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By a tolerance T on an algebra &/ = (A, F) we mean a reflexive and symmetric
binary relation on A satisfying with respect to each n-ary operation f € F the following
condition:

(1) (f@ay, ..., a,), f(by,....,b,))eT

for (a;, b)e T (i = 1, ..., n). The set Z(=/) of all tolerances on an algebra s/ forms
a complete algebraic lattice with respect to set inclusion (see [1] and [2]). In [3]
I. Chajda and J. Nieminen have found some conditions for the atomicity of £ (<),
where &7 is a lattice or a join-semilattice. The aim of this paper is to consider the ato-
misity of (/) when &/ is a commutative semigroup. The present results generalize
the corresponding results in [3] for semilattices.

I

Let & = (S, *) be a commutative semigroup. From (1) it follows that for each
tolerance Te £(¥) we have

(2) (au, bv)e T

whenever (a, b) e Tand (u, v) € T. If a, b € S, we denote by T(a, b) the least tolerance
on & containing the pair (a, b). It is clear that T(a, b) = T(b, a). Denote by A" the
set of all positive integers. The notation * = (S?, +) stands for & if & has an iden-
tity, otherwise it stands for & with an identity adjoined.

Lemma 1. Let & = (S, ) be a commutative semigroup and a,be€S. Then
(x, y) € T(a, b) for x * y if and only if there exist me A" and u e S* such that
either .

or

Proof. Apply (2).
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The set of all idempotents of a commutative semigroup &, if non empty, is denoted
by E(¥), and is partially ordered by: e < f if ef = e; we write e < f for e < f,
e+ f.

Lemma 2. Let & = (S, +) be a commutative semigroup, e, f, g € E(¥), a€ S and
e+f,g+alf T(e,f) = T(g, a), then g € {e, f}.

Proof. Suppose that T(e, f) = T(g, a). Then (g, a) e T(e, f) and according to
Lemma 1 there exists u € S* such that either g = eu, a = fu or g = fu, a = eu.
Without loss of generality we can suppose that g = eu and a = fu. Then we have
g = eg. Since (e, f) € T(g, a), there exist m € A" and v e S' such that either e = gv,
f=a™ore=a",f=gvIfe=gvtheng =eg = (gv)g =gv=-c If e =a™
and f = gv, then g = eg = (a™v) g = fa™ and thus we have g = fg = (gv) g =
=gv =/

Lemma 3. Let & be a commutative semigroup, e, f, g, he E(¥) and e + f, g =% h.
If T(e, f) = T(g, h), then {e, ) = {g, h}.

Proof. Easily follows from Lemma 2.

Lemma 4. Let T + idg be a tolerance on a commutative semigroup & =(S,.).
Then T is an atom of L(¥) if and only if T = T(x, y) for every pair (x,y) €T,
X F+ y.

Proof. Assume that T'is an atom of Z(&¥). If (x, y)e T and x # y, then idg +
# T(x, y) = T. Hence we have T = T(x, y).

Suppose that T = T(x, y) for a pair (x,y)eT, x + y. Let idg + K = T for
some tolerance K of #(&). Evidently, then there exists a pair (a, b) € K such that
a + b. Hence we have T = T(a, b) = K. Thus T'is an atom of £(¥).

Define a relation %2,(%) on a commutative semigroup & = (S, +) by (x, y)e€
€ #,(%) if and only if x, y € E(¥), x < y and if xu =% yu for some u € S, then there
exists v € S such that y = yuw.

Theorem 1. Let T be a tolerance on a commutative semigroup &. Let (e,f)e T
for some e, fe E(¥), e + f. Then T is an atom of the lattice £(&) if and only
if T=T(e,f) and (e, f) € Z,(¥) L #7 (¥).

Proof. Assume that T is an atom of #(&). According to Lemma 4, we have
T = T(e, f) for e, fe E(¥) and e =+ f. We shall show that either e < f or f < e.
By way of contradiction, we assume that e # ef + f. From (2) it follows that
(ef, e) € T and, by Lemma 4, we have T = T(ef, e). Since ef € E(%), from Lemma 3
it follows that efe{e,f}, which is a contradiction. We have the following pos-
sibilities:

Casel.e < f. Then e = ef. If eu & fu for some u € S, then, by (2) and Lemma 4,
we have T = T(eu, fu). Since (e, f) € T, according to Lemma 1 there exists z € S*
such that either e = euz, f = fuz or e = fuz, f = euz. If f = euz, then e = ef =
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= e(euz) = eue = f, a contradiction. Thus we have f = fuz. Put v = z for z€ S
and v = f for ze S'\ S. Hence we have f = fuv. This means that (e, /) € (%)

Case 2. f < e. Using the same method as in Case 1, we obtain (e, f) € R, (¥)

Hence T = T(e, f) and (e, f) € Z,(%) v %7 '(¥).

