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1. The purpose of this paper is to consider symmetric and reflexive k-ary relations.
A binary symnﬁetric and reflexive relation is called a tolerance, whence we call k-ary
symmetric and reflexive relations k-tolerances and, in particular, a tolerance is a 2-
tolerance. As in the case of 2-tolerances ,k-tolerances are induced by certain coverings
of the set where they are defined. At first we will consider properties of coverings
inducing k-tolerances and compatible k-tolerances. In the second part of this paper
we will consider hypergraphs and matroids and their connection to k-tolerances.

2-tolerances and related covering are given by Chajda, Niederle and Zelinka in [3]
Unsymmetric binary relations, related coverings and an application is considered
in [5]. As a basic reference for hypergraphs we have used the book [2] of Berge and
for matroids the book [1] of Aigner.

2. A k-ary relation T, on a set A is reflexive and symmetric i.e. a k-tolerance on A4,
if (a....,a) e T, for every ae A and if (ay, ..., a;) € T, implies that (b,, ..., b,) e T,
for all k elements b from {ay, ..., a,}. In [3] Chajda, Niederle and Zelinka show
that a 2-tolerance T, on a set A corresponds to a family .# of subsets of A called
T-covering of A. M = {M,»] iel} is a t-covering of A if (1)—(3) below hold:

(1) A=U{M,|iel};

(2) ifjeland S = I, then M; = U{M,|seS} = N{M|seS} =« M;;

(3) if N = 4 and N is not contained in any set from .#, then N contains a two-
element subset of the same property.

In [3, Thm. 1] Chajda, Niederle and Zelinka show that there is a one-to-one cor-
respondence between t-coverings .# and 2-tolerances T, such that if .# is the -
covering corresponding to T,, then any two elements of A are in the relation T,
if and only if there exists a set M; € .4 containing these two elements. Following [3]
we call a family /#, = {M,-[ iel,} of subsets of A.a t,-covering if the following
conditions (4)—(6) hold:

(4) A =U{M;|iel};

(5) M; & M; when i =+ j and i,jel};

(6) if N @ A4 and N is not contained in any set of .#,, then theie is a k-sequence
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ai. ..., a; of elements from N (not necessarily disjoint) such that ay, ..., a, is not
contained in any set from ./Z,.

A family 4 = {M; [ i I} of subsets of a set A is called a covering of A, if (1) holds
for /. We assume that M; & M; whenever i & jand i, jel.

At first we like to present a connection between 7,-coverings and t-coverings
of Chajda, Niederle and Zelinka.

Theorem 1. A t-covering M = {M,- | ieI} is a 1,-covering of A and vice versa.

Proof. By putting ‘S| =1lin (2), one sees that a 7-covering .# satisfies (5), and be-
cause (1) is equivalent to (4) and (3) to (6), ./ is a t,-covering. Conversely, let .4, =
= {M; | iel,} be at,-covering of A. ., is a t-covering if (2) holds for .#,, and thus
we assume that jel,, S = I, and M; = J{M,|se S}. If now N{M,|seS} & M,
then ae N{M,|se S} such that a ¢ M;. On the other hand, there is for every be
e U{M,| s e S} some M, containing a and b. In particular, this means that there is
for every ¢ € M; some M, containing a and c. Let us consider now M; U {a}. It is
contained in a set from .#, or not. If it is not, we obtain a contradiction with (6),
and if it is contained in, then M is contained properly in a set from .#,, which con-
tradicts (5). Hence N{M, |se S} = M.

Before proving an analogy to [3, Thm. 1], we like to show that there are 7,-
coverings of a set A that are not t,-coverings, k, m = 1 and k > m. Let A =
={ay, ..., ak} and ., consist of all disjoint k — 1-element subsets of A4; as well
known, there are k such subset M; in A. Clearly (4) and (5) aresatisfied in .#,. The
only subset N of 4 not contained in any set from .#, is the whole set A. 4 contains
clearly a k-sequence ay, ..., a, not contained in any set from .#,, and thus .#, is
a 1,-covering of A. On the other hand, every k — 1-sequence of A is contained in
some set M; from .#, and thus .#, is not a 7,_,-covering of A. Similarly one sees
that ., is not a t,-covering of A, k > m. Note that there is only one 7,-covering
of A: ity = {A}.

