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This paper is intended to clarify some basic geometric structures related with the
higher order Hamilton formalism in arbitrary fibred manifolds. Using a suitable
generalization of the formal exterior differentiation, we show that any r-th order
Lagrangian determines a family of the Poincaré-Cartan forms, which is reduced to
a single form only if r < 2 or the base manifold X is one-dimensional. For dim X =1,
we then derive a relation generalizing the so-called basic theorem of the first order
Hamilton formalism in fibred manifolds deduced by Goldschmidt and Sternberg,
[2]. — Our consideration is in the category C*.

1. A general form of the variational formula. Given any fibred manifold n: Y —» X,
we denote by 7,: J"Y — X its r-th jet prolongation and by n): J'Y - J°Y,0 < s < r,
(J°Y = Y) the jet projections. All morphisms are assumed to be base-preserving.

For any morphism ¢: J'Y - A*T*X, one defines its formal exterior differential
Dg: J"PY - AFTIT*X by
0 Do(7"*'s) = d(e -79)
for every section s of Y, [3], [8]. If

xLyP i j,...=1,..,n=dmX, p=1,...,m=dimY - dimX,

are some local fibre coordinates on Y, y?, ..., y# . are the induced coordinates
on J"Y and the coordinate expression of ¢ is

(2 o =a;. (X, 7 ¥ ¥h ) dxT A A dx,
then

(3) D¢ = Dya;,..;, dx' A dx'* A ... A'dx,
provided

4) D.f = 0.f + (0,/) yh + ... + (357f) Yo u

with 0, = 0[ox', 8, = 0[oy”, ..., &)'"r = 0]dy” ;, means the formal (or total)
derivative of a function f: J'Y —» R. Clearly, DD¢ = 0. It is well-known that
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Jr+1y — J'Yis an affine bundle, whose associated vector bundle is the pullback of
VY ® S"H1T*X over J'Y, where VY means the vertical tangent bundle of Y and S
denotes the symmetric tensor product. By (3) and (4), De: J"*'Y - AF*1T*X is
an affine morphism for every ¢.

Given a projectable vector field # on Y, we denote by J'y the vector field on J'Y
induced by means of flows

(5) exp (tJ) = J'(expt n) .
If n = n7(x, ) 0, is a vertical vector field, then the coordinate expression of Jn is
(6) Jn=n"d, + Dnf 6; + ...+ Dj..;n" ai""j’.

Using (3) and (6), one verifies easily

Lemma 1. For every morphism A:J'Y —» V*JY @ A*T*X over the identity
of J1Y, q £ r, there exists a unique morphism DA: J*™™1Y - V*J1t1y @ AFPIT*X
satisfying
() (DA, J** 'y = D({4, J%))
for every vertical vector field n on Y.

In coordinates, if

(®) A= (ay,dy? + .o+ ali s dy? )@ dxt AL A dx,
then
9) DA = (Dyayi,.i, dy° + @i Ayl + ..o + Dyaliyds dyf o+

Jueed P 1 iy
+ alie dyf ) @ dxt A dxT AL A dx,

Obviously, DA is an affine morphism and it holds DDA = 0.
Define K; by an exact sequence

(10) 0- K, > VJIY—="""VIY->0, s=q,

where Vr; means the vertical tangent map to 7. It is well-known that Kg"l is the
pullback of VY ® S’T*X over J?Y. We have a sequence of inclusions

- -2

(11) Ki"' 5> KI™? > ... > K] > VJiY,
which induces the dual sequence of epimorphisms

(12) V*JUY - KJ* - ... - KI7* — KiT1*

A morphism A4:J'Y —» V*J7Y @ A*T*X will be called graded if there exist
Ay, ..., A, such that the following diagram commutes
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JY A VR @ AFTFX

Jr—lY A K‘?* ®AkT*X
! !

r-q
l nr—q—]

Jroay >4a Kg—l* ®/\RT*X

(13)

where the arrows in the second column are the tensor products of (12) and the
identity of A¥T*X. Clearly, if 4 is graded, then DA is also graded.

We define an r-th order Lagrangian A on Y as a morphism A: J'Y -» A"T*X,
[3], [4], [8]- In coordinates,

A= L(x,yP pE L yh s )dxt A LA dxT
Its vertical differential VJ'Y - A"T*X will be interpreted as a map 64: J'Y —
> V'Y @ N'T*X.

Proposition 1. For any r-th order Lagrangian A on Y, there exist a graded mor-
phism M: J* 1Y —» V*J'"1Y ® A" 'T*X and a unique Euler morphism E: J*'Y —
- V¥*Y® A'T*X such that

(14) 52 =DM +E.

For r =1 or n =1, M is uniquely determined. If r = 2 and n = 2, any other
morphism with this property is of the form M + DC, where C is any graded
morphism C: J*72Y - V*J' 2Y @ A" 2T*X.