Conversely, suppose that T = T(e, f) for (e, ) € Z,(¥) v %1 (). Without loss
of generality we can assume that (e, f) € %,(¥). Then e < f. Hence ef = e. We shall
show that T'is an atom of £(¥). Let (x, y)e Tand x # y. By Lemma 1, there exists
z € S such that either x = ez, y = fz or x = fz, y = ez. Put u = z for ze S and
u = ffor ze S\ S. Then eu + fu. Since (e, f) € #,(¥), there exists v € S such that
f = fuv. Hence we have e = ef = e(fuv) = euv. This implies that either e = xv,
f=yvore=yv f=xv. According to Lemma 1, we have (e, /) € T(x, y). Thus
T < T(x,y) < Tand so T = T(x, y). By Lemma 4, T'is an atom of £(¥).

Now, define a relation #,(¥) on a commutative semigroup & = (S, +) by (x, y) e
€ #,(%) if and only if

(i) x € E(¥) and y is a periodic element of % such that x e [y], where by [y]
we denote the subsemigroup of & generated by y;
(ii) [] is either a cyclic subgroup of the prime order or card [y] = 2;
(i) if xu # yu for some u € S, then there exists v € S such that y = yuw.

We shall consider tolerances T of £(&) satisfying the following implication:
(3) if (f,9)eT for f,geE(#), then f=g.

Theorem 2. Let T be a tolerance on a commutative semigroup & = (S, +). Let
(e, b) € T for some e€ E(¥) and be S\E(¥). Then T is an atom of the lattice
L(&) satisfying (3) if and only if T = T(e, b) and (e, b) € Z,(¥).

Proof. Suppose that T'is an atom of #(&) satisfying the condition (3). Then, by
Lemma 4, we have T = T(e, b).

Case 1. Assume that e + be. From (2) and Lemma 4 it follows that T = T(e, be).
According to Lemma 1, there exist ze S' and me A such that either e = ez,
b = (be)"z or e = (be)" z, b = ez. Then be = b.

Subcase la. Suppose that b is periodic. Then there exists n € 4" such that b" e
€ E(¥). By Lemma 1, we have (e, b") € T. From (3) it follows that b" = e and so [b]
is a cyclic subgroup of &. We shall show that m = card [b] is prime. By way of
contradiction, we assume that k/m for some ke .4, 1 <k < m. Then e # b
According to Lemma 1, we have (e, b*) € Tand, by Lemma 4, we obtain T = T(e, b").
By Lemma 1, there exist w e S* and r e 4" such that either e = ew, b = (b*)' w or
b = ew, e = (b") w. Then either b = b* or e = b*b. This implies that either
m|(kr — 1) or m[(kr + 1), which is a contradiction.

Suppose that eu = bu for some u € S. Then, by (2) and Lemma 4, we have T =
= T(eu, bu). According to Lemma 1, there exist x € S* and s € 4" such that either
e = (eu)’x, b = (bu)*x or e = (bu)*x, b = (eu)’ x. Suppose that b = (bu)* x. If
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s> 1, then b = buv, where v = (bu)’ ' x€S. If s =1, then b = bux = b(ux)®
and so b = buv, where v = ux?>€S. Assume that e = (bu)s x. Then b = be =
= b(bu)* x. Thus we have b = buv, where v = b(buy 'xeS if s> 1 and v =
= bx e Sif s = 1. This gives in both cases (e, b) € Z,(¥).

Subcase 1b. Suppose that b is not periodic. Then e # b?. According to Lemmas 1
and 4, we have T = T(e, b*). From Lemma 1 it follows that there exist z € S* and
me A such that either e = ez, b = b*"z or e = b*"™z, b = ez. Then either b =
= b2z = b?"ez = b®™e = b®™ or e = b?™z = b*"ez = >+ a contradiction.

Case 2. Assume that e = be.

Subcase 2a. Suppose that b is periodic. Then there exists m € A4 such that
b™ € E(%). From Lemma 1 it follows that (e, b™) € T and so, by (3), we have b™ = e.
Thus b" = e for all n = m, ne 4. Now, we shall show that b?> = e. By way of
contradiction, we assume that e & b2 From Lemmas 1 and 4 it follows that T =
= T(e, b?) and according to Lemma 1, there exist z € S* and k € 4" such that either
e = ez, b = b*z or e = b*z, b = ez. Suppose that e = ez and b = b**z. Then
we can prove by induction that e = ez” and b = b?*" "*1z" for all re A It is
clear that there exists s € 4" such that 2ks — s + 1 = m. Hence we have b =
= bZs~st1z5 = 075 = ¢, which is a contradiction. If e = b%*z and b = ez, then
e = be = (ez) e = ez = b, a contradiction. Therefore e = b* and so card [b] = 2.