Theorem 2. Let A be a non-empty set. There exists a one-to-one correspondence
between k-tolerances on A and 7,-coverings of A such that if T, is a k-tolerance
on A and M, is the t,~covering corresponding to T,, then any k elements aq, ..., a,
of A are in the relation T, if and only if there exists a set from .#, which contains
Ayyeeey Ay

Proof. At first we show that every k-tolerance T}, on A determines a 7,-covering ./,
of A. Let & = {L; ’je J} be the family of all subsets of A such that every k clements
of L; are in the relation T}, and let 4 = {Mil i eI} be the family of all maximal
elements of %, which exist by assuming Zorn’s lemma. Because of the reflexivity
of Ty, & and . are coverings of A and according to the maximality, (5) holds for ..
Let N be a subset of A not contained in any of the sets from .#. If every k-sequence
of N is contained in some set from ., then N € %, and according to the maximality
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of ., N is contained in some M; € .4, which is a contradiction. Hence (6) holds for ./
and thus it is a 7,-covering of A.

Obviously every t,-covering #, of A determines uniquely a k-tolerance T, and
further, .4 derived from T, above determines the original 7,.

Let ., be a given t,-covering of A, T, the k-tolerance determined by .4, and .#
the 7,-covering of A derived from T, above. In the following we show that .#, < ./
and M4 < J\, whence M4 = M, which now implies the assertion of the theorem.
My = A Assume that M; e 4, and M; ¢ /4. Because of T there is a set Le .4
containing M; properly. But then, because T'is determined by .#,, for every k elements
ai, ..., a, € Lthere is a set M € .4, containing these clements. If Lis not contained
in a set from .#,, we obtain now a contradiction with (6). Hence L = M; for some
M ;e 4, But then M; is contained in M; properly, which contradicts (5). Thus
My M. M < M Let Le A\ M,. Because M, < 4, Lis now a set N from (6)
for t,-covering .#,. Thus L contains a k-sequence ay, ..., a, not in the relation T,
which is a contradiction to Le ..

Accordingly, the investigation of k-tolerances on a set A is equivalent to the
investigation of t,-coverings of A. As previously shown, a 7,-covering need not be
a 1,-covering, k > m, whence k-ary tolerances need not be m-ary tolerances.

In the following we consider connections between different 7,-coverings of a set A.

Theorem 3. Let .#,, be a t, covering of a set A, then M, is alsoc a t,-covering
of A for every finite k = m.

Proof. It is sufficient to show that (6) holds for .#,, for every finite k = m. If
N < A and N is not contained in any set from .#,,, there is an m-sequence ay, ..., a,,
of elements of N not contained in any set from .#,,. But then the k-sequence ay, ..., a,,
ayy, ..., a4 -y of N, where a;;, = ... = a;,_, = a,, has the same property for
every finite k = m. Hence the theorem.

Theorem 4. Let A be a finite non-empty set. Then the maximal sets of every
covering M* = {Mi| i = I*} of A constitute a v-covering of A for some k 2 1.

Proof. Choose from .#* all maximal sets and let the family such obtained be
A = {M;|iel < I*}. Because of the maximality of the sets in ./, (5) holds for .#
as well as (4). By putting k = |A|, M satisfies also (6), because if N = A is not
contained in any set from .#, then by joining to the sequence ayy, ..., a,y of all
elements of N |4| — |N| times a,, the desired |4|-sequence is obtained.

