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ON PSEUDONORMABILITY OF SOME PARTICULAR
CLASSES OF SPACES

PioTrR MIKuUsINskI, Katowice

(Received June 27, 1979)

It is known that the concept of locally convex spaces is equivalent to the concept
of pseudonormed spaces (espaces a pseudonormes.or espaces a seminormes). In the
first case, topological methods are widely used. The aim of this note is to prove, by
purely analytic methods, a few facts on pseudonormed spaces which can be consid-
ered as known when transformulated into the topological language. In particular,
we determine families of pscudonorms which generate convergences in inductive
limits of increasing sequences of normed and pseudonormed spaces.

1. A family P of pseudonorms on a linear space E generates a convergence in the
following way

x; > x iff p(x; — x) tends to zero for every peP.

We say that a convergence G on a linear space E is a pseudonorm convergence if
it is equal to the convergence generated by the family of all continuous pseudo-
norms on E. Such a convergence is also called the locally convex convergence ([1])
In this note, by continuity we always mean the sequential continuity. We call two
convergences identical or equal, if each sequence convergent in the sense of any
of these convergences converges to the same element in the sense of the other
convergence.

Clearly, every convergence generated by any family of pseudonorms, not necessarily
all pseudonorms, is a pseudonorm convergence.

2. Let (E, ||+||) be a linear normed space and let F be a linear subspace of E. It is
easy to show that the distance of a point x € E from the subspace F,

(1) D(x) = inf {||x — &|; &€ F}

is a pseudonorm on the space E.
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Let E, E,, ... be an increasing sequence of closed linear subspaces of a linear
normed space (E, |+|) such that E = |JE,. By D; we denote the distance from the
subspace E;. (In (1) we then put E; instead of F.) By D, we mean the distance from
the origin, so that Do(x) = |x|.

Theorem 1. The convergence
(H) x; -2y iff ||x, - x“ tends to zero and there exists an index n such that x; € E,
Sfor all i,
is equal to the convergence generated by the family of all pseudonorms of the form

@ P) = 31 D).

where a = (oco, oy, ) is any increasing sequence of positive integers.

Proof. Since the space E is the union of all subspaces E,, the sum in (2) is always
finite. The functionals p, are pseudonorms, because so are the D,’s.

Now we shall prove the identity of both convergences. For every pseudonorm p,
we have

(3) Ix] = ),
because oy = 1 and Dy(x) = [x|. If x € E, then

n—1

(4) Pa(x) = ( ;0 o) [

as Do(x) = Dy(x) = ... = D,_4(x) and Dy(x) = 0 for k = n. From (3) it follows
that the pseudonorms p, are norms.

Since the inequalities (3) and (4) hold for all n, thenorms | +| and p, are equivalent on
each subspace E,. Let, for a sequence x;, there exist an index n such that x; € E,
for all i. Then x; is convergent in the norm ||, iff x; is convergent in the norm p,.
This is true for each norm p,.

Assume that a sequence x; is not G-convergent. If the sequence x; is contained in E,
for some index n, then, by the above remark, x; is not convergent in any norm p,.
It remains to consider the case when there is no index n such that x; € E, for all i.
We may assume, for simplicity, that x; € E;,, NE; for i = 1,2, .... Since the sub-
spaces E, are closed, the distance D(x;) si always positive. Let o, oy, ... be an
increasing sequence of positive integers such that

5

for i =1,2,.... Then
Pxi) =D o Dy(x;) 2 i
k=0
Thus, there exists a pseudonorm p, such that the sequence p,,(x,.) is unbounded.
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From Theorem 1 we can derive the following

Corollary. Let (E,, “”,,) be a sequence of linear normed spaces such that the
space E, is a closed linear subspace of (E,,, ”'”,,H) for n=1,2,..., and that
the restriction of the norm "-H,,H to E, is equivalent to the norm ”||,, for n =
=1,2,.... Let E = |JE,. Then the convergence
(I) x; =" x iff there exists an index n such that x;, x € E, and |x; — x|, tends to

zero,
is a pseudonorm convergence in E.
To prove Corollary we shall use

Lemma. Let (Ey, |+|,) and (E,, |*|,) be a pair of linear normed spaces such
that E, is a subspace of the space (E,, ||*|,). If the restriction of the norm |||,
10 E, is equivalent to the norm ||+ |, then there exists a norm ||*||5 on E,, equivalent
to the norm ””2, such that ”x“1 = ”x”3for xeE;.

