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In [6], a general dimension theory for algebraic structures is developed. In this
note we show that this theory can be applied also to cyclically and cocyclically ordered
sets; the dimension of these sets — with a suitable choice of basic classes — coincides
with the characteristics w, W, d, D as introduced in [7].

1. K,-CLASSES
Here we summarize some necessary concepts from [6]

1.1. Notation. Let I # Q be a set, (G;; i € I) an indexed family of sets, i.e. a mapping
assigning a set G;toany i eI. We put Y. G; = {(i, k); i e I, k€ G;}. Let € be a class;

iel
an indexed family (G;; i e I) with G, € € is called a family of elements in €. By #(%)
we denote the class of all families of elements in 4.

1.2. Defini-ion. Let % be a class, R a correspondence between % and (%) with the
property: G,He %, (H;; iel)e (%), GR(H), HR(H;; iel)=GR(H; iel).
Then the pair (%, R) is called a K,-class.

1.3. Notation. Let (%, R) be a K;-class, & = %. We denote 4(¥,R) = {Ge %;
there exists (G;; i e I) e #(&) with G R (G;; i e I)}.

1.4. Definition. Let (%, R) be a K,-class, & < %. For any Ge%(Z, R) put
(¥, R) — dim G = min {card I; there exists (G;; i e [) e (&) with GR(G;; iel)}.
The cardinal (£, R) — dim G is called the (&, R)-dimension of G.

1.5. Definition. Let @ be a class, T': 5’(‘6) — & a partial mapping with the property:
I =iy}, G,,=Ge%=(G;; icl)edomT and TG, = G. Let < be a (fixed)
iel

preorder on %. Then the triple (%, T, <) is called a K,-class.
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1.6. Remark. Any K,-class (%, T, <) is a K;-class if we define a correspondence
R(T, £) between ¢ and &(%) by GR(T, <) (G;; iel)<(G;; iel)edom T and
G < TG,

iel
1.7. Definition. Let (%, T, <) be a K,-class with the following properties:
(1) if I 0 is a set, K; + 0 a set for any i€l, G,, €% for any (i, k)eZK- and
(Gigs (i, k)eZK)edom T,(G;x; ke K;)edom Tforanyiel, ( TG,k5 iel)e
keK ;
edom T, then T G, = T(TG,,) (the associative rule)
(l’.’()G.E,Ki iel keK;
(2)if I +0is a set, (G; iecl)edom T, (H;; iel)edom T and G; < H; for any
iel, then TG, < TH,.
iel iel
Then (%, T, <)is called a Ks-class. If (%, T, <)is a Ky-class and dom T = %(%),
then (%, T, <) is called a K,-class.

1.8. Remark. If (%, T, £)is a K,~class and & < ¥, we write 4(Z; T, <) instead
of ¢(Z,R(T, £)), and (&; T, £) — dim G instead of (&, R(T, £)) — dim G.
Thus, 4(Z; T, <) = {G e &; there exists (G;; iel)e (&) with G < TG,, and

(Z; T, £) — dim G = min {card I; there exists (G;; i€I)e #(&) with G <TG}
for any Ge 4(Z; T, ). il

1.9. Notation. Let € be the class of all pairs (G, C) where G is a set and C a ternary
relation on G. Let us put U (G, C) = (U G, U Ci)s ﬂ (G, C)=(NG:, NC)for

iel iel

any ((G;, C;); iel)e ,9’((6) Let id, be the Identlty relatlon = on %, thus (G, C) =
= (H, D) means G = H, C = D.

1.10. Lemma. (%, |, id), (%, ), id¢) are K -classes.

Proof. The identity id, is a preorder on % and the properties from 1.5.and 1.7. are
simple consequences of the properties of the set-theoretical operations (J, ().

1.11. Notation. Let % be the same as in 1.9. We put X(G"’ C) = (X G, XC)
for any ((G,, C,); iel)e ¥(%); here X G; denotes thelséartesian pro';xct o'fdsets
and X C, the direct (cartesian) produl; of ternary relations, thus (x, y, z) € X C;
for xl,e;, ze X G; means (x(i), y(i), (i) € C; for any iel. For (G, C), (H, D;E(I; 4
put (G, C)i {Z, D) iff there exists an isomorphism of (G, C) into (H, D).

