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ON CONGRUENCE RELATIONS OF MONOUNARY ALGEBRAS II

DANICA JAKUBIKOVA-STUDENOVSKA, KoSice

(Received April 5, 1982)

This paper is a continuation of [6] and [7]. Congruence relations of monounary
algebras were investigated in [1]—[4], [9], [10]; for references and basic notions
cf. also [8], [11] and [12].

We shall use the denotations introduced in [7] (cf. mainly § 1 of [7]). Let us recall
the following ones: For a nonempty set A we denote by F(A4) and F,(4) the set of
all unary or of all partial unary operations on A, respectively. Let E(A) be the system
of all equivalence relations on A. For fe F,(4) let Con (4, f) be the set of all con-
gruence relations of (4, f).

Let fe F(A), f; € F,(4). We put

R(f) = {g € F(A): Con (4, f) = Con (4, g)},
R,(f1) = {g € F,(4): Con (4, f,) = Con (4, g)}.

In paragraphs 5—7 of the present paper we assume that we are given a mapping
f€ F(A) having a cycle C with card C > 2. There are investigated those properties
of mappings g € R(f) which depend on the set Con (4, f) only. (An exception is
Propos. 7.6.)

In § 7 and § 9 the following estimate is established (cf. 7.9 and 9.2):

(i) Let feF(A), f,eF,(A). Suppose that Con (A,f) # E(A) + Con (4, f,).
Then card R(f) < ¢ and card R,(f;) < ¢ (independently of the cardinality of the
set A).

(ii) For each infinite set A there exists f € F(A) with card R(f) = c (i.e., the
estimate given in (i) cannot be sharpened).

5. THE CASE OF A SINGLE CYCLE

The numeration of paragraphs, lemmas and theorems continues that applied
in [7]. The assertions from [7] are quoted by their numbers; e.g., Lemma 3.1 means
Lemma 3.1 of [7].

Let (4, f) be a monounary algebra. As we already remarked, in the paragraphs
5 ~7 we shall assume that there exists a subset C = A such that card C > 2 and that C
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is a cycle of the algebra (4, f) (from Lemma 3.1 it follows that C can be determined
by means of congruence relations of (A,f)). We take a fixed cycle C. Further we as-
sume that each connected component of (A4, f) has a cycle (according to the results
from § 2, this case can be described by means of Con (4, f)).

Let us recall that a cycle C' of (4, f) is said to be large (small), if card C' > 2
(card C" £ 2). For a unary operation g on A with Con (4, g) = Con (4, f) we shall
write g € R(f) or g ~ f. If (B, f) is a subalgebra of (4, f), (B, g) is a subalgebra of
(4, g) and Con (B, g) = Con (B, f), then we denote this situation by writing g ~ f
on B.

In this paragraph we suppose that 4 = C, card C = n = pi{'... pj* > 2 (keN,
Pi1»---» Py being distinct primes, a;, ..., o, € N). We shall use the following result
from [1]:

(T) Let card A = n, x € A and suppose that A is a cycle with respect to an opera-
tion f. Then :

Con (4, f) = {0] = @/(x, f(x)): d divides n}.

5.0. Let us remark that for each x,ye A we have @'(x, f4(x)) = @'(y, f(»)),
hence the symbol @] in (T) does not depend of the particular choice of x. Further,
if Con (A4, f) = Con (4, g), then according to the number of classes in the partitions
corresponding to the congruence relations it follows that @5 = @9 for each de N
dividing n.

We shall often use the fact that if x e A, m, m’ e N and if d is a divisor of n =
= card A4, then

fm(x) ©f f™(x) < m = m’ (mod d) .

In 5.1 we shall construct (by using the system Con (4, f), but without using
explicitly the operation f) a new operation f, on A4 such that Con (4, f) = Con (4, fo).

5.1. Construction. According to (T) we get that Con (4, f) = {Oplﬂ,',,pkpk: 0=
SPi=oy,..,0 < B, S o). Let ie{l,...,k}. The partition of the set 4 cor-
responding to the congruence relation 8, consists of p; classes; denote these classes
by the symbols T(i; 0), T(i; 1), ..., T(i; p; — 1). Using this notation we do not take
into consideration the operation f, i.e., there is taken an arbitrary bijection of the
set {0, 1,..., p; — 1} onto the system of classes corresponding to @,. An analogous
situation occurs also in further steps of the construction. Our aim is to verify that
distinct bijections give all elements of R(f).