Proof of Lemma. We may assume that |x|; < |x|, for x € E,. If it is not true,
we replace the norm ||+||, by the norm M|+ |,, where M is a positive number such
that |[x||; < M|x]||, for x € E;. Such a number M exists because the norms |-, and
| |2 are equivalent on E,.

The functional

[x][5 = inf {|&,|; + (€2l x = & + &, &, € Ey}
is a norm on E, and possesses the required properties.

In fact, since the norms ||, and |- |, are equivalent on E, there exists a positive
number N > 1 such that ||x|, £ N|x|, for xe E,. Let & €E,, &, xeE, and
x = ¢, + &,. The following inequalities hold:

Ixla = &> + (&0 £ Nl&ls + &) £ NJ& ] + N]g]. -
We hence have

®)  lxle = inf{N([Eu]ls + [a]l2): ¥ = &+ &, Ere i} = Nx]s .

It follows from (5) that, if ||x||; = 0, then x = 0. The homogeneity of the functional
| -|I5 follows directly from homogeneity of the norms ||, and |-||,. Let

(6) x=& +&, y=n+n, and &, ,n,€kE,.
Then
Ix + ylls < &+ mfs + &+ maf2 = (J&]: + 1€202) + (Jnalls + [n2]2) -

Since these inequalities hold for all &y, &, 1y, 1 satisfying (6), the following inequality
also holds

Ix+ yls s inf ey + [&lo: x = &+ &, & e B +
+inf {[n ]y + [m2ll2s ¥ =ny + ny, my e By}
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This is the triangle inequality for the functional |- |/;. Hence the functional |-
is a norm on the space E,.

For x e E; we have

inf (& [y + [&alls x = & + &, & e B} S x| + 0] = %] -

Hence ||x||; < ”x”l for x € E,. On the other hand, if x, ¢, € E, then &, = x — &, €
€ E;. Consequently

Ixlo =& + &l = [l + (&0 = & + &)

and
Ixlly < inf{[[& ]y + [[&a]2s x = & + & Eie By} = |x]5-

The norms ||, and ||+|; are identical on the space E,.

For each x € E,, we have

x5 = inf {0l + [€2]2s x = & + &an &re B} = 0]y + [x]2 = |x],

This, together with the inequality (5), implies that the norms | +||, and |+ |5 are equi-
valent and the proof of Lemma is complete.

Proof of Corollary. By using Lemma for a countable number of steps, we can
replace the sequence of norms |+ |, by a single norm ||+|| on the space E such that
for each n the norm ||+ | restricted to the subspace E, is equivalent to the norm |+ |,.
Then the convergence I in the space E is equal to the convergence H.

2. In this part we present a theorem analogous to Theorem 1 for a linear space
endowed with a family of pseudonorms.

Theorem 2. Let a linear space E, endowed with a family of pseudonorms P,
be the union of an increasing sequence of subspaces E, such that
(7) if x¢E, then there exists a pseudonorm pe P such that inf {p(x — &);
¢€E,} > 0.
The convergence
(3) x; =7 xiff x;, > x and there exists an index n such that x; € E, for all i,
is a pseudonorm convergence.

