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Isometries in abelian lattice ordered groups were studied by K. L. Swamy [10],
[11] and W. B. Powell [9]; the non-abelian case was dealt with in the papers [4], [5].
J. Trias [12] developed the theory of isometries in Riesz spaces.

Multilattice groups were introduced by M. Benado [1] A thorough investigation
of multilattice groups was performed by McAllister [7], [8]. In the present paper it
will be shown that the results on the relations between isometries and direct decom-
positions of lattice ordered groups [4] can be extended to hold for abelian distributive
multilattice groups.

1. PRELIMINARIES

At first we recall some notions concerning multilattices and multilattice groups.

Let P be a partially ordered set. If a and b are elements of P, then we denote by
U(a, b) and L(a, b) the set of all upper bounds or the set of all lower bounds of the
set {a, b}, respectively. Next we denote by a V,, b the set of all minimal elements
of the set U(a, b); analogously, a A,, b is defined to be the set of all maximal elements
of the set L(a, b).

The partially ordered set P is said to be a multilattice (Benado [1]) if it fulfils the
conditions for each pair a, b € P:

(m,) If x € U(a, b), then there is x, € a V,, b such that x; < x.

(m,) If y € L(a, b), then there is y; € a A,, b such that y, > y.

A multilattice P is called distributive if, whenever a, b, ¢ are elements of P such that
(aAnb)n(aAnc) 0
and
(@aVub)n(aVaue)+0,
then b = c. (See [1] and [7].)
For the basic notions and denotations concerning partially ordered groups and

lattice ordered groups cf. Fuchs [3] and Conrad [2]. The group operation in partially
ordered groups will be written additively.
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Let G be a partially ordered group such that (i) G is directed, and (ii) the partially
ordered set (G; é) is a multilattice. Then G is called a multilattice group. All
multilattice groups dealt with in this paper are assumed to be abelian.

If G is a lattice ordered group and x € G, then we can define the absolute value lxl
in several equivalent ways; e.g., we can put

(1) [x] =2z —-Xx,
where z = x v 0.

Now let G be a multilattice group and let x € G. Using an analogy with (l) we
define

(1) |x| = {2z = x:zexV,0}.
Hence |x| is a nonempty set for each x € G. If |x| = {y} is a one-element set, then
we write also [xl = y.Inthecase x = 0 (x =< 0) we have Ix’ =X (le = —x).
Let f be a one-to-one mapping of G onto G such that the relation
(@) 7)== |x = ]

is valid for each x € G and y € G. Then f is said to be an isometry of G.

If f is an isometry of G and f(0) = 0, then f will be called a 0-isometry. Let a € G;
the mapping f, of G onto G defined by f,(x) = x + a for each x € G is a translation
on G. Every translation is an isometry on G. Each isometry can be uniquely repre-
sented as a composition of a 0-isometry and a translation. Hence for determining all
isometries of G it suffices to find all 0-isometries.

2. REGULAR QUADRUPLES

Let G be a multilattice group. A quadruple {a, b, u, v} of elements of G is said
to be regular if uea A\, b, veaV,band v —a=>b — u.

2.1. Lemma. Let a,beG, veaV, b. Put u=a + b — v. Then {a, b, u,v} is
a regular quadruple.

Proof. It suffices to verify that ue a A,, b. We have 0 < v — a = b — u, hence
b = u, and analogously a = u. There exists u; € a A,, b with u < u,. Let u’,a’, b’ €
e€Gsuch that u; =u+u, a=u; +a, b=u;, +b'. Then u' 20, a’ =20 and
b"=> 0. Because of a —u=u"4+a’,b—u=u + b weobtainv—u' =b + a,
v—u' =a+ b, hence v —u'e U(a, b). Therefore u" =0 and thus u =u, €
ea A, b.

The assertion dual to 2.1 can be proved analogously.

2.2. Lemma. Let {a, b, u,v} be a regular quadruple. Let a,€[u,a], b, =
= b+ ay — u. Then {ay, b, u, b,} and {a, b,, a, v} are regular quadruples.
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Proof. From 2.1 it follows that {a, by, ay, v} is a regular quadruple. Next, from
the assertion dual to 2.1 we infer that {a,, b, u, b,} is a regular quadruple,

2.3. Lemma. Let {a, b, u,v} be a regular quadruple in G, 0 = p <a —u,
xel[u+p b+ plPutx — (u+p)=gq. Then {a,x,u + p,a + a}> {b,x,u + g,
b+p},{u+pu+qux}and{a+ g, b+ p, x v} are regular quadruples.