Theorem 4 can also be generalized for infinite sets 4 if .#* satisfies an additional
condition. A covering .#* of A is called element finite, if every a € A is contained in
a finite number of sets of .#*. By assuming Zorn’s lemma, every covering .4* of A
can be reduced to a covering . of A satisfying (4) and (5). If .#* is element finite,
then also . is, but the converse need not hold. Assume that .# is an element finite
covering of A satisfying (4) and (5), and let k = max {k, | a belongs to k, disjoint
sets in %, a € A}. We show that ./ is then a 7, y-covering of A. Let N = A be a set
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not contained in any set from .#, a; an element of N and let a; € M, il € I. Because
of the property of N, there is an element a, e N\ M;;. If a;, a, e M;, forsome i2 €1,
then according to the property of N, there is an element a; € N\ M;,. According
to the choices of a; and a,, M;; = M;,.1If ay, a,, a; € M5 for some i3 € I, then there
is an element a, € N\ M;;. Because a, e N\ M, M;; = M;;, and because a; €
e N\M;,, M;, = M;. By continuing this process we will find a set of m disjoint
elements aq, ..., a,, from N not contained in any set from .4, m =< k, or a set of k
disjoint elements ay, ..., a, of N contained in a set M, from .#. In the first case,
by joining the element a; 1 + k — m times to ay, ..., a,, a desired k + 1-sequence
is obtained. In the second case, because N is not contained in any set from .,
ay1 € NNM,. As above, the sets My, ..., M, are pairwise disjoint. The k + 1-
sequence dy, ..., d, . is a desired subset of N because otherwise a, belongs to k + 1
disjoint sets from .#, which contradicts the definition of k. Thus we can write

Theorem 4'. Let ./# be an element finite covering of A satisfying (5). Then 4
is a 1,4 -covering of A for k = max {k,|a belongs to k, disjoint sets from .,
ae A}

Let kK > m and ., be a t,-covering of A without being simultaneously a 7,-
covering of A. In the following we ook for a rule to determine the least 7,-covering
of A containing .#,, i.e. the 7,-hull of .#,. For that reason we determine at first
the family A", = {N |N & M, for any M;e .#, and there is no m-sequence
dy, ..., d, in N having the same property as N}. Moreover, let A = {K|K is
maximal among the sets of %, and A", and K is either from .#, or from A", };
such " exists by assuming Zorn’s lemma. Now we can prove

Theorem 5. Let .#, be a t,-covering of a non-empty set A without being a t,,-
covering of A, k > m. Then X" is a t,-covering of A and it is the least t,-covering
containing M.

Proof. Obviously & is a covering of A, and (5) holds because of the definition
of A". Let N = A such that N is not contained in any set from " and assume that
there is no m-sequence ay, ..., a,, of N having the same property as N. ButthenN is
also not contained in any M; from .#, without containing an m-sequence with the
same property. Hence N € A"}, and thus N is contained in some K ; from ", which is
a contradiction. Thus (6) holds for # and it is a 7,,-covering of A.

It remains to show that & is the least t,-covering of 4 containg .#,, i.e. there is
for every M; € ./, at least one K; € " containing M ;. Assume that & is a 7,,-covering
of A containing .#, and 2 is contained in ., i.e. for every D, & thereisa K; e A
containing D,. 9 < A properly only if 1) some D; is contained in some K; properly
or 2) there is a K; e & for which there exists no D;e & such that D, = K.

1) Let Dy = K; propetly and let x € K;\ D;. Because & is a t,-covering of 4,
D, v {x} & D, for any D, € @. Thus there is an m-sequence ay, ..., a,, in Dy U {x}
not contained in any set frcm 2. On the other hand, this m-sequence is contained in
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some K, € #". Note that every m-sequence from a K; € " is contained in some M; €
€ M according to the definition of 4",,. Hence the m-sequence ay, ..., a,, is contained
in some M; which is contained in some D, € &, which is a contradiction. Hence l)
cannot hold.

2) Let K; € 4 be a set such that no D€ @ is contained in K;. Because Z < 1,
K; is not contained in any D e 2 and because & is a 1,-covering of A, there is an
m=sequence ay, ..., a,, from K; not contained in any D, e &. This is absurd from the
same reason as in 1), and hence 2) cannot hold.

Thus Z is not contained in /" properly. If there is & containing .#,, then K and D
have a common lower bound 4 (which can be constructed by means of the inter-
section of m-tolerances determined by & and #") containing .#, and contained in .
As the proof before shows, # = #". Hence # is the least t,-covering of A con-
taining .