Proof. It suffices to show that for every sequence x; such that
(3) x;€E;, \E,

there exists a continuous (with respect to the convergence J) pseudonorm ¢ such
that the sequence ¢(x;) is unbounded. Let a sequence x; satisfy (8). There exists,
by (7) and (8), a sequence of pseudonorms p; € P such that inf {p,(x; — ¢); £€ E;} >
>0 for i =1,2,.... Let r(x) = py(x) for x € E,. Arguing by induction, assume
that an extension of the pseudonorm r is defined on the space E,. Let
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r(x) = inf {r(€) + max {p,(n), ... p.(n)}; x = &+ n, L€k}
for x € E, 41 N\ E, Let Ri(x) = inf {r(x — &); £ € E;}. We shall show that Ry(x;) > 0
for i = 1,2,.... Assume, onthe contrary, that R;(x;) = 0 for some index i,. This
means that inf {r(x;, — &); ¢eE,} = 0. Consequently, there exists a sequence
x, € E;, such that r(x;, — x;) tends to zero, i.c.

inf {r(&) + max {p,(n), ..., pis(n)}; X — X, = & + 0, E€Ey)

converges to zero. Therefore, for some pair of sequences € E;, and n, € E;y + 1
such that &, + n, = X — X the sequence

(&) + max {py(me), - pig(m)}

tends to zero. Hence p; (1) converges to zero. Since n, = x — (%, + &) and x; +
+ &€ Ey, then pi(x — (x¢ + &) tends to zero. But this contradicts the condition

(8).

Now, we define the pseudonorm g

q(x) = '20“!' R{(x)

where o is a sequence of positive numbers such that

07

i
Ri(x;) .
The pseudonorm ¢ has all the required properties.

We are often concerned with the case when there is no single family of pseudonorms,
but each of the subspaces E, has its own family of pseudonorms P,. Theorem 2
is useful when every continuous pseudonorm on the subspace E, can be extended to

a continuous pseudonorm on the subspace E, . ;. For example, this is satisfied when
every family P, is countable. This follows from

1\

o;

Lemma. Let (E, P) be a linear space with a countable family of pseudonorms
(P = Py, P2, ...) and let F be a subspace of E. For every continuous pseudonorm q
on the subspace F there exists a continuous pseudonorm p on the space E such
that p(x) = q(x) for x e F.

Proof. The convergence generated by the family P is equal to the convergence
generated by the increasing sequence of pseudonorms:

4,(x) = max {p,(x), ..., p(x)} -

Let g be a continuous pseudonorm on the subspace F. We shall show that there
exists an index n, and a positive number M such that the inequality

©) 4(x) £ Mq,(x)
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holds for x € F. Assums that it is not true. Consequently, there exists a sequence
x, € F such that g(x,) > nq,(x,). Let

P

n

yn = N
a(x,)
The sequence y, converges to zero, but q(y,,) = 1 for all n, a contradiction.

Let M and n, be a pair of positive integers such that the inequality (9) holds. The
pseudonorm p defined by the following formula

p(x) = inf {q(&) + Ma,(n); x = & + 1, e F}
has the required properties.

This lemma fails when we omit the assumptions that the family P is countable.
We present an example due to J. Burzyk (communicated orally).
Let E be the space of all real valued functions on the segment [0, 1] and let P be

the family of all pseudonorms p,(x) = |x(f)|, where t &[0, 1]. For the subspace F
we take the space of all functions of the following form

x = Ax([0,1]) + é‘,l At} s

where y(A) is a characteristic function of the set A.
The functional

P (00, 11) + X, 2a{t)) = 1A

is a continuous pseudonorm on F.
Assume that there exists a continuous pseudonorm ¢ on E such that p(x) = q(x)
for x € F. Let x, = x([0, 1]). It is easy to show that there exists a decreasing sequence

of segments 4; < [0, 1] such that A; = {t,} for some point #, € [0, 1] and such that
q(x(4;)) > 0 for all i. The functions

1
NERINTA)

a(x(4)

form a sequence converging to x = 0. But, since p(x({t})) = 0 for each 1€ [0, 1],
then q(x,,) = 1 for all n. This contradiction proves that there is no continuous exten-
sion of the pseudonorm p.
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