Suppose that eu % bu for some u e S. From Lemmas 1 and 4 it follows that
T = T(eu, bu). By Lemma 1, there exist x € S' and re€ 4" such that either e =
= (eu)"x, b = (bu) x or e = (bu) x, b = (eu) x. Since e # b, we have r = 1.
If b = eux, then e = be = (eux) e = eux = b, a contradiction. We can suppose
that b = bux. Then b = buv for v = ux? € S. This means that (e, b) € Z,(¥).

Subcase 2b. Suppose that b is not periodic. Then e #+ b* and so, by Lemmas 1
and 4, we have T = T(e, b?). From Lemma 1 it follows that there exist z € S* and
m € A such that either e = ez, b = b*"z or e = b>™z, b = ez. Assume that e = ez
and b = b*"z. Put y = b*" 2z for m > 1 and y = z for m = 1. Hence we have
b = byb and so ey = e and by = (by)’ € E(%). Lemma 1 implies that (ey, by)e T
and, by (3), we have by = e = ey. Thus b = byb = eb = e, which is a contradic-
tion. If b = ez, then e = eb = e(ez) = ez = b, a contradiction.

Conversely, suppose that T = T(e, b) for (e, b) € Z,(¥). We shall show that T is
an atom of £(¥). Let (x, y)e T and x # y. Evidently T(x, y) = T. According to
Lemma 1, there exist ze S' and m € A" such that either x = ez, y = b™z or x =
= b"z, y = ez. Without loss of generality we can suppose that x = ez and y = b™z.

Case a. [b] is a cylic subgroup of the prime order p. Putu = zforze Sandu = e
for ze S\ S. Then we have x = eu and y = b™u. We have eu # bu. Indeed, if
eu = bu, then x = eu = bu = b*u = ... = b™u = y, which is a contradiction.
Since (e, b) € Z,(&), there exists ve S such that b = buv. Then b™ = b™uv = yv
and e = b? = bPuv = euv = xv. Since b™ = e, there exists n € A such that (b"')" =
= b. Then, by Lemma 1, we have (e, b) = (", (b")") = (x"0", y"v") € T(x, y).
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Case b. card [b] = 2 and e = eb = b*. Since x + y, we have x = ez and y = bz
for some ze S'. If x = e and y = b, then (e, b) = (x, y) e T(x, y). If z€ S, then
there exists v € S such that b = bzv = yv. Thus we have e = eb = e(bzu) = ezv =
= xv. According to Lemma 1, we obtain (e, b) = (xv, yv) € T(x, y).

This gives in both cases T = T(e, b) < T(x, y)and so T = T(x, y). From Lemma 4
it follows that T'is an atom of Z(¥).

Finally, we shall prove that T satisfies (3). Let (f, g) € T(e, b) for f, g € E().
Then, by Lemma 1, there exist w € S! and k € /" such that either f = ew, g = b*w
or f = b*w, g = ew. We can suppose that f = ew and g = b*w. Then we have
ew = ew” and b*w = b*w?. If [b] is a cyclic subgroup of &, then there exists b~
such that b™*b* = e. Hence we have f = ew = b *b*w = b *pZy2 — proy? =
= bYew = b'w = g. If card[b] =2 and e =eb = b> then f = ew = ew? =
= (b*)w? = b'w = g.

Define a relation 25(¥) on a commutative semigroup & = (S, +) by (x, y) e
€ (&) if and only if

(i) x, ye SNE(¥) and x* = xy = y*;

(i) xu € E(#) for some u € S if and only if yu € E(&);

(iii) if xu & yu for some u € S, then there exists ve S such that x = xuv and
y = yuv.

By induction we can prove the following implication:

4 if x>?=xy=y> for x,yeS, then x"=y" forall
neAN, n=2.

Indeed, x"*! = x"x = y"x = " Ixy = y" "1y = " if x" = y"and n = 2.

We shall consider tolerances T of ,?(V) satisfying the following implication

(%) if (e,c)eT and eeE(¥), then e=c.

Theorem 3. Let T be a tolerance on a commutative semigroup & = (S, +). Let
(a, b)e T for some a, be S\NE(¥), a % b. Then T is an atom of the lattice ¥(¥)
satisfying (5) if and only if T = T(a, b) and (a, b) € Z(¥).

Proof. Suppose that T'is an atom of £(&) satisfying the condition (5). Then, by
Lemma 4, we have T = T(a, b). We shall show that a*> = ab. By way of contradic-
tion, we assume that a> + ab. From Lemma 1 and 4 it follows that T = T(a?, ab).
According to Lemma 1, there exist z € S' and m € A" such that either a = a*"z,
b = a"b"z or a = a™b™z, b = a*™z. We have the following possibilities:

Case 1. a = a®z and b = a"b™z. From Lemma 1 it follows that (v, w) =
= (a®""'z,a" " 'b"z) e T, where a® = 1 in & It is easy to show that v> = v and,
by (5), we have v = w. This implies that a = av = aw = b, which is a contradiction.