We will make some remarks about t,-hulls when consideriqg hypergraphs related
to a t,-covering .

Following Chajda [4], we call a k-tolerance T, defined on the support A of an
algebra 4 = (A, F) compatible with respect to A4 if and only if the corresponding
7,-covering .4, of T, has the following property

(7) for every n-ary operation fe€ F of A4 and for every n-tuple My, ..., M, € 4,
(where M, ..., M, need not be disjoint) there exists at least one M € ./, such
that f(My, ..., M,) = {f(ay, ..., a,) | a;eM;and j =1,...,n} = M,.

As easily seen, the definition above is equivalent with the following: every n-ary
feF and every n k-ary relations (ayyq, ..., ay)s (125 --os i)y -os (Q1ps - Gry) € Ty
imply that (f(aq, @y, ...y ay,)s oo fa1s G2, -, A,)) € T

One can now prove an analogy of [3, Thm. 3]; the proof is similar to that of [3,
Thm. 3], whence we omit it.

Theorem 6. Let A = (A, F) be an algebra, T, a k-tolerance on A, and M, the
corresponding t-covering of A. T, is compatible with respect to A if and only if
there exists an algebra B = (B, G) with the following properties:

(i) there exists a one-to-one mapping ¢ : F — G such that for any positive in-
teger n and for each f € F the operation ¢f is n-ary if and only if f is n-ary;

(ii) there exists a one-to-one mapping y : M, — B such that for every n-ary
operation f € F, where n is a positive integer, and for any n + 1 elements My, M, ...
s M, of M, the equality of(x(M,), ..., x(M,)) = x(M,) implies that for any n
elements ay, ..., a, of A such that a;e M, i =1,...,n, the elementf(a,, e a,,)e
€ M,.

A family 4 = {M;|iel and M; = A} is called a compatible covering of an
algebra 4 = (A, F), if 4 is a covering of A and (7) holds for .#. The maximal
elements of .4 have the same properties and hence we can write a compatible analogy
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of Theorem 4 as a corollary. If A is infinite but the maximal elements of .# con-
stitute an element finite compatible covering of A, we obtain a compatible analogy
of Theorem 4'. Because every covering of a finite set A with maximal subsets is element
finite, we can write

Corollary. Let A = (A, F) be an algebra and . a compatible element finite
covering of A satisfying (5). Then M is a T4 -covering of a compatible k + 1-
tolerance on A for k = max {k, | a belongs to k, disjoint sets from ., a e A}.

3. Let A be a finite set and & a family of subsets of A. The couple (4, &) = H is
called a hypergraph, if 0 ¢ & and & is a covering of A. Its vertices are the elements
of A and its edges the sets in &. By (H), is meant a graph (4, E) without loops,
where two vertices a, and a, are adjacent whenever a,; and a, are contained in an
edge E;e & in H. In [2, Chpt. 17 : 3] a hypergraph is called conformal, if &, of all
maximal edges of H is the set of all maximal cliques of the graph (H),.

Theorem 7. A k-tolerance T, on a finite set A is a 2-tolerance on A if and only if
the hypergraph (A, J4), where 4, is the t,~covering corresponding T,, is conformal.

Proof. Let T} be a 2-tolerance on 4, i.e. k = 2. In the graph (H), vertices a and b
are adjacent if and only if (a, b) e T,. According to the maximality of sets M,
every M, corresponds then to a maximal clique of (H), and every clique of (H), is
contained in a set M; e ./ ,. Hence (A, ./12) is conformal. Conversely, if (4, .#,) is
conformal and N is not contained in any set from .#,, then N contains at least one
pair a, b of vertices not adjacent in (H),. Hence every N contains a two-element set
with the same property as N has, and thus .#, is a 2-covering of A and the corre-
sponding k-tolerance a 2-tolerance on A.

We will say that a hypergraph H = (4, &) is h-conformal, h = 3, if for every
clique of (H), not contained in an edge of H there is a number s < h such that every
subset of s — 1 vertices is contained in some edge of H but some subset of s vertices
not. Moreover, there exists at least one clique of (H), with s = h.