Proof. Write w; = (9/0x") 1 dx' A ... A dx" and
(15) M = (b, dy” + bjidy? + ... + bJ 7 dyr )@ o,
(16) E=(e,dy’) @ dx' A ... Adx",
so that (14) is equivalent to
a:;th — b;,jln-.ir)
i - Dbt 4 byt
d,L=D;bl + e,
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where the round bracket denotes symmetrization. Therefore,

L Lo ol i)
bll,""’" — 6:,""1’L+ c.(r,p Jr’ c;n Ur-1Jr) — 0,

j1eed j1eend) 1o dicd JieeeJ JieeUr=1Ji)
b;ln-lk —_ aIJ’IkaL _ Djb:,' Jid Cp' Jr , ¢! R

e, = 0,L — D;b?

JUp >

where C;L-Jk are any functions on J?' Y antisymmetric in j,_, and j,. Hence
D,.jc{;""j“"zij = 0, which implies that

(17) e, =0,L—D; oL+ ... + (=1)"Dy.;, &L

is uniquely determined. Further, the space of all cii~Jr is the pullback over J'Y of
the following vector bundle

(18) V*Y ® (Sq_ITX R TX n S12TX ® /\ZTX) ® A'T*X

with ¢ = r. Take a global section ¢, of the latter vector bundle and apply induction.
By the induction hypothesis, for any i =0,1,...,r — k — 1 we have considered
an affine subbundle of the pullback of (K.~ "™ ')* ® A"T*X over J"*'Y, the associated
vector bundle being the pullback of (18) with ¢ = r — i over J"*'Y, and we have
constructed a section c,_; of the latter bundle. In this situation, the space of all
¢)* is an affine subbundle of the pullback of (K}~ ')* @ A"T*X over J"**Y, the
associated vector bundle being the pullback of (18) with ¢ = k over J"**Y. Indeed,
since the values of bJ'r, ..., bi'"/**1 are already fixed by means of ¢,, ..., ¢, ;, the
differences c¢)'** lie in the subspace (Kj~')* ® A"T*X < (Ki™')* @ A"T*X
determined by means of the dual map to the epimorphism Vr*: VJ'Y - VJ*Y.
Hence we can construct a global section ¢, of the affine bundle in question and
continue in our induction procedure. Finally, we obtain a graded morphism
M:J>71Y > V*J 7Y @ A" T*X satisfying (14). Analyzing this construction, we
find easily that any other graded morphism with the same property is of the form
M + DC mentioned in our Proposition, QED.

Any morphism M: J>" 1Y - V*J""1Y® A"~ 1 T*X such that there is an E satisfying
(14) will be called a morphism associated to A. From the proof of Proposition 1 we
obtain a somewhat stronger result: if M;, i = 1,2 are two morphisms associated
to A (not necessarily graded) and if E; satisfies (14), then E, = E,. In other words,
the Euler morphism is uniquely determined even if M is not graded.

Remark 1. If we take any vertical vector field 7 on Y, {64, J'n) =: 6,/ is the classical
variation of A with respect to 7. Then (14) implies

(19) 8, = DM, J ™ 1n)y + <E,n),

which is a variational formula of classical type.
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2. Poincaré-Cartan morphisms. We shall distinguish a special class of the associated
morphisms. For this purpose, we need a modification of our operation D.

Consider a morphism A4: J'Y - (K; * ® A*T*X with a coordinate expression

A= (@l dy? 4 alie ) @dxt A LA dxE

Pif...ix pig...ik
As we have no inclusion (K})* = V*J?Y, we cannot construct DA. However, one
can consider a map B: J'Y —» V*J1Y ® A*T*X covering A,
B = (b,,,-l...,-k dy? + ... + bii-is dyf .+ altJse Ay s T

Pig...ik pig...ir

+alide dy? )@ dx AL A dx

piy...ixk
Denote by (DB), the canonical projection of DB into (K}, ,)* ® A**'T*X, so that
(20) (DB), = (byi; s dy], g + Diagiy i dyf, gy, + -

pig...ik pif...ix

ot aliie dyr o Ydxt A dxTt A LA dxe

Pit...ik

This depends on the choice of B only by the first term. But (20) is an affine map
and bii-Js belong to its “absolute” part, so that the linear map associated to (20)
is completely determined by A. The latter map will be denoted by DA.

Consider a graded morphism M associated to A. Since M is graded, the values
of D(M,) lie in the subspace (K; ')* ® A"T*X = V*Y® S*TX @ A"T*X. Let
1 STX @ A'T*X — ST7'TX ® A" 'T*X be the standard map, [7]. We shall
say that M is a Poincaré-Cartan (in short: P.-C.) morphism of 4, if it holds

() (d® 1)oM,_; =0,
(ii) M,_, is affine and its associated linear morphism coincides with —(id ® _1)o
oD(M,) forall k =r —1,...,2.