Case 2. a = a™"™z and b = a®"z. Then a™ = a"b"z" and b™ = a?'z™, where
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n = m? Putting y = a"z"*!, we have a = a"(a*z")z =a’u and b =
= a™(a"b"z™) z = a"b"u, which is a contradiction by Case 1.
Consequently, a®> = ab. Dually we obtain that b = ab.
Let au € E(%) for some u € S. From Lemma 1 it follows that (au, bu) € T and so,
by (5), we have bu = au € E(%). If bu € E(%), then analogously we obtain au € E(¥).
Suppose that au + bu for some u € S. From Lemmas 1 and 4 it follows that T =
= T(au, bu). By Lemma 1, there exist xe S* and ne 4 such that either a =
= (au)'x, b = (bu)" x or a = (bu)" x, b = (au)" x. According to (4), we haven = 1.
Case 1. a = aux and b = bux. If x € S, then we put v = x. Therefore a = auv

and b = buv. If xe S'\ S, then we have a = au and b = bu. Then a = au® and
b = bu? and so a = auv and b = buv for v = u.

Case2.a = bux and b = qux. Putting v = ux? € S we have a = bux = au’x? =
= auv and b = aux = bu’x? = buv.

Conversely, suppose that T = T(a, b) for (a, b) € #5(#). We shall show that T
is an atom of Z(S). Let (x, y) € Tand x + y. It is clear that T(x, y) < T. By Lemma
1 and (4), there exists z € S* such that either x = az, y = bz or x = bz, y = az.
Without loss of generality we can suppose that x = az and y = bz. If ze S'\ S,
then (a, b) = (x, y) € T(x, y). If z € S, then there exists v € S such that a = azv = xv
and b = bzv = yv. According to Lemma 1, we have (a, b) € T(x, y). This gives in
both cases T = T(x, y) and so, by Lemma 4, Tis an atom of £(¥).

Finally, we shall show that T satisfies (5). Let (e, ¢) € T(a, b) for e € E(). By way
of contradiction, we assume that e = ¢. Then, by Lemma 1 and (4), there exists
w e S* such that either e = aw, ¢ = bw or e = bw, ¢ = aw. We can suppose that
e=aw, ¢ =bw and weS. Since (a, b) € Z;(#), we have bw e E(%#). Therefore
e =¢? = a’w? = b?>w? = bw = ¢, a contradiction.

Define a relation %(%) on a commutative semigroup & by 2(¥) = %,(¥) v
U Z5(%) U #5(F). The following result we obtain from Theorems 1, 2 and 3.

Theorem 4. Let T be a tolerance on a commutative semigroup &. Then T is an
atom of the lattice (&) if and only if T = T(a, b) for some pair (a, b) e R(¥).
From this and from Lemma 1 we have

Theorem 5. The lattice () of all tolerances on a commutative semigroup
& = (8, +) is atomic if and only if for any pair (a, b) of elements a,be S, a + b,
there exist me A" and u € S* such that (a™u, b™u) e (F) L B~ ().

II

In this section we shall study some consequences of Theorems 1—5 for regular
commutative semigroups and semilattices. Recall that every regular commutative
semigroup & is a semilattice fo commutative groups (see [4]) Denote by Z the set
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of all integers. An element z of &% belongs to the maximal subgroup G, containing
an idempotent e if and only if z° = e. It is known that for elements x, y of & and
for ke Z we have

(6) (xp)t = xty-.

Proposition 1. Let & be a regular commutative semigroup. Then the following

conditions are equivalent:
() (%) e 2,(2);

(i) x, ye E(¥), x < y and for any z € E(¥), z < y, we have z < x.

(iii) x, y € E(¥), x < y and for any z € E(¥), z < y, we have zx = zy.

Proof. (i) = (ii). Suppose that (x, y)e %,(%). Then x, ye E(¥) and x < y.
Let z < y for some z € E(&). Then zy = z. If xz = z, then there exists v € S such
that y = yzv £ z, a contradiction. Thus we have xz = z, which means z < x.

(if) = (iii). Let x < y for x, y € E(¥). If z < y for some z € E(¥), then z < x
and so zx = z = zy.

(iii) = (i). Let x < y for x, y € E(%). This means x = xy. Suppose that xu + yu
for some u € S. Then yu® < y. If yu® < y, then, by (iii), we have (yu®) x = (yu°) y
and so xu® = xyu® = yu®. Therefore xu = xu’u = yu®u = yu, a contradiction.
Hence we have y = yu® = yuu~'. This implies that (x, y) € Z,(%).

Proposition 2. Let & be a regular commutative semigroup. Then the following
conditions are equivalent:

() (x. ) o)

(il) x € E(¥), y is a periodic element of & such that x € [y], where [y] is a sub-
group of & of a prime order, and if xz * zy for some z € E(y), then x < z.

Proof. (i) = (ii). Suppose that (x, y) € Z,(¥). Then x € E(#) and x € [ y], where y
is a periodic element of .%. Since & is a union of groups, [ y] is a subgroup of & of a
primer order. Assume that xz # yz for some z € E(¥). Then there exists v € S such
that y = yzv and so, by (6), we have x = y° = y°z%° = xzv°. Thus we have x < z.