Proof. This is a consequence of 2.2.

u Fig. 1.

Again, let {a, b, u, v} be a regular quadruple in G. Assume that x € [u, v]. Let us
apply the following construction (cf. Fig. 1).

We choose a; € a A, x with a; = u. Denote by = b + (a; — u). In view of 2.2,
{ay, b, u, by} and {a, b}, a,, v} are regular quadruples.

Choose uj € by A\, x with u; = a;. Denote by =u + (uy — ay), a) =a +

+ (u; — ay). According to 2.3, the quadruples
{ay, by, u,u,}, {a,uy, ay, as}, {uyg, b, by, by}, {aj, b3, uy, v}

are regular.

2.4. Lemma. u, € a5 A, x.

Proof. We have u; < x and u; < a,. Hence there is ze a> A x with z = u,.
If z > u,, then we should have

ay<ay+(z—u)Su +(z—-u)=z=<x,

ay+(z—u)<a; +(ay—u)=a;,+(a—a)=a,
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hence a, ¢ a A,, x, which is a contradiction. Therefore z = u;, completing the proof
of the lemma.

The further steps of our construction are dual to the previous ones with the
distinction that we consider the regular quadruple {a}, b5, uy, v} instead of {a, b,
u,v}.

We choose a, € a3 V,, x with a, £ v. Denote b’ = b} + (a, — v). In view of 2.2,
{a4, b, uy, a,} and {a,, by, b’, v} are regular quadruples. Put by = b + (a, — v);
then according to 2.3 the quadruples {u,, by, by, b’} and {b’, b, b, b3} are regular
as well.

Now choose v; € b’ V,, x with v; < a,. Denote b, = v + (v, — a,), a' = a) +
+ (vy — a,). In view of 2.3, all the quadruples {a’, b, uy,v,}, {a’ v,,a, a,},
{vy, b5, b, by} and {a,, by, vy, v} are regular. Put aj = a + (v; — a,). Then ac-
cording to 2.2, the quadruples {a}, u, a;, @'} and {a, @', a}, a3} are regular as well.
By an argument dual to that applied in the proof of 2.4 we obtain

Uy € a, Vm X .

We shall prove that the equivalence
(*) ay =a,<a =b
is valid.

Let a5 = a, hold. Since {a3, vy, d’,a,} is a regular quadruple, we infer that
a' = vy, hence x < a’ and thus a’ A,, x = {x}. In view of 2.4 we have u; € a’ A, x,
hence u; = x. From the fact that {a’, b’, u;, v,} is a regular quadruple we obtain
that u; = b'. Thus b’ V,, x = xV,, x = {x}; because of v; € b’ V,, x we have v; = x
and so u; = vy, impying a’ = b’.

Conversely, assume that @’ = b'. Then a’V, b’ = {a'} hence v, = a’. Since
{a}, vy, @', a,} is regular, we infer that a, = a} holds.

Similarly we can verify that the relation a’ = b’ is equivalent to each of the
following relations: by = b,; a; = a}; b; = bj.

2.5. Lemma. If a, < a5, then G fails to be distributive.

Proof. This follows from (%) and from the definition of distributivity (cf. Sec. 1).

2.6. Lemma. Assume that (G; 2) is distributive. Let {a, b,u,v} be a regular
quadruple in G, xe[u, v] and a;€a A\, x, a; = u. Then there are elements

bye[u,b], aye[a,v] and b,e[b,v] such that {a,x, ay, ay}, {b,x, by, b,},
{ay, by, u, x} and {ay, b,, x, v} are regular quadruples.

Proof. Let a,, by and b, be as in the construction above. In view of 2.5 we have
a, = aj; similarly, the relations b3 = b,, a; = a7 and b; = b} hold. Hence all the
quadruples involved in the assertion of the lemma are regular.
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3. AUXILIARY RESULTS ON ISOMETRIES

In this section we assume that G is a distributive multilattice group and f is an
isometry on G.