The coordinate meaning of these additional conditions is ¢~ = 0 and ¢}/
are some functions defined on J*>*“*~'Y (and not on J*~*Y as in the general case).
Quite similarly to Proposition 1, one deduces

Proposition 2. For any r-th order Lagrangian J. on Y there exists a P.-C. mor-
phism M. This morphism is unique if r = 1,2 0orn = 1.If r = 3 and n = 2, any
other P.-C. morphism of 4 is of the form M +DC, where C is any graded morphism
C: J*73Y - V*J'3Y @ A" °T*X.

Remark 2. If the base manifold X is an affine space, we have a map a: VJ' 'Y ®
® T*X — VJ'Y defined as follows. Any b e T¥X, x € X, determines a unique affine
map f: X — R such that b = jlf. Using the well-known identification VJ""'Y
~ J' VY, [2], we can express any u € (VJ'™'Y), as u = j;'o, where o is a local
section of VY. Then ji(f.6)e J'VY = VJ'Y is completely determined by b and u.
This map is bilinear and induces a. Having any manifold Q and any map F: Q —
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- V*J'Y ® A"~ 1T*X, we can now construct the following maps
Q-FV*J'Y® A" IT*X

| a*®id
V*ITTIYQ® TX @ N 1T*X
| d® 41

V*JI"TlY @ N'TATH*X .
If the resulting map vanishes, F will be called quasi-symmetric. Having a coordinate
expression of F of the from (15), F is quasi-symmetric iff all b’s are symmetric in all
superscripts. Analyzing the proof of Proposition 1, we deduce easily that there is
a unique quasi-symmetric P.-C. morphism of A, which will be called the affine P.-C.
morphism of A. Its coordinate expression is

@) [ L) Ay, e, + (@ L = Dy L) Ayt
o (@L =Dt 4 (1Y T Dy, B L) ] © o
3. Transfer to exterior forms. We recall that an exterior k-form w on J"Y is called
contact, if (j"s)* w = 0 for every section of Y. A contact k-form w is said to be
2-contact, if { _| wis a contact (k — 1)-form for every vertical vector field { on J'Y.
Any morphism ¢: J"Y - A*¥T*X can be canonically interpreted as an exterior

k-form on J"Y, which will be denoted by @. By the very definition of the fermal
exterior differentiation,

(22) Ag := d(¢) — (Do)~
is a contact (k + 1)-form on Jr*1Y. In particular, any function f: J'Y — R determines

a contact 1-form Af on J"*1Y.

Lemma 2. For every morphism A:J'Y - V*J'Y @ N*T*X and every vertical
vector field { on J?Y,
(23) (D<A, D) = (d(<4, D))~
is a contact form.

Proof. If {0, + ... + (¥ 6,’;““"" is the coordinate expression of {, then the

Ji.q
coordinate expression of (23) is

[(Adpi i) & + iy AL + o+ (Bl i) 2+
Fafil AL ] A et A A dxt

Consider the canonical map y,: TJ9*!'Y — VJIY (called the structure form of
TJ**1Y), [1], [2]. The coordinate expression of v, is

(A7) 0y + oo+ (B¥F,.5) 3
For every A: J'Y > V*JIY ® A*T*X, r > q, we define a (k + 1)-form Y, X 4

on J'Y by the natural combination of the contraction with respect to VJ?Y and alter-
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. . . ~ Ais
nation. The coordinate expression of ¥g A A1

(24) (@i AY? + .o+ ady g AV ) A AXT A A AT
Obviously, it holds
(25) L1 (g, ~ A) = (4,0)

for every vertical vector field ¢ on J?Y. (As ¥, A 4 is a nj-horizontal form, { _|
4 (¢, & A) has a well-defined meaning even though { is a vector field on JY and
not on J'Y.)

Lemma 3. The following form is 2-contact

(26) (gs1 7 DA) + d(Y, 7 4).
Proof. The coordinate expression of (26) is

(Ay? A Aay,.i + oo + AYE oA Aaliie) A dxt A LA dxe

Pit..ig

Set ¢ = Y, A E, which is an (n + 1)-form on J?"Y.

Proposition 3. For any morphism M associated to A, any vertical vector field n
on Y and any section s of Y, it holds

(27) (rsy (I 2 dd) = (7 A O -y R M) +
+ (s (n 2 e

Proof. Let us start from (19). Obviously, <64, J'n) = J _1 d1 and (<E, n))” =
= n e By Lemma 2, (>~ 's)* (D<M, J" 1))~ = (j2~Ls)* (d(M, J" ")) Using
(25), we obtain (M, J"™"'n>)” = J""'n 1 (y,—; X M), which proves (27).

For any morphism M associated to A, the n-form © = 1 + y,_;, * M will be
called a form associated to 1.

