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AN OSCILLATION CRITERION FOR nTH ORDER NONLINEAR 
DIFFERENTIAL EQUATIONS WITH RETARDED ARGUMENTS 

S.R. GRACE and B. S. LALLI, Saskatoon 

(Received November 23, 1981) 

Recently Ohriska [3] established an oscillation criterion for the Emden Fowler 
equation 

x<"> + q{t) \x[g{t)f sgn x[g{t)-\ = 0 , a > 0 , ( ' = £ ) • 

The purpose of this note is to establish a similar criterion for the n-th order functional 
equation for n even 

(1) л'̂ "> + p{t) | x^" - i f x^"-i> + q{t)f{x[g{t)']) = 0, ß^O, 

where p, q, g: [̂ ô  ^) ~^ [P^ ^)^ f:R-^R are continuous, xf{x) > 0 for x ф 0, 
g[t) ^ t and lim g(t) = сю. 

f - * 00 

Let Et^ = {s\ s = g(t) S to for t '^ to] KJ [to]. By a solution of (l) at Го is meant 
a function x: Et^u [tg, t^) -> R for some t^ > tQ, which satisfies (l) for all t E \_tQ, t^). 
All solutions of (l) defined at tQ are assumed to be continuable to infinity for every 
0̂ = 0. A solution x(t) of (l) is said to be oscillatory if x(t) has zero for arbitrarily 

large t. Equation (l) is said to be oscillatory if every solution of (l) is oscillatory. 
We will have an occasion to use the following two Lemmas given in [2]. 

Lemma 1. Let и be a positive and n-times differentiable function on [t^, ooj. 
If u^''\t) is of constant sign and not identically zero in any interval of the form 
[ti, oo), there exists a t^^ t^ and an integer I, 0 ^ I ^ n with n + / even for 
u^"^(t) ^ 0 or n + I odd for u^"\t) ^ 0 and such that I > 0 implies that u^^\t) > 0 
for t t û, (k = 0, 1, ..., / - 1) and I ^ n - 1 implies that (-l)^"'^ w '̂>(fj > 0 
for t^t^,{k = ll+l,...,n~l). 

Lemma 2. / / the function и is as in Lemma 1 and 

u^"-^\t)u^"\t) ^ 0 for t^t^, 

then for every Я, 0 < Я < 1, there exists M > 0 such that 
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u{Ât) ^ Ме~^\и^"-Щ\ for all large t, 

Also we need the following Lemma: 

Lemma 3. Let 

(2) ( ^ "̂  i *̂̂^̂  ^^) ^ ^(^ ' '^) if ß >^ 

exp I — P(T) dr j ds 

and 
/«00 / fs \ 

oo if ß = 0. 

Then if X is a nonoscillatory solution o / ( l ) , we ww5? have x(^) x^"''^(r) > 0 / o r 
a// large t. 

Proof. The proof is similar to that of Lemma 3 in [ l ] and hence is omitted. 

We let 
7(0 = sup {s ^ to I g{s) ^ t] for t^to-

Theorem 1. In addition to condition (2) we assume 

(3) f{x) ^ 0 for X Ф 0 , ( ' = — ) ' 

and 

(4) ^™7Г-, ^ ^ • 

/ / ( l ) /za5 an unbounded nonoscillatory solution, then 
Лоо 

(5) lim sup f-^ q{s)ds = 0 . 
'•"°° J>'(0 

Proof. Let x(t) be a nonoscillatory unbounded solution of (l). Without loss of 
generality we assume that x{t) > 0 and x[öf(0] > 0 for Г ^ r̂  ^ ô- Now, by Lemma 
3, there exists dtj ^ tj^ such that x^"~^^(t) > 0 for t ^ t2- Equation (l), then becomes 

(6) x^"^ + q{t)f{x[g{t)])uO. 

By Lemma 1, there exists a Г3 ^ 2̂ such that x(t) > 0 for ^ ^ ^3. Using Lemma 2, 
we can find constants M > 0 and t^ ^ 3̂ such that 

x^Àt] ^ Mf-^ х^'-Щ for r ^ Г4 and some Я e (0, l ) . 

From (6) and the fact that x^"~^\t) is non-increasing we have 

x^''-^\t) è q{s)f{x[g{s)])ds 
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Thus 
/•00 

x{t) ^ х[Яг] ^ Mf"^ x^"~^XO ^ ^^""^ Ф)/{^ЬШ) ^^ , for r ^ 

We know that y{t) ^ ^ and g{s) ^ t if s ^ y{t). Smce x(r) > 0 we have 
(7) x[g{s)]^x{t) for s'^y{t) and x(r) ^ M f " V W O ) 

Now from (4) and (7) we have 

lim sup f 

q{s) ds . 
y(0 

The proof is complete. 

q(s) ds = 0 . 
y(0 

Theorem 2. Lef conditions (2) and (3) /lo/d, and 

/•OO 

(8j lim sup f ~ Ч <̂ (s) ds = 00 . 

Then all nonoscillatory solutions o / ( l ) are unbounded. 

Proof. Let x(t) be a nonoscillatory solution of (l) such that x{t) > 0 and x[öf(^)] > 
> 0 for ^ ^ 1̂ ^ to. As in the proof of Theorem 1 we get 

л 00 ' 

x{t)^Mt"-' q{s)f{x{g{s)))ds. 

Since s ^ t ^ t^, ^ t^ — 7(^0) ^^^ ^(0 ^̂  non-decreasing we have 

/» 00 

x{t)^Mt"-'f{x{t^))\ q{s)ds. 

From which, in view of (8) it follows that 

lim x(t) = CO . 
^-»•00 

This completes the proof of the theorem. 

Theorem 3. Let conditions (2), (3), (4) and (8) hold, and 

/•00 

(9) lim sup f~̂  ^(s)ds > 0 , 

then any solution 0 / ( l ) is oscillatory. 

Proof. Let x(t) be a nonoscillatory solution of (1) such that x{t) > 0 and x[öf(^j] > 
> 0 for r ^ fi ^ tQ. By condition (9) and Theorem 1, x[t) must be bounded. On the 
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other hand by condition (8) and Theorem 2, x(t) must be unbounded. This is a contra­
diction and the theorem is proved. 

Remarks . 1. If p{t) = 0 , / (x) = |x|"sgnx, a > 0, the Ohriska's resuhs and our 
resuhs are the same. Moreover our proofs are short and simple. 

2. Condition (8) in Theorem 2 is only a sufficient condition. For illustration 
consider the equation 

X -\—— X = 0 . 4^2 

Now 

lim sup t d5 = - Ф CO . 
, 45^ 4 

The above equation has the nonoscillatory unbounded solutions x^^t) = ^t and 

For illustration we consider the equation 

+ Лх^"-Щ'^х^"~^^ + ̂,fi49m = o. 

for n even, t ^ Tfor suitable constant T, / + 1 ^ m. We let 

g{t) = ct or f for с e (O, 1] and t ^ 1 
and 

/ (x) = x""^ or x"e^ or x" log (e + x^) or sinh x , 

where a, â  are the ratio of two positive odd integers and â  > 1. The above equation 
is oscillatory by our Theorem 3, while Theorem 3 in [3] fails to apply. 

We believe that the above conclusion does not appear to be deducible from other 
known oscillation criteria. 
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