approximate solution for quasilinear parabolic equations. 
Czech. Math. J., 27 {102) 1977, 220-241. 

[4] J. Neëas: Application of Rothe's method to abstract parabolic equations. Czech. Math. J., 
24 {99), 1974, N-3, 496-500. 

[5] /. Bock, J. Kaciir: Application of Rothe's method to parabolic variational inequalities. 
Math. Slovaca 31, 1981, N-4, 429-436. 

[6] Bubenik F.: To the problems of solution of hyperbolic problems by Rothe's method (Czech), 
Praha 1980, Thesis (unpublished). 

[7] / . Streiblovä: Solution of the hyperbolic problem by Rothe's method (Czech), Praha 1978, 
Thesis (unpublished). 

[8] J. Necas: Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 
1967. 

[9] H. Brezis: Operateurs maximaux monotones et semi-groupes de contractions dans espaces 
de Hilbert. North-Holand, Amsterdam, 1973. 

[10] Y. Komura: Nonlinear semigroups in Hilbert spaces. J. Math. Soc. Japan, 19 (1967), 
493-507. 

[11] A. Kufner, О. John, S. Fucik: Function Spaces, Academia, Prague 1977. 
[12] J. L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires. 

Dunod-Gauthier-Villars, Paris 1969. 
[13] G. Duvaut, J. L. Lions: Inequalities in Mechanics and Physics, Springer Verlag, 1976. 

Author's address: 842 15 Bratislava, Mlynska dolina, CSSR (Üstav aplikovanej matematiky 
a vypoctovej techniky). 

106 


		webmaster@dml.cz
	2020-07-03T04:03:05+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




