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DECOMPOSABILITY CONDITIONS FOR COMPATIBLE RELATIONS

JoSer NIEDERLE, Brno

(Received May 18, 1980)

Let ¥~ be a variety of algebras, %, a set of compatible relations on any algebra 4
from ¥ such that whenever p : A — B is an onto-homomorphism of algebras from ¥~
then R € 2, implies (p x p) (R) € Z5. The members of the system # will be called
A-relations. For # may be chosen compatible relations, compatible reflexive rela-
tions, compatible symmetric relations, compatible tolerance relations etc.

Let A, B be algebras from ¥°, R, a relation on 4 and Ry a relation on B. The rela-
tion {[[a, b], [a’, b']] | [a,a’]e R, and [b, b'] € Ry} on A x B will be called the
®-product of R, and Ry and denoted by R, ® Ry. A variety of algebras ¥ is said
to have decomposable #-relations if any Z-relation on the direct product A x B
of arbitrary algebras 4, B from ¥ is ®-product of suitable %Z-relations on A and B.

Proposition. A variety of algebras ¥~ has decomposable %-relations iff for every
pair of algebras A, B from ¥ and for every Z-relation R on A x B the following
holds:

(i) [a, b] R[c, d] and [a’, b"] R[¢', d"] = [a, b'] R[c, d'] .
Proof. =: Clear.
<: Denote R, = (p4 x p4)(R), Ry = (ps x pp)(R), where p, and p, are the

natural projections. Obviously R, and Ry are %-relations. Prove R = R, ® Ry :
:[[x, ¥], [, »']] € R implies [x, x']€ Ry, [v, ¥']€ Ry and so [[x, y], [, y]]e
€R,® Rz So R < R, ® Ry Conversely, [[x,y], [x,»]]€Rs® Ry implies
[x,x]eRy [y, ]€Rp and so there exist X, % €A and j, j € B such that

[[x, 7], [, #]] € R and [[X, y], [¥, »']] € R- By (i) [[x, »]. [x"» »']] € R. Hence
R,®R, < R, 50 R = R, ® Ry. Q.E.D.

Example. The variety of all lattices with compatible reflexive relations satisfies
(i), since
[a,b]=(a.b]alave b Ad])v ([a,b]Alanc b vd])
[, d]=(c.dlafave b ad])v(c,d]alanc b vd].
Thus the variety of lattices has decomposable reflexive relations and so decomposable
tolerances, as stated in [1].
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The condition (i) can be rewritten for reflexive relations as

(i) f([a, b], [a’, 6], [x1s ¥4 oo [Xm 2u)) = [, ]
f(le, d]. [e, d'Ys [xp il ooos [Xn vu)]) = [ d']

and for tolerances as

(iii) f([a, b], [a’, b’], [c, d], [c’, d’], [xl, yl], e [x,,, y,,]) = [a, b’]
fer dl. [es a1, [a b [a's 0T, [eao i [ ) = [ 0]
where [x,-, ;] are suitable elements of A x B and f a ¥ -polynomial.

Aplying these conditions to F,{(4) x F,(4)and the compatible reflexive (tolerance)
relation generated by [s, s] R[u, u] and [¢, ] R[v, v] one has

@) f([s. sl [t 1] [g1(s, t,u,v), hy(s, tu, 0)], ...,
[g.(s. 1, u, v), h(s, t,u, v)]) = [s, 1]
f([u, u], [o,v], [g:(s, t.u, v), hy(s, t,u,v)], ...y
[g.(s, 1, u, v), h(s,t,u, 0)]) = [u, v]
and
(i) f([s. s]. [tt]. [w.ul, [v, 0], [9:(s. t, u, 0), hy(s, t,u,0)], ...,
[g.(s, t, u, v), h(s, t,u,v)]) = [s, 1]
f([u, u], [o.v], [s,s], [t 1] [9(s. 1 usv), hy(s, t,u,v)], .oy
[g.(s. t, u, v), h(s, 1, u,v)]) = [u, v]
where s, t, u, v are the free generators of FAV(4) and g;, h; suitable quaternary ¥ .
polynomials. Conversely, a variety satisfying (ii)’ satisfies (ii) and a variety satisfying
(i) satisfies (iii), since the primed conditions are in fact systems of identitjeg
holding in 7.
The above may be summed as follows.

Theorem 1. A variety of algebras ¥~ has decomposable reflexive relations i
there exist an (n +2)—ary ¥ -polynomial f and quaternary ¥ -polynomiq|
Gis s Gn Nqs ..oy by, such that

fls, t, g4(s, tu, v), oy gu(s, tu, ) = s
Sflu, v, 9,(s, 1, u,0), ..., g,(s, 1, u, v)) = u
fls, t, hy(s, t,u, ), .., hy(s, t,u,v)) = ¢
Slu, v, hy(s, t,u, 0), .., by(s, ,u,0)) = v
are ¥ -identities.
Theorem 2. A variety of algebras ¥~ has decomposable tolerances iff there exjg,

an(n + 4)-ary ¥"-polynomial f and quaternary ¥ -polynomials g, ..., g,, hy, ..., L
such that !
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st u,0,94(s, t,u,0), .0, g,(s, t,u,v)) = s

flu, 0,5, 1, g4(s, t,u,0), ..., g,(s, t, u, v) =u

S t, w0, hy(s, 1, u,0), .00, By(s, t,u,0)) = ¢

f(u,v,8, 1, hy(s, t,u,0), ..., by(s, t,u,v)) =0
are ¥V -identities.

Only trivial varieties have decomposable symmetric relations. The same statement
holds for any system of relations containing all symmetric relations.
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