Now consider the congruence relation @, .. Each of the classes T(i; j) (j € {0, ...
..., p; — 1}) is a union of p; classes of the partition corresponding to @, .; denote
them T(i;j, 0), ..., T(isj, pi — 1). We proceed analogously for the congruence
relations @5, ..., @, Hence for each ie {1,...,k} and each ;e {1, ..., a;} there
are classes T(i;j,-l,j,-z, ...,jmi) where each of the symbols j;i, .., jig, TUns over the

set {0, ..., p; — 1}.
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Let x € A. For each i€ {1, ..., k} there are uniquely determined numbers Jji1, -
ey Jia; €10, ..., p; — 1} such that

k
(x} = O T(i it s diay) -
i=1

Further, for each i € {1, ..., k} there exist uniquely determined numbers s, ..., Sz, €
€{0,..., p; — 1} and y € 4 such that

k
{y} = OlT(l, Sits oo sia.*)

and

Jit FJaPi+ o H jupt T A L= sy 4 sopi o 4 s 7T (mod pl).
Now define an operation f, on 4 by putting fo(x) = y. The operation f, was defined
only by means of the congruence relations of (4, f), without using explicitly the
operation f.

5.2. Lemma. A is a cycle with respect to the operation f,,.
Proof. From the definition of f, it follows that f3(x) = x for each x € A4, since
Ji ¥ Jubi+ o w0 =
=ju +Jupit+ . FjupiT PP =
=jy tJjpit+ ... +jia.'p7i—‘ (mod P?i)-

IfmeN, m < n,thenforeachie {1, ..., k} there are uniquely determined numbers
My, ....my, €{0,...,p; — 1} and m;e N U {0} such that

a;—1

m=my + mpp; + ... + My, p; + m;p}

and we obtain

a;—1

Jin Y+ -+ Dl
= (jg + mn) + (jiz + miz) pit+ ...+ (jiai + mia,-) pil =

=5y + Siapi + oo+ S0 (mod pY),

+ m=

m

where s;, ..., S;, €{0, ..., p; — 1} are uniquely determined. Suppose that f3'(x) = x.
Then m;; = my; = ... = my,, = 0, hence m = 0 (mod p}) for each ie{l,..., k},
which is a contradiction with the relation 0 < m < n. Thus 4 is a cycle with respect
to fo-

5.3. Lemma. Con (4, f) = Con (4, f,).

Proof. We shall prove that @] = @J° for each d e N such that d/n. Let d =
=ph .. p, 0B, Sa;,...,0 S B, <o and let x,ze A. Then, for each ie
€{1,...,k} there are uniquely determined numbers jii, ..., i, Sits --o> Sig, €

ia;
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€{0, ..., p; — 1} such that
k k
{x} = .OIT(i;jil’ . "9jia.') > {Z} = .OlT(i; Sits eens Siau) N

First suppose that x ©}° z. Then there is me N U {0}, 0 < m < n/d, with z =
= fo(x). For each ie{1,...,k} there exist uniquely determined numbers m,, ...
cos Mgy €10, ..., pi — 1} and m; e N U {0} such that

(1) m=my + mpp; + ... + My, _pyDi' Pl mypyihe
Leti = {1, ..., k}. Hence from the definition of the operation f, we get
Jit FJepi+ oo+ Jupit 't (mil + myp; +

.+ mi(u.»—p..)l’?_m_l + mpi Py pt L ple =

=Sy SPi oo+ S DT (mod p} 9,
ie.,
. . m;d Bi o .
(2 Ju A+ o il +1\+TP1 coo g, T
Mii—p)d aim1 _ . i i
4—7—3"',,i’3+)pl =yt s T+ 4 sy, pi ! (mod p),
Pi

which implies j;; = 81, ..., jip, = Sip,- Since o = ﬂ e’ #: and the partition of @

possesses classes T(i; 7y, ..., 7i5,) (Figs ..o Tip, € {0 ., pi — 1} and since
k .
{x} =.Ol T(i;jil, '--,jizz.-) S .O‘T(i;jil, ---,jip,) s

k k
{Z} :‘Ol T(” Sits oees sia,-) = OIT(Is.]zh .- wjiﬂ’,—) s

we have x @) z foreach ie {1, ..., k},i.e., x O] z.

Now let x @ z. Then x @),z for each ie{l,...,k} and hence ji; = s, ...
- Jip, = Sip, for each ie{l,...,k}. For each ie{1,...,k} there exist numbers
Mg oy Mgy €10, ..., p; — 1} such that the relation (2) is valid. Further there

exist my,...,mye N U {0} and me N such that (1) holds. Then z = fg*(x), i.e.,
x @ z.