(ii) = (i). Suppose that x € E(#), y is a periodic element of & such that x € [y],
where [y] is a subgroup of & of a prime order. If xu = yu for some u € S, then
xu® + yu®. Thus, by hypothesis, we have x < u°. This means that x = xu® and
therefore we obtain y = yx = yxu® = yu® = yuu~'. Hence (x, y) € Z,().

Proposition 3. If & is.a regular commutative semigroup, then #;(&) = 0.

Proof. If (x, y) € #5(#), then x? = xy = y?and x + y. According to (6), we have
x? = (x°)? = (»°)> = »°. This implies that the elements x, y belong to the same
maximal subgroup of & and so x = y, which is a contradiction.

Lemma 5. Let & be a regular commutative semigroup. Then (x, Y) € gi’(y)
if and only if (x™*, y™ ') € #(%).
Proof. It follows from Propositions 1, 2 and 3.

491



Theorem 6. The lattice #(¥) of all tolerances on a regular commutative semi-
group & = (S, ) is atomic if and only if the following conditions are satisfied.

(i) for any pair (e, f) of idempotents e, f€ S, e < f, there exists g € E(&) such
that (eg, fg) € #,(¥);

(i) for any pair (e, c) of elements e € E(¥), ce S\ E(¥) and e = c°, there exist
me N and g e E(¥) such that (eg, c"g) € Z,().

Proof. 1. Suppose that the lattice £(%) is atomic.

(i) Let e, f€ E(¥) and e < f. According to Theorem 5, there exists u € S' such
that (eu, fu) e () U #~1(&). We can suppose that u € S. because if u€ S'\S,
then we put u = f. Thus we have eu = fu. We shall show that fu € E(¥). By way of
contradiction, we assume that fu ¢ E(&). Then by Propositions 1, 2 and 3 we have
eu = (fu)® € E(¥). According to (6), we obtain eu = eu®u = (eu)’u = (fu)’u =
= fu’u = fu, a contradiction. Hence fu € E(%). Thus we have eu = e(fu) € E(&).
Put g = u° Then eg = eu® = (eu)’ = eu. Similarly we obtain fg = fu. Since
e < f, we have eg < fg and by Proposition 1 it follows that (eg, fg) € #,(¥).

(i) Let e E(¥#), ce SNE(¥) and e = ¢°. According to Theorem 5, there exist
me N and ueS* such that (eu, c"u)e R(F) v £~ '(#). We can suppose that
u € S, because if u € S*\ S, then we put u = e. Hence by (6) we have (eu)’ = eu® =
= (c"u)®. According to Propositions 1, 2 and 3, we obtain (eu, c"u) e Z,(¥) U
U 25 (&) Put g = u®. We have the following possibilities:

Case 1. eu € E(¥).

It follows from (6) that eu = (eu)’ = eu® = eg. Finally, we have ¢"u = c"eu =
= c"eg = c¢"g. This implies that (eg, ¢"g) € Z,(¥).

Case 2. c"u € E(¥).

By (6) we have ¢"u = (c"u)® = eg and eu = (eu) (c"u)™' = ¢™"g. From this
follows that (¢ ™™g, eg) € #; (%) and so, by Lemma 5 and (6), we have (eg, c"g) €
€ ().

2. Let the conditions (i) and (ii) be satisfied. Using Theorem 5 we shall show that
the lattice #(&) is atomic. Let a, be S and a # b. Put e = a° and f = b°.

Case 1. af = be.

Then we have ab™! = afb™! = ebb™! = ef. If e = f, then a = ae = af = be =
= bf = b, which is a contradiction. Thus we have e = f. This implies that either
e + ef or ef + f. Without loss of generality we can assume that ef + fand so ef < f.
From (i) it follows that there exists g € E(&) such that (efg, fg) € #,(&). Put u =
= b™1g. Hence we have au = ab™ g = efg and bu = bb~'g = fg. Therefore
(au, bu) € 2,(%).

Case 2. af + be.

If ef = a™'b, then af = aef = aa~'b = be, a contradiction. Thus we have
ef + a~'b. Put ¢ = a~'b. By (6) we obtain c® = ef. According to (ii), there exist

—-m
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me A and g € E(¥) such that (efg, c"g) € #,(¥). Putting u = a™"fg we obtain
a"u = a"a""fg = efg and  b™u = b"a""fg = (a~'b)"g = ¢"g. Therefore
(a™u, b™u) € 25(¥).

Il

Note 1. Let & be a regular commutative semigroup. The condition (1) of Theorem
6 is satisfied if and only if for any pair (e, f) of idempotents of &, e < f, there exists
t € E(¥) such that et < ft and eh = fh for all h € E(), where h < t.