Let x,y,z€G, t =z 4+ y. The relation ze0V, (x — y) is equivalent to
texV,y, whence
(3.1) x—y|={2t—x—y:texV,y}-

By using 2.1 and the assertion dual to 2.1 we obtain also
(3.2) 'x—yl={x+y—2z:zex/\,,,y}.

3.1. Lemma. Let a, b, x€ G, a < x < b. Assume that f(a) £ f(b). Then f(a) <
= f(x) = f(b).

Proof. We have |b — x| = b — x, |x — a = X — a, hence in view of (o) (cf. Sec. 1)
|7(b) = f(x)| and |f(x) — f(a)| are one-clement sets. Choose u e f(a) Anf(x),
vef(b) Anf(x). In view of (3.1) and (3.2) we obtain

|7(b) = f(x)| = 20 — f(b) — f(x).
If(x) ‘f(a)| = f(x) + f(a) — 2u.

Because of
[b—a|=|b— x|+ |x— b
we obtain '
7(6) = (@] = |1(b) = f(x)| + [ (x) = £(b)] .
hence

f(b) — f(a) = 2v = f(b) — f(x) + f(x) + f(a) — 2u =
= (=S + (0 —u) + (fla) —u) 2 v—u.

We evidently have v — u = f(b) — f(a). Thus v — u = f(b) — f(a) and (since v —
—f(b) 20, f(a) — u 2 0) We get v = f(b), u = f(a). Hence f(a) < f(x) < f(b).

Analogously we can verify

3.1.1. ‘Lemma. Let a,b,X€G, g <x <b. Assume that flay =z f(b). Then
fa) z f(x) = f(b)-

32. Lemma. Let x,yeG> X 20 2 p. If f(x) 2 0, then f(x) = x. If f(x) £ 0,
Proof. Let f(x) 2 0. Then x _ x| = |f(x)| = f(x). The other assertions can
be verified analogously.

6.3. ]Lemma. Let x,ye0: x>, €f(x) Awf(¥)s u =f"Yu). Then ue
e[y, x].
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Proof. From (3.2) we infer f(x) + f(y) — 2u’ € |f(x) — f(»)| - Since |f(x) —
_f(y)| = |x - y| = x — y, we have card |f(x) ——f(y)| = 1, whence

[f(x) = )| = 1 (x) + f () = 2u" = f(x) = f(u) + f(y) = f(u) =
= |1(x) = f@)] + 17(0) = 1)
Both |f(x) — f(u)| and |f(u) — f(¥)| are one-element sets. Hence
o=yl =lx —ul +Ju =]

and both [x - u| and ]u — yl are one-element sets. Choose u; € y A,, 4, vy € x A, u.
Then

Il

Ix—ul 20, —x —u, Iu—y|=u+y—2u,,

whence
x—y=|x—y|=(ul—u1)+(v, —x)+(y—u)=v, —u.
Because of u; < y < x < vy we havev; — uy; = x — y, therefore x — y = v; — u,

and thus v, = x, u; = y. Hence y < u < x.
Similarly we obtain:

3.4. Lemma. Let x, ye G, y = x, v € f(X) V. /() v = f~'(v/). Then ve [y, x].

3.5. Lemma. Let x, y, u, v be as in 3.3 and 3.4. Then yeu A\, v, xeu\,, v.

Proof. Let u; eu A, v, y < uy. Since y < u, < u and f(y) = f(u), according
to 3.1.1 we have f(y) = f(u,). On the other hand, from 3.1 and from the relations
y < uy <o, f(y) < f(v) we obtain f(y) < f(u,). Thus f(u,) = y, hence y e u A,, v.
Analogously we can prove that xeu V,, v. '

In the above consideration, v was an arbitrary element of the set f(x)V,, f(»).
Now assume that {f(x), f(y), u’, v'} is a regular quadruple. Such an element v’ does
exist (cf. the dual of 2.1). Under this assumption we have:

3.6. Lemma. {u, v, y, x} is a regular quadruple.

Proof. In view of 3.5 we have to verify that x — v = u — p. In fact, x — v =
=|x — o] = [f(x) = F )] = f(v) = F(x) = f(y) = f(u) = |/ () = f(u)| =

=]y—u] =u— ).