Proposition 4. Let © be a form associated to 2. Then { _| d@ is a contact form
for any 3, -vertical vector field { on J* ~1Y.

Proof. By (14), Y, A 6A=y, A DM + , X E. Hence ({ 11 62)" — ({ 1 DM)~
= (¢ JE)” =0 as { is n3,_ -vertical. By Lemma 3, the form i, x DM +d(y,_,; &
A M) is 2-contact, so that ({ 1 DM)™ + { Jd(y,—; A M) is a contact form. Since
(¢ 282 = 1 d7, the form ¢ _1 d@ is also contact, QED.

If M is a P.-C. morphism of A, then the corresponding form @ = 1 4+ ,_;, A M
will be called a P.-C.form of A. If the base manifold is an affine space, then the P.-C.
form corresponding to the affine P.-.C. morphism will be also said to be affine.
Such a form was considered by Krupka, [5] However, we remark that for » = 3 and
n = 2, the coordinate expressions corresponding to (21), which are used in [5], have
no intrinsic meaning in the case of an arbitrary fibred manifold.

|l
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4. On the higher order Hamilton formalism. Let L,(Y) denote the pullback of
V¥*Y ® S'TX ® N'"T*X over J'~'Y. This vector bundle will be said to be the r-th
Legendre bundle of Y. The restriction of 64 to K%~' can be interpreted as a map
o :J'Y - L(Y), which will be called the Legendre transformation of 4. If witIr are
the natural fibre coordinates on L,(Y), then the equations of ¢ are

Jiewdr — Alteeidr
w,, =0y "L.

A Lagrangian will be called regular, if its Legendre transformation is a local dif-
feomorphism. (The general idea of a regular higher order Lagrangian is due to D.
Krupka and M. Francaviglia, [9].) Hence 4 is regular iff 05"/~ 85*Lis a regular
matrix.

Lemma 4. For dim X = 1, if © is the P.-C. form of a regular Lagrangian and
a section u: X — J*" 1Y satisfies

(28) w*({ 1 d@) =0

for every n3,_-vertical vector field { on J* 1Y, then u is holonomic, i.e. there is
a section s: X — Y such that u = j**~1s. If r = 1 the same result holds for any
dim X.

Proof. We shall use local coordinates. For dim X = 1, we shall write 5, ; =
=yb, and L, = dtIrofL. Let (=0, 61‘,1) + oo + Loy 65,2"”. Then
(28) leads to the following sequence of equations

wH(Lylla -1y AyY) =0, which gives u*Ay? =0,

(Lot Ayh,_5) = 0, which gives u* Ay%,,_, = 0.
Thus, u is holonomic. If r = 1, the same result is deduced for any dim X in [3],
QED.
Lemma 5. For any contact k-form o on J'Y, any projectable vector field n on Y
and any section s of Y, it holds
(29) ("s)*d(Jn 2 o) = —(js)* (I 2 do).

Proof. Since w vanishes on the r-jet prolongation of any section of Y and the
flow of J'n transforms any r-jet prolongation of a section into an r-jet prolongation
of a section, the Lie derivative L, is also a contact form. Using the standard for-
mula for the Lie derivative

Lyyw = Jn 1 do +d(J7m 2 o),
we find (29), QED.

Proposition 5. If © is any form associated to A and s: X — Y is a section, then the
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condition (j*"~'s)* ({ 1 d@) = 0 for any n,,_-vertical vector field { on J*~'Y
is equivalent to (j*s)* E = 0.

Proof. Consider first a section s of Y and set {, = C[jz,-ls. Then the projection
1y = Tr3,_,({;) can be extended to a vertical vector field # on Y. By construction,
(J "' = Q|jze-1s is m3,_y-vertical, so that (j*"'s)* ({ 1 dO) = (> ls)*.
.(J*~ 'y 1 dO) by Proposition 4. According to Lemma 5 and Proposition 3,
(*ts)*(J* 'y 2 dO) = (j*s)*(n 1 ¢). Hence (j*s)*E = 0 is equivalent to
(j*~'s)*(¢ 1 dO) =0, QED.

The following result generalizes the so-called basic theorem of the first order
Hamilton formalism [2], [3], (Another geometrical treatment of the first order
case can be found in a paper by Ragionieri and Ricci, [6])

Theorem. For dim X = 1, let © be the Poincaré-Cartan form of a regular r-th
order Lagrangian on Y and u: X — J**~1Y any section. Then the equation
w*({ 1 dO®) = 0 for every m,,_-vertical vector field { on J**~'Y is equivalent to
a pair of conditions

u = j*"'s for a sectionsof Yand (j*s)*E =0.
The same result holds for r = 1 and any dim X.

Proof. By Lemma 4, u*({ _J d®©) implies u = j*"~'s. Then our Theorem follows
from Proposition 5, QED.
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