1.12. Lemma. (C, X, i) is a K,-class.

Proofis trivial. i is evidently a preorder on % and X has the properties from 1.5.
and 1.7.
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2. CYCLICALLY AND COCYCLICALLY ORDERED SETS

2.1. Definition. Let G be a set, C a ternary relation on G. C is called a cyclic order
on G, iff it is:
(i) asymmetric, i.e. (x,y,z)e C=(z, y,x)EC
(ii) transitive, ie. (x, y,z)eC, (x,z,u)e C = (x, y,u)e C
(iii) cyclic, i.e. (x, y,z) e C = (y,z,x) e C.
C s called a cocyclic order on G, iff it is cyclic,
(iv) reflexive, i.e. x, y, z€ G, card {x, y, z} £ 2= (x,y,z)eC
(v) complete, i.e. x,y,z€G, x £y + z+ x=(x,y,z)eCor(z,y,x)eC
and satisfies the condition
(vi) x, y, z, u € G, pairwise distinct, (x, y, z) € C = (x, y,u) e C or (x,u, z) e C.
If G is a set and C a cyclic (cocyclic) order on G, then the pair (G, C) is called
a cyclically (cocyclically) ordered set.

If C is a ternary relation on a set G, then we denote by Cog; C or, briefly, Co C
the complement of C in G3,i.e. Co C = G* — C.

2.2. Lemma. Let G be a set, C a ternary relation on G. C is a cyclic order on G
iff Co C is a cocyclic order on G.

Proof. [7], Theorem 3.2.

2.3. Lemma. Let (G, <) be an ordered set. Put for any x, y, z€ G(x, y,z) € C
iff either x < y<zory<z<xorz<x<y. Then C. is a cyclic order on G.

Proof. [5], Theorem 3.5.
Let (G, <) be an ordered set. We call < a linear order in G, iff there exists a subset
H < G suchthat < < H? and < is a linear order on H.

2.4. Lemma. Let (G, C) be a cyclically ordered set. Then there exists a family
(< i€l) of linear orders in G such that C = | C<,.

iel

Proof. [7], Theorem 1.9. and Corollary 1.10.

2.5. Lemma. Let (G, C) be a cocyclically ordered set. Then there exists a family
(<i; i €l) of linear orders in G such that C = () Co C.

i
iel .

Proof follows from 2.2. and 2.4.; see also [7], Theorem 3.5. and Corollary 3.6.

2.6. Definition. Let (G, C) be a cyclically ordered set. Put w(G, C) = min {card I;
there exists a family (<;; I €I) of orders on G such that C = {J C. }, W(G, C) =
iel

= min {card I; there exists a family (<;; i €I) of linear orders in G such that C =
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= |J C. }. The cardinal w(G, C) is called the width, the cardinal W(G, C) the strong
iel
width of (G, C).
If w(G, C) = 1,i.e. C = C for asuitable order < on G, then we shall say that the
cyclic order C is generated by an order; if W(G, C) = 1, then Cis said to be generated

by a linear order.

2.7. Definition. Let (G, C) be a cocyclically ordered set. Put d(G, C) = min {card I;
there exists a family (<; i € I) of orders on G such that C = () Co C. }, D(G, C) =
iel

= min {card I; there exists a family (<; i €I) of linear orders in G such that C =
=NCoC.}.

iel

If d(G, C) = 1, then we shall say that C is generated by an order; if D(G, C)=1,
then C is said to be generated by a linear order.

For the properties of characteristics w(G, C), W(G, C), d(G, C), D(G, C) see [7].
Here we recall only the following one:

2.8. Lemma. Let (G, C) be a cocyclically ordered set. Then d(G, C) = w(G, Co C),
D(G, C) = W(G, Co C).

Proof. [7], Theorem 3.8.

3. DIMENSION THEORY

3.1. Notation. We denote by @y the class of all cyclically ordered sets, by Go Gy
the class of all cocyclically ordered sets. Further, let £ denote the class of all cyclically
ordered sets generated by an order, & the class of all cyclically ordered sets generated
by a linear order, ¥ £ the class of all cocyclically ordered sets generated by an order
and o &£ the class of all cocyclically ordered sets generated by a linear order.