3.7. Lemma. Let x, y, u, v be as in 3.6. Let z € [ y, x] and assume that f(z) = f().
Then z < u.

Proof. From 2.6 it follows that there are elements u,; € [y, u] and v, € [y, v] such
that z e u; V,, vy. In view of 3.1.1 and 3.1 we have f(v,) = f(») (since f(v) = f(»))
and at the same time, f(v,) < f(y) (since f(z) < f(y): thus f(v,) = f(»). Therefore
v, = yand thus z = uy < u.

Analogously we obtain:
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3.8. Lemma. Let x, y, u, v be as in 3.6. Let z € [y, x] and assume that f(z) Z f(y).
Then z < v.

3.9. Lemma. Let x, ye G, x = y. Then both f(x) A, f(») and f(x) V.. f(y) are

one-elements sets.

Proof. Let us apply the above denotations. Let u” € f(x) A, f(). In view of 3.3
we have f '(u”) e[y, x] and thus, according to 3.7, f~'(u”) < f~'(u’). But the
roles of u’ and u” can be interchanged, whence f ~*(u") < f~*(u”). Therefore u” = u’
and hence card (f(x) A,, f(»)) = 1. In view of the assertion dual to 2.1 we infer that
f(x) V. f(y) is a one-element set as well.

3.10. Corollary. Let x, y € G, x = y. Then the elements u, v from 3.3 and 3.4 are
uniquely determined.

Now let 0 < x e G; put y = 0. Let u, v be as above.

In view of 3.10 we denote u = x,, v = x,. Since {u,, v,, 0, x} is a regular quadruple
(cf. 3.6) we have x = x, + x,.

4. THE SETS 4 AND B

Again, let G be a distributive multilattice and let f be an isometry of G with
f(0) = 0. We denote
Ay ={xeG:x =0 and f(x) 2 0},

B, ={xeG:x=0and f(x) 0} .
4.1. Lemma. The set A, is closed with respect to the operation +.
Proof. Let ay, a, € Ay, x = a; + a,, u = x,, v = x,. In view of 3.8 we have
a, Sv, a;=v.

Because of x £ 2v and x = u + v, the relation u < v is valid. According to 3.5,
0eu A, v; hence u = 0. Therefore 0 = f(u) < f(x), yielding x € 4,.
Analogously we can verify

4.2. Lemma. The set B, is closed with respect to the operation +.

4.3. Lemma. Let ae A, be B;, x = a + b. Then x, = a and x, = b.
Proof. From 3.7 and 3.8 we obtain 0 = a < x,, 0 < b < x,, hence
x=a+b=x,+x,=x.
Thus we must have @ = x,, b = x,.

From 4.1, 4.2 and 4.3 we obtain:
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44. Lemma, Let x, ye G, x 20, y 2 0. Then (x + y), = x, + Vi (x + »), =
=Xy + Vo

4.5. Lemma. Let x and y be as in 4.4. Then the following conditions are equi-
valent: (i) y < x; (i) y, < x, and y, < x,.

Proof. The implication (ii) = (i) is obvious. The implication (i) = (ii) follows
from 3.3, 3.4, 3.7 and 3.8.

4.6. Lemma. The partially ordered semigroup G* = {ge G :g = 0} is a direct
product of the partially ordered semigroups A, and B;.

Proof. This is a consequence of 4.4 and 4.5.
Put A = A; — A,, B = B; — B;. From 4.6 and Thm. 2.3 [6] we infer:

4.7. Lemma. The partially ordered group G is a direct product of partially
ordered groups A and B.

4.7.1. Remark. For g € G we denote by g 4 and g the component of g in the direct
factor A and B, respectively. If 0 < x € G and u, v are is in 3.10 (with y = 0), then
according to the definition of A; and B; we have

4.8. Lemma. Let {a, b, u, v} be a regular quadruple. Assume that f(a) £ f(u),
f(a) £ f(v). Then {f(u),f(v). f(a),f(b)} is a regular quadruple.