Proof. Suppose that (eg, fg) € Z,(¥) for e, f, g € E(¥) with e < f. Put t = fg.
If h < t, he E(¥), then h < g. According to Proposition 1, we have h(eg) = h(fg)
and so eh = fh.

Conversely, let e, f' € E(&) and assume that et < f7 for some 7 € E(%) and eh = fh
for all he E(¥), where h < t. We shall show that (et, f1) € #,(¥). If z < ft for
some z € E(¥), then z < t and so (ef) z = ez = fz = (f) z. According to Proposi-
tion 1, we have (et, ft) € 2,(%).

Corollary 1. The lattice Z(&) of all tolerances on a semilattice & = (S, *) is
atomic if and only if for any pair (e, f) of elements e,f€ S, e < f, there exists
t e S such that et < ft and eh = fh forall h <t ,heS.

Proof. It follows from Theorem 6 and Note 1.

Note 2. See the dual of Theorem 4 of [3].

I

A regular commutative semigroup & = (S, ) can be found to be an algebra

&* = (S, -, 1). From (1) it follows that a tolerance T on &* is a tolerance on
& satisfying the following implication:
(7 If (a,b)eT, then (a ', b7 ')eT.

Let T be a tolerance of £(). By T* we denote the relation on S defined by
(8) (a, b)eT* if and only if (a_l,b—l)eT.

Using (6) we can easily show that T*isa tolerance on . Further, we can prove that =
is an involutional order-automorphism on #(&). This means that for T, U € £(¥)
we have

) Tc U= T*c U*
and
(10) (T** =T.

From (7) and (8) it follows that
L(F*) = {Te £(¥); T=T*}.
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If a, b e S, we denote by I(a, b) the least tolerance on &* = (S, -, ~') containing
the pair (a, b). It is clear that

(11) T(a, b) < I(a, b) .

Lemma 6. Let & = (S, *) be a regular commutative semigroup and a,beS.
Then (x, y) € I(a, b) for x + y if and only if there exist k € Z and u € S* such that
either

x=du, y=>bu

or
x=0bu, y=du.

Proof. Apply (2) and (7).

Theorem 7. Let & be a regular commutative semigroup. £(¥*) is a complete
sublattice of 3(?). Moreover the following conditions are equivalent:
(i) L(7*) = 2(2);
(i) I(a, b) = T(a, b) for all elements a, b of &, a =% b;
(iif) & is either periodic or E(¥) contains the greatest element f and the maximal
subgroup G, of & is periodic for each e < f.

Proof. (i) = (ii). Evident.

(ii) = (iii). Suppose the condition (ii) is satisfied. We shall prove the following
implication:
(12) If an element x of & is not periodic, then x° is the greatest element in E(S).

Let xe S and & = (S, +). Suppose that x is not periodic. For an arbitrary idem-
potent e of &, by Lemma 6, we have (e, x ') el(e, x) = T(e, x). According to
Lemma 1, there exist u € S* and m € 4 such that either

(13) e=eu and x!'=x"u
or
(14) e=x"u and x!'=ecu.

First, we shall show that f = x° is a maximal element in E(%). Suppose that / < e
for some e e E(¥). If (13) is satisfied, then x™! = x™u = x"fu = x"feu = x"fe =
= x"f = x™ and so x is a periodic element, which is a contradiction. There holds
(14) and so f = fe = fx"u = x"u = e.

Now, we shall prove that f is the greatest element in E(%). Let e be an arbitrary
idempotent of . Suppose that (13) holds. It is clear that u € S. Put g = u°. Then,
by (6), we have e = (eu)’ = eg and f = (x!)° = (x"u)° = fg. This means that
e < g and f £ g. The idempotent f is maximal in E(,?), hence f = g. Thus we have
e < f. If (14) is satisfied, then ef = x™uf = x™u = e. Therefore we have e < f.

The rest of the proof follows immediately from (12).

(iif) = (i). Suppose that & satisfies the condition (iii). To prove (i) it suffices to
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show £(¥) = #(#*). This means that every tolerance Te £(&) fulfils the implica-
tion (7). Let (x, y) e T. Put e = x° and g = »°.

Case 1. Let e = g. Then (x, y) € Timplies (y " 'xx~*, y~*yx~*') € T. Thus we have
("% x ') eT hence (x ',y )eT.

Case 2. Let e + g.

Subcase 2a. The elements x, y are periodic. Then there exists m € A", m > 1, such
that x” = e and y" = g. According to (2), we have (x ™%, y~) = (x"" 1, y" ) e T.