Theorem 8. Let H = (A, &) be a hypergraph. &, is a t,-covering and not a t,_,-
covering of A if and only if H is h-conformal, h = 3.

Proof. The theorem implies that T, is a h-tolerance and not a h — 1-tolerance
on A if and only if (4, #,) is h-conformal. Now let H be h-conformal and N a set
not contained in any set from &,,,,. The elements of N constitute a clique of (H), or
not. If not, then N contains at least one pair a, b of vertices not adjacent in (H),,
whence N contains a h-sequence a, b, ..., b not contained in any set from &,,-
If the points of N constitute a clique of (H),, then the existence of an h-sequence not
contained in any set from &y, follows from h-conformality. Thus (6) holds for & .,
for which (4) and (5) hold obviously. Hence &,,,, is a t,-covering of 4 and it is not
a 1,_;-covering of A because of the last sentence in the definition of h-conformality.
The converse proof is now obvious, whence we omit it.
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Let .#, be a t,-covering of a finite set and H, = (A4, .#,) in the least 2-covering .# ,
containing .y, two elements a and b belong to a set from ./, at least then when they
belong to a set from .#,. In particular, this means that a and b are adjacent in (H,),,
and on the other hand, every two vertices ¢ and d adjacent in (H,), belong to at least
one M, from ., simultaneously. Thus every maximal clique of (H,), is a set from ./,
and because the maximal cliques of (H,), constitute a 7,-covering of 4 containing .#,,
the maximal cliques of (I1,), constitute the t,-hull of .#,. As seen above, every t,-
covering of A is also a t,-covering, 2 = m =< k, whence 7,,-hulls of .#, are con-
tained in . ,. These observations and Theorem 8 imply together

Theorem 9. A t,-covering M, of a finite set A is the t,-hull of a t,~covering M,
of A if and only if the graphs (H,), and (H,), derived from H,, = (A, .4,) and
H, = (4, ///k), respectively, are isomorphic and H,, is m-conformal, k = m = 3.

We give next a few remarks on the connection between the Helly property and
7,-coverings. A family # = {B,; ] ieI} of subsets of a finite set A satisfies the Helly
property if J = I and B; n B; + 0 for all i, jeJ implies that {B;|je J} + 0.
Let H = (A, &) be a hypergraph, where A = {a,,...,a,} and & = {E, ..., E}.
In the dual hypergraph H? = (E%, /%) of H the vertices in E* = {e, ..., ¢,} represent
the edges of H and the edges in o/ = {4, ..., A,} the vertices of H such that 4; =
= {e; ] i <, a;€E;}. Because a hypregraph H is conformal if and only if (the edge
set of) its dual satisfies the Helly property [2, Chpt. 17 : 3], we can write

Theorem 10. A t,-covering ., of a finite set A is a t,-covering of A if and only if
the dual of (4, J}) satisfies the Helly property.

Let H = (4, &) be a hypergraph with s edges Ej, ..., E,. The representative graph
of H is a simple graph G of order s whose vertices ey, ..., e, respectively represent the
edges E,, ..., E; of H and with vertices e; and e; joined by an edge if and only if
E,nE;+0.

Theorem 11. Every graph is the representative graph of a 7t,-covering M, of
a finite set A.