Proof. From 3.1 we obtain (by considering the isometry f ') that f(a) € f(u) A,
A f(b) holds. In view of 3.10, f (1) A,, f(b)is a one-clement set, hence f(u) A, f(b) =
= {f(a)}. Also (see 3.10), f(u) V,, f(b) is a one-element set; let us write f(u)V,,
Anf(b) = {f(v,)}. Then the quadruple {f(u),f(v),(a),f(v;)} must be regular.

Now from 3.6 it follows that {a, vy, u, v} is a regular quadruple, thus v, = b.

4.9. Lemma. For each x € G we have f(x) =X,  — Xp.

Proof. Chose u €0 A, x. According to the dual of 2.1 there exists veOV, x
such that {0, X, U, u} is a regular quadruple. Then x = u + v, hence

X4 =Uy+ Vg, Xp=Ug-+ vg.
In view of 3.3, 3.4 and 3.2 there exist u; € [u, 0], v, € [0, v] such that
0=/(0) = f(vs) = vy, flv1) 2/ (v).
0 éf(“l) = —Uy, f(“l) Zf(”)
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(Cf. Fig. 2; dashed lines denote the fact that the corresponding interval is reversed
under f (e.g. u; < 0 and f(u,) > f(0).)

\
v AN
\\ y
\ /
/
0 1 b
AN /
N\ /
N /
N /
\,
[
Y, t
u Fig. 2.

Consider the elements uy, 0, v;. Put z = u; + v,. According to 4.8, {0, z, uy, vy}
is a regular quadruple and

f(”l) éf(z)’ f(vl)§f(2).

Put t = v 4+ u,. In view of 2.6 we have z < ¢, and clearly ¢ < v. Since f(z) = f(v),
from 3.1 it follows

f2) 2 /() z f(v).

Next we put ¢ = u + vy. In view of 2.6 we have
ust <z,

Because of f(u) < f(z), by using 3.1 ge get

MORSIGEVIOR
From 2.6 it follows that {z, x, ¢, t} is a regular quadruple. In view of the dual to 4.8
we obtain that

JW)z (), fx) =S(0).
By applying the above inequalities we infer
J(x) = (f(x) = 1) + S(1) = (f@W) + (f(w) = f(ur)) + () = (0)) =
= =) = 5@+ 17() = 1) = £ () = fwr)] +
+ [f(uy) = F(0)] = —|x — | + lt’ - u| - |u - uy| + Juy — 0 =
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= =)+ (= w) (=)~ (u, — 0) =
=—(—v)+ (@, —0)+ (u—uy)—ur-

According to 4.7.1 we have v; = v, hence v — v, = vg. Similarly we have u; = up
hence u — u; = u,. Thus

fx)= —vg+v4+ug—up=(u+0v),— (u+v)y =X4— Xp-

Let G = P x Q be any direct decomposition of G. Then for arbitrary x, y € G
we have

XAmy = (xp An ,VP) + (xQ Anm )’Q) s

and analogously for V,,. From this we obtain

[l = lxel + [l -

4.10. Lemma. Let G = P x Q. For each x € G define g(x) = xp — xo. Then g
is an isometry of G and g(0) = 0.

Proof. Let x, y € G. Then g(x — y) = g(x) — g(»). Thus

l9(x) = ()] = la(x = )| = [(a(x = »))e| + |(a(x = ¥))o| =
=|(x = o] + |(x = ¥)o| = |x = y]-
Clearly g(0) = 0.

Summarizing, we have

4.11. Theorem. Let G be a distributive abelian multilattice group. For each iso-
metry f on G with f(0) = O there exist a direct decomposition G = A X B such
that f(x) = x, — xp is valid for each x € G. Conversely, if G = P x Q is a direct
decomposition of G and if we put g(x) = xp — xo for each x € G, then g is an iso-
metry on G with g(0) = 0.

The question wheter the assumption of distributivity or commutativity of G in the
above theorem can be cancelled remains open.

The first author announces the following correction to the paper [4] concer ing
isometries of /-groups: In the assertion (xx) of § 3 it should be assumed that By(G) is
the system of all abelian direct factors of G and that B € By(G). Theorem 2.5, which is
the main result of [4], remains unchanged. The author is indebted to A. M. W. Glass
for this observation.
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