3.2. Theorem. Gy (/; ), id¢) = Gy, Cy(L; U, 1dg) = Gy, Co Cy(6o ¢, (), idy) =
= Go Cy, Co (gy(%o &), idy) = €o Gy.

Proof. Clearly, €y(%;),idy) < €y(¢; U.idg) S €. On the other hand, if
(G, C) € €y, then by 2.4. there exists a family (< i€l) of linear orders in G with
C = C«, Thus, (G, C) = U(G C.)and (G, C.)e Lforanyiel,ie. ((G, CL,);

iel

iel)e #(&). This implies (G C)e6y(£;U,idy) and we have shown %y <
c Gy(Z; U, idg). The identities Go Gy(€o ;. idg) = G0 Cy(Co L5 (), idg) =
= %o Gy follow analogously from 2.5.

3.3. Theorem. For any (G,C)e %y it holds (¢; U, idg) — dim (G, C) = w(G, C),
(g,U,ld ¢) — dim (G, C) = w(G, C).
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Proof. If w(G, C) = m, then there exists a family (<;; i € I) of orders on G with
U C<, = CandcardI = m. Then (G, C.,); iel)e #(/)and (G, C) = U (G, C<,)
iel iel
which implies (¢; {J, id¢) — dim (G, C) £ w(G, C). On the other hand, there exists
a set J % 0 with card J = (/; U, id¢) — dim (G, C) and (G;, C;) e ¢ for any je J
such that (G, C) = (U G;, U C;)- This implies C = (J C;. Further, for any je J,

jelJ jeJ
there exists an order <; on G such that C; = C. . Clearly, <;is an order on G,
and if we denote by D; the cycllc order on G generated by <; then D; = C; for any
jed. Thus, C =) Dj and this implies w(G, C) < (¢; U, id,g) - dim (G, C). Ana-
JjeJ

logously we can prove (&; |, id¢) — dim (G, C) = W(G, C).

3.4. Theorem. For any (G, C)e Go Gy it holds (¥ ¢; (), idg) — dim (G, C) =
= d(G, C), (6o 2; (), idy) — dim (G, C) = D(G, C).

Proof. Analogously as in the proof of 3.3. we easily see that (¢« £; (), idy) —
—dim (G, C) £ d(G, C), (%2 Z;(),idg) — dim (G, C) £ D(G, C). On the other
hand, let ((G;, C)); i €I) € #(€¢ £) be such a family that (G, C) = () G;, () C;)and

iel iel

cardI = (%2 ¢; (),idg) — dim (G, C). Then C = () C;; furthermore, for any iel,
iel

there exists an order <; on G; such that C; = Cog, C.,. Put D; = Co; C. .62

for any i e I. Clearly, <; n G* is an order on G, hence C. 2 is a cyclic order on G

and D; is a cocyclic order on G generated by an order, i.e. (G, D;) € €2 ¢ for any

iel.Letx, y,zeG, (x, y, z) €[\ D;. Then there exists iy € I such that (x, y, z) € D,,

iel

ie. (x,¥,z)€ Cc g This implies x <, p, y <;,z0ry <;z,z <; X 0or z <; X,

<; ¥- Thus (x, y, z) e C., and, hence, (x, v, z)€() Cog, C.,. We have proved
iel

N Cog, C<, = (N D;. Suppose that x,y,zeG, (x,y,z)&()Cog C<,. Then

iel iel iel

(x, y, z) € G* and there exists iy € I such that (x, y, z) e C< . Thus either x <, y,

Yy <pzory<;,zz<g,xorz<;Xx x<;J. Asx,y, zeG, we have (x,y,z)¢€

€ C< ong2 SO that (x,y,2z)&() Cog C<,ng> = () D; and we have proved () D; <

iel iel icl
<€ N Cog, C<,. Thus () D; = () Cog, C<,, which implies (G, C) = ﬂ (G, D;) where
iel iel iel

D;is a cocychc order on G generated by an order on G. Hence d(G C) = (%ot
(N, id¢) — dim (G, C). For the second assertion the proof is similar.