Subcase 2b. One of the elements x, y is not periodic. Without loss of generality
we can suppose that x is not periodic. Then g < e and so ge = g. This implies that
yx~ 1 belongs to the maximal subgroup G,. Hence yx~ ! is a periodic element. There
exists m € A" such that xy~' = (yx~ 1)~ = (yx~!)". Then, by (2), (x, y) € Timplies
that (e, yx ') = (xx™', ypx ') e Tand so (e, xy~ ') = (¢”, (yx*)") e T. Since eg =
=g, we have y™' =gy ' =egy ! =ey ! =x"(xy~!) and thus, by (2), we
obtain (x™ 1, ™) = (x"'e,x (xy 1) e T

Using the same method of proof as in Lemma 4, we obtain:

Lemma 7. Let I & idg be a tolerance on a regular commutative semigroup
S* = (&, -, " "). Thenl is an atom of L(&*) if and only if I = I(x, y) for any.pair
(x,y)el, x * y.

Theorem 8. Let & be a regular commutative semigroup. Then the atoms of £(¥)
and of ZL(F*) coincide.

Proof. Let & = (S, +) be a regular commutative semigroup. Let T be an atom in
(). From Theorem 4 it follows that T = T(a, b) for some pair (a, b) € Z().
According to Propositions 1, 2 and 3, the elements a, b are periodic. By Lemma 1
and Lemma 6, we have T(a, b) = I(a, b). Therefore Te #(¥*). From Theorem 7 it
follows that T'is an atom in Z(&*).

Let I be an atom in £(*). We shall show that I is an atom in Z(%).

Case 1. Suppose that there exist e, f € E(%) such that (e, f) eI and e < f. Since I
is an atom in Z(¥*), by Lemma 7 we have I = I(e, f). Let (x, y)eI for some
x,y€S and x # y. According to Lemma 7, we obtain I(x, y) = I(e, /). Without
loss of generality, by Lemma 6, we can suppose that e = x*u, f = y*u for some k e
and some u € S'. We shall show that (e, f) € T(x, y). If k > 0, then, by Lemma 1,
we have (e, f) e T(x, y). If k < 0, then according to (6), we obtain e = x *u™",
f =y *u"tandso (e, f) e T(x, y). Suppose that k = 0. Then e = x% and [ = y°u.
By (6) we have e = x°u°, f = y°u® and so e < x°, f < )°. Since (x, y) €I(e, f),
according to Lemma 6, we have either x = ev, y = fv or x = fv, y = ev for some
ve S If y = ev, then, by (6), we have y° = ev° and so y° < e. This implies that
f = e, which is a contradiction. Hence we have x = ev and y = fv. From (6) it
follows that x° = ev®, »° = fv° and so x° < e, y° < f. Therefore x° = e and
y° = f. Further, we have x0™! = evv™! = e0® = x® = eand yo™ ! = foo™! = fi° =
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= y° = f. According to Lemma 1, we obtain (e, f) = (xv™1, yo™*) € T(x, y). Using
Lemma 1 and (11), we get I = T(e, f) < T(x, y) < I(x, y) = I and so I = T(x, y)
for every pair (x, y) €I, x + y. From Lemma 4 it follows that I is an atom in ().

Case 2. Suppose that the following implication is true:
(15) If (e,f)el, e feE(¥) and e=f, then e=f.

Since idg # I, there exist a, b € S such that (a, b) el and a =+ b. Put a° = e and
b° = f. From (7) and (2) it follows that (e, /) = (aa™*, bb™") €I and so (e, ef) €I
and (ef, f) € I. According to (15), we have e = ef = f. Put ¢ = ba™'. Since a # b,
we have e =% c. By (2), we obtain (e, ¢) = (aa™', ba™") e I. We shall show that c is
periodic. By way of contradiction, we assume that ¢ is not periodic. Then e # c¢?.
From (2) it follows that (e, ¢?) € I. Since I is an atom in Z(¥*), we have I(e, ¢*) =
= I = I(e, c). According to Lemma 6, there exist u € S* and k € Z such that either
e = eu, c = c**u or e = ¢**u, ¢ = eu. Hence we have either ¢ = ¢** or e = ¢**1,
which is a contradiction in both cases. Therefore the element c is periodic.

Now, we shall prove that I = I(e, ¢) is an atom in £(¥). Let (x, y) eI for some
x, y€ Sand x + y.Using the same method of proof as at the beginning of Case 2 we
obtain x° = . Since I is an atom in £(¥*), according to Lemma 7, we have
I(e, ¢) = I = I(x, y). Lemma 6 implies that there exist k € 2 and u € S* such that
either e = x*u, ¢ = y*u or e = y*u, ¢ = x*u. Without loss of generality we can
suppose that e = x*u, ¢ = y*u. Since e + ¢, we have k # 0. If k > 0, then from
Lemma 1 it follows that (e, ¢)e T(x, y). If k < 0, then, by (6), we obtain e =
=x"*u"' ¢t = y*u~* and so (e, ¢c"') e T(x, y). According to Lemma 1,
Lemma 6 and (11), we have I =I(e,c) < T(e, ¢) nT(e, c™!) = T(x, y) =
< I(x, y) = I, because c¢ is a periodic element of . Hence I = T(x, y) for every
pair (x, y) €I, x # y. Lemma 4 implies that I in an atom is £(&).