Proof. Let G' = (V/, E’) be a given graph. We will show that it repesents a ;-
covering 4, of a finite set A. We add first to every pendant vertex v" of G’ a vertex v
adjacent only to v'; the graph thus obtained is G = (V, E). Let 2 = {Q4, ..., Q,}
be the family of all maximal cliques of G and let Q; contain the vertices v;q, ..., U,
t = 3. There are ¢ disjoint sets, each of which contains ¢+ — 1 vertices of Q; and
constitutes a clique of G; we denote these sets by E;q, ..., E;,. Let & be the family of
all such maximal sets and two-element maximal cliques Q of G. Every set from &
is a clique of G and each vertex and each edge of G is covered by at least one set
from &. According to [2, Chpt. 17 : 4, Proposition 1] G is the representative graph
of the dual hypergraph H? = (E?, ") of the hypergraph H = (V, &). Because ¥4,
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is a covering of the finite set E? satisfying (5), it is a 7,-covering of E* for some finite k.
Thus the assertion follows by showing that G’ is the representative graph of (E%, ¥°%..);
this is done by considering when V; < V, is possible in #™. Assume that V; < V,,
Vi % V,. According to the definition, V, = {¢;| v,€ E;, E;e &} when V,e . If
Vi < V,, then for every e; € V;, the clique E; of G contains v, as well as v,, and be-
cause V; # V,, there is an e; € V, such that the clique E; of G contains v, but v, not.
This shows that v; and v, are adjacent in G, and then V; < V, properly only when v,
is a pendant vertex of G. Thus, when choosing ¢ . from ¥ only the sets cor-
responding to pendant vertices of G are dropped out. But then the sets of ¥,
correspond to the vertices of the original graph G’, and the theorem follows.

Previous result can be sharpened for 7,-coverings of a finite set A. The sets of a 7,-
covering .4, of A are the maximal cliques of the graph (H), derived from (4, .4,),
and hence the graph representing a 7,-covering is also the representative graph of the
maximal cliques of (H),. According to the result concerning the representative graphs
of maximal cliques of some graph [2, Chpt. 17 : 4, Proposition 5], we can write

Theorem 12. A graph G is the representative graph of a t,-covering 4 , of a finite
set A if and only if there exists in G a family {Q; l iel} of cliques such that

(i) each edge of G is covered by a Q;;
(ii) {Q;| i eI} satisfies the Helly property.

Finally we will characterize finite matroids by means of k-ary relations. A matroid
on a finite set A4 is a couple (4, %), where ¢ = {C; I iel} is a family of subsets of 4
having the properties

(8) 0¢% andif C;; C;e ¥, C; + Cj, then C; ¢ C; for every pair i, j e l;

(9) if C,,C;e%, C;+C;, beC;nC; and ae C;\C;, then there exists C,e %
such that a € C; = (C; U C))\{b}.

The sets from € are called circuits of the matroid (A, %7) Note that € need not be
‘a covering of 4, but because 0 ¢ %, it is the covering of a subset 4’ = {a | ae C;e €}
of A. According to (8) and Theorem 4, % is a t,-covering of A’ for some finite k.
Thus the characterization of a matroid (4, (6) as a k-ary relation reduces to the cha-
racterization of (A’, %) as a k-tolerance T, having % as the corresponding 7,-covering
of A’, and, in particular, to the characterization of (9) as a special property of T;.
(9) means the transitivity of Ty corresponding to € such that if (a, b, ..., b), (¢, b, ...
... b)eT,then(a,c,...,c)eT,. Inthecase k = 1, % = {A'}, and in the case k = 2,
there is no pair C; # C;in % such that b € C; n C;, and hence the cases k = 3 remain.
When k = 3, the transitivity does not ensure the existence of a set C, containing a
such that C e (C; U C;)N\{b}, and thus something more is needed.

Let B te a finite set, .4, a t,-covering of B and T, the corresponding k-tolerance
on B.If ., + {B}, then .4/; = {B\ M, | M, e .} is a family of non-empty subsets
of B satisfying (5). Clearly .} is a t,-covering of B® = B\ {M, ! M;e 4} and it
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determines an m-tolerance T,, on B°. We call this relation the co-k-tolerance of T
in B and denote it by T. By using co-k-tolerance we can characterize matroids as
k-tolerances as follows

Theorem 13. A non-empty family € = {Ci l iel} of subsets of a finite set A is the
family of circuits of the matroid (4, %) if and only if € is a v-covering of A or of
A ={a [ ae Ce%} determining a transitive k-tolerance T, such that (10) holds
if k = 3:

(10) Let (a, b, ..., b), (c, b, ..., b) €T, and (a, ¢, b,..., b) ¢ T,. Then for every two
points a' and ¢, for which (a,b,a’,...,a’), (¢,b,c,...,c')eT, it holds:
(b, x4, .- X4—y) € T§, for every k — 1 elements x, € A’ for which (a, b, a’, x,, ...