3.5. Theorem. %o Cy(o (3 X, i) = Co Cy, Co Cy(Ce L X, i) = Go Gy.

Proof. It suffices to show %o €y = Go Cy(€e £; X, i), because the inclusion
Co Cy(6o L5 X, i) S Go Gy(6o s X, i) S %o By is trivial. Let (G, C) €Co Cy.
By 2.5. there exists a family (< si€ I) of linear orders in G such that C = () Co C_,

iel

Foranyiel,putG, = G, C; = Cog C.,. Then (G, C;); iel)e & (%o £). Further-
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more, X (G, C;) = (X G;, X Cog C,). For any x € G and any i el, put f(x) (i) =
iel iel iel

= x. Thus, f is a mapping of G into X G;; clearly, f is an injection. Let x, y, z € G,
iel

(x, y, z) € C. Then (x, y, z) € Cog C<, for any iel, i.e. (f(x) (i), f/(») (i), f(z) (i)) €
€ C; for any i e I. Hence (f(x), f(»), f(z))eXC If (f(x), £(»), f(z))eXC,, then we

have (x, y, 4) (fx) (@), fFO) (), f(z) (i )) eC; for any iel, ie. (x, ) 2)€
€ ) Cog C<, = C. We have proved that f is an isomorphism of (G, C) into X (Gl, C)
iel

so that (G C)i X (G,, C;) and (G, C)e Go Gy(6e £; X, i). Thus, (60 Gy <
S %o (6/((50 Z; X, l)

3.6. Theorem. For any (G, C)e%e %y it holds (%o ¢; X, i) — dim (G, C)
= d(G, C), (%0 £; X, i) — dim (G, C) = D(G, C).

Proof. From the proof of 3.5. it follows that (42 /; X, i) — dim (G, C) < d(G, C),
(¢ &; X, i) —dim (G, C) £ D(G, C). On the other hand, let ((G,, C)); iel)e
€ #(%e () be such a family that card I = (%< ¢; X, i) — dim (G, C) and there is
an isomorphism f of (G, C)into ( X G;, X C;). For any i € I, there exists an order<;

iel iel

on G; such that C; = Cog, C<,. For iel and x,ye G, put x <,y iff f(x)(i) <;
<:f(y) (i). We show that <; is an order on G. Indeed, if x € G is arbitrary, then
x <; x is equivalent to f(x) (i) <, f(x) (i) which never holds. Hence, < is irreflexive.
If x, y,ze G and x <; y, y <, z, then f(x) (i) <, f(») (i), f(») (i) <;f(z) (i) which
implies f(x) (i) <;f(z) (i), thus x <, z. Hence, <, is transitive. Further, we prove
C = () Cog C,. Indeed, suppose x, y, ze G. If (x, y, z) € C, then (f(x) (i), f() (i),

iel

f(2) (i)) € Cog, C<, for any i € I. Suppose that there exists i, € I such that (x, y, z) €
€ Cog C .. Thus, (x, y, z) € C,, which means either x <;, y, y <;,z or y <, z,
z <, x or z<; X, x <; y. By definition of <, this means either f(x) (io) <;,
<io S () (i), £(¥) (i0) <io f(=(io) or f(¥) (o) <o f(2) (i0)s f(2) (i) <o/ (x) (ko) or
1)) <1700k 165160 010 . Bt 7)1 10 ) )

, Which is a contradiction for (f(x) (io), f(¥) (i0), f(2) (iv)) € Cog,, C<,,- Thus,
C c ﬂ Cog C,. Assume that there exists (x, y, z) € () Cog C<, — C.Then (f(x), f(»)s

iel iel

f(z)) X Cog, C_ ; hence, there exists i € I such that (f(x) (i), /() (i0). £(2) (i0)) €
iel

€ C_ . This means either f(x) (io) <, /(¥) (i0) f(¥) (i0) <i0S(2) (i) or f(¥) (i0) <4,

<o f(2) (io), f(2) (i0) <1,/ (x) (i0) or f(2) (i0) <o S (%) (i0): £(x)(i0) <ioS () (io)-

By definition of <, we obtain either x <; y, y <;;z or y <;,z, z <;,x or

z <% x <y ie (x,, z)eCg, which contradicts our hypothesis. Thus,

N Cog C, = C and we have proved d(G, C) < card I = (¢¢ ¢; X, i) — dim (G, C).

iel
If each <; is a linear order in G;, then <; is a linear order in G which proves the
second assertion of the theorem.
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