Theorem 9. Let & be a regular commutative semigroup. Then the lattice L()
is atomic if and only if the lattice 3(.9’*) is atomic.

Proof. Let & = (S, +) be a regular commutative semigroup. Suppose that the
lattice 3(9’) is atomic. From Theorem 7 and Theorem 8 it follows that the lattice
Z(F*) is atomic.

Now, assume that the lattice &(%*) is atomic. Using Theorem 6 we shall show that
the lattice #(&) is atomic.

Let e, fe E(¥), e < f. According to Theorem 8 and Theorem 4, there exists
a pair (a, b) € Z(&) such that (a, b) € I(e, f). Without loss of generality we can sup-
pose (by Lemma 6) that a = eu, b = fu for some u e S*. If eu® = fu°, then a =
= eu®u = fu®u = b, which is a contradiction. Thus, by (6), we have a® = eu® +
+ fu® = b° and so according to Propositions 1, 2 and 3, we obtain that (a, b) €
€ R,(&). Therefore (eu®, fu®) = (a° b°) = (a, b) € #,(¥).

Let ec E(&), ce SNE() and ¢® = e. According to Theorem 8 and Theorem 4,
there exists a pair (a, b) € (&) such that (a, b) € I(e, ¢). From Lemma 6 it follows
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that either a = eu, b = c*u or a = c*u, b = eu for some u € S! and some ke %,
k =+ 0. Using (6) we have a® = eu® = b° and so, by Propositions 1, 2 and 3 we obtain
that (a, b) € Z,(%). Thus we have a = a® and ab = b.

Case 1. Suppose that @ = eu and b = c*u. Then a = e(eu) = ea and b = ab =
= (ea) (*u) = c*a* = c*a. If k > 0, then (ea, c*a) = (a, b) € Z,(¥). If k < 0, then,
by Lemma 5 and (6), we have (ea, ¢ *a) = (a, b™") € Z,(¥).

Case 2. Suppose that a = c*u and b = eu. Then a = (cu) a = (c*u) (eu®) =
= e(c*u) = ea and by (6) we have b = ab =a 'b = (¢ *u"") (eu) = ¢ *eu® =
= ¢ *a. If k > 0, then according to Lemma 5 and (6), we have (ea, c*a) = (a, b~ ') €
€ R,(#). If k < 0, then (ea, c"*a) = (a, b) € Z,(¥).

Recall that a tolerance T on an algebra & is a congruence on & if and only if it
is transitive. By () we denote the lattice of all congruences on /. It is well known
(see Theorem 7.36 of [4]) that (%) = €(&*) for every regular commutative semi-
group. This implies that ¢(¥) = L(F*) = L(¥) for every regular commutative
semigroup. Further, it is known (see [5] and [6]) that for a commutative semigroup &
with at least three elements we have 4(¥) = £(¥) if and only if & is a group.
Now, we shall consider the case when (&) = Z£(&*).

Theorem 10. Let & be a regular commutative semigroup with at least there ele-
ments. Then the following conditions on & are equivalent:

(i) 6(#) = 2(#);
(i) €(#) = 2(*);
(i) & is a group.
Proof. (i) = (ii). Evident.
(i) =>(iii). Let & = (S, ) be a regular commutative semigroup. First, we shall
prove the following implication:

(16) If in & there exist elements e, a, b such that ee E(¥), e < a°, e < b° and
a # b, then €(¥) + L(7%).

Indeed, we define a relation I on S as follows: (x, y) €I if and only if either x = y
or x° < eor y° £ e. It is easy to show that I is a tolerance on &*. Clearly (a, e) €I,
(e, b) eI and (a, b) ¢ I. Hence I is not transitive and so I € Z(F*)\ 6(¥).

Now, we can prove the implication (ii) = (iii). By way of contradiction, we assume
that a regular commutative semigroup & (with card S = 3) is no group and satisfies
the condition ¢(¥) = £(S*).

Case 1. card E(%#) 2 3. It can be shown that there exist e, f, g € E(¥) such that
e<f,e<gandf+ g From (16) it follows that (&) + £(*), which is a con-
tradiction.

Case 2. card E(¥) = 2. Then E(¥) = {e, f}, where e < f.
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Subcase 2a. There exists ¢ € S such that ¢ # f and ¢® = f. According to (16),
we have (&) + Z(¥*), a contradiction.

Subcase 2b. For every z€ S, z° = f, we have z = f. Define a relation I on &
as follows: (x, y) e I if and only if either x° = »° or (x, y) = (e, ) or (x, y) = (/. ).
It is easy to show that I is a tolerance on &* and so, by hypothesis, I is a congruence
on . Since card S = 3, there exists ce€ S, ¢ = e and ¢ % e. We have (c,e)el,
(e, f) eI and (c, f) ¢ 1. Hence I is not transitive, which is a contradiction.

(iii) = (i). This is well known (see [5]).
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