v X)), (e, b, Xy x,) ¢ T

Proof. Let T, be a transitive k-tolerance on a set 4 or on its proper subset A’, and
let € be the 7,-covering corresponding to 7. As noted before, (8) holds for %. The
cases k = 1,2 are clear because of the considerations before. Hence, let k = 3,
C;+Cj, beC;nC; and ae C;\C;. Because C; ¢ C;, there is in C;\C; an
element ¢ for which (a, ¢, b, ..., b) ¢ T, but (a, b, ..., b), (¢, b, ..., b) € T, According
to the transitivity of T;, a and ¢ are in the relation T, but the set C containing a
and ¢ need not be from (C; U C;)\ {b}. Let us choose a’ € C;\ C; such that a’ * a,
and if there is not, a’ from C; n C; such that a’ + b, and if there is not, we put
a’ = a. The element ¢’ is choosen analogously. All the elements x, € A’, for which
(a,b,a',x,,...,x,), (¢, b, ¢, x,, ..., x,;) € Ty, are then outside from C; U C;. Because
of (10), these elements constitute in common with b a class of C¢ of Ty, the comple-
ment C = A’ \ C° of which belongs to 4. Thus ae C = (C; u C;)\{b}, whence ¢
is the family of circuits in the set 4 (and in A’, too), and (A, (€) is a finite matroid.
If k = 3, Ty can also be represented as a 4-tolerance, and the proof above is then
certainly applicable.

Conversely, let (4, ) be a matroid and € its family of circuits. As pointed out be-
fore, ¢ is a t,~covering of A’ for some finite k. Let k > 3.1f (a, b, ..., b), (¢, b, ..., b) €
e T, but (a, ¢, b, ..., b) ¢ T,, there are at least two disjoint sets C, and C, in € con-
taining b such that ae C,NC, and ce C.\C,. If (a, b,a’,...,a"), (¢, b, ¢, ....¢') e
€ T,, we may assume that a’ € C, and ¢’ € C,. According to (9), there is in € a set C
such that ae Ce(C,u C)\{b}, and analogously C’' €% such that ceC <
< (C, U C)\{b}. Then, in particular, every x, ¢ (C, u C)\{b} has the property
(a,b,a" xp, ..., x,), (e.b, ¢, x5 x)¢T,. x,e6 A/NC, A'NC' and thus every
k — 1 such elements x, has the property (b, xy, X, ..., x,—;) € T5. If k = 3, then @
is also 7,-covering, and the proof above is then applicable.

The transitivity of T, on a set A defined above does not imply non-intersecting
sets in .#, of T,. The following transitivity, where (by, a,, as, ..., a,), (a5, by, as, ...
o ay) €T, imply (by, by, as, ..., a)e T, gives non-intersecting sets in the 7~
covering ., of T,, and hence such a k-tolerance is a k-equivalence on A4.

517



In the book [6] Pogonowski presents applications of 2-tolerances to linguistics.
Some applications of [6] can be developed further by using k-tolerances given in
this paper.

References

[1] Aigner, M.: Kombinatorik II. Matroide und Transversaltheorie, Springer-Verlag, Berlin—
Heidelberg— New York, 1976.

[2] Berge, C.: Graphs and hypergraphs, North Nolland, Amsterdam— London, 1976.

[3] Chajda, I., Niederle, J., Zelinka, B.: On existence conditions of compatible relations, Czech.
Math. J., 26, 1976, 304—311.

[4] Chajda, I.: Partitions, coverings and blocks of compatible relations, Glasnik Mat., 14, 1979,
21—26.

[5] Leutola, K., Nieniinen, J.: Binary relations, flou relations and application, Control and Cyber-
netics, 9, 1980, 155—162.

[6] Pogonowski, J.: Tolerance spaces with applications to linguistics, UAM Press, Poznan,
to appear.

Authors’ address: Department of Mathematics, Faculty of Technology, University of Oulu,
90570 Oulu 57, Finland.

518



		webmaster@dml.cz
	2020-07-03T03:52:51+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