5.4. Theorem. Let A be a cycle with card A = n = p}'. * > 2, where k,
Oy 0 €N, Py, ..., Dy being distinct primes. Further let g be a unaly operation

defined on A such that A is a cycle with respect to g. The following conditions are
equivalent:

(1) Con (4, f) = Con (4, g).
(2) The operation g is constructed by means of the construction 5.1.
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Proof. From 5.3 it follows that (2) = (1). Let (1) be valid and let a € A. We have
Con (4, f) = Con(4,9) = {0, 8 :0 =y S ay,...,0 < By < o). (According
to 5.0 it is not necessary to write @ixﬁl...pk/’k or @Zlﬁ‘...pkﬂk') Let ie{l,...,k}. The
elements a, g(a), Lo ‘(a) belong to distinct classes of the partition corresponding
to the congruence relation @, ; these classes will be denoted T'(i; 0), ..., T(i; p; — 1).
Let je{0,..., p; — 1}. The elemetns gi(a), g’*?(a),..., g’*?~?(a) belong to
T(i; j) and to distinct classes of the partition corresponding to ©,.; denote these
classes T(i; j, 0), ..., T(i; j, p; — 1). Let 1 < fB; < «; and suppose that we have al-
ready defined classes T(i; jirs - Jig,) (Jits -5 Jip, € {0, .., pi = 1}). If jigy o jip, €
€{0,...,p;_;} and if we denote I = ji; + jiaPi + ... + jig,p?'"", then the elements
g'(a), g 7"4(a), g' 21" ¥(a), ..., g'* @~ P%i(a) belong to T(isji, - jip,) and they
belong to distinct classes of the partition corresponding to @,:; denote these classes
T(i5jirs o eos Jigs O)s ovos T(i3Jits - os Jips Pi — 1).

Let x € A. Then x = g/(a) for some je N, 0 = j < n. Then for each i e {1,..., k}
there exist uniquely determined numbers ji1, .. jip, € {0, ..., p; — 1} and j,e N U
U {0} such that

J=Jn Fiapi+ o+ u bGP
From the definition of the corresponding classes we obtain that

x€T(i3ji1s - ji,) foreach ie{l, ...k},

{x} = .OlT(i;j,-l, s Sia) -

Further, g(x) = g/*!(a), and for each i€ {l,...,k} there are s;;,...,5;,€{0,...
..., pi — 1} such that

j+1=s;y +sppi+ ...+ sim,-lfi”—1 (mod pai”) s
hence

{9(x)} =if\1 T(i5 Sits s Siay) -

Therefore g is defined by means of the construction 5.1.

6. AUXILIARY RESULTS

In this paragraph we assume that there exists a subset C = A such that C is
a large cycle. Let n € N and let A} be the union of all x € 4 such that K (x) contains
a cycle with the cardinality n. (Recall that K (x) is the connected component con-
taining x.) We shall prove that for each x € A4, the set K (x) can be determined by
means of Con (4, f). Further it will be shown that if x € 4] U A%, then f(x) is uni-
quely determined by means of Con (4, f). Some auxiliary results for components
with large cycles will be established.
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6.1. Lemma. Let ye A — C. The following conditions are equivalent:

(1) f(») = ».
(2) O(x, ») = [{y} v C] for each x € C.

Proof. It is obvious that (1) implies (2). Let us suppose that (2) is valid. We have
f(x) ©(x, y) f(y) for each x e C, and since f(x) € C, we get f(y) e {y} v C. If f(y) *
# y, then there exists x’ € C such that f(x") = f(y). But in this case we obtain
O(x', y) = [{x’, y}] # [{y} v C], which is a contradiction. Hence (1) holds.

6.2. Lemma. Suppose that y,z€ A — C, y * z and let (2) from 6.1 hold for y,
but do not hold for the element z. The following conditions are equivalent:

(1) /(2) = ».
(2) 6y, 2) = [{y. 2}]-

Proof. According to the assumption and to 6.1 we have f(y) = y, f(z) + z. The
implication (1) = (2) is obvious; the implication (2) = (1) follows immediately from
Lemma 1.1.

6.3. Lemma. Let xe C, y,,y,€ A — C, y; * y,. The following conditions are
equivalent:

(1) {1, y2} is a cycle of A(f).
(2) {Y1} ¢ @(}’2, x), {,Vz} ¢ @()’1, x) and @()’h J’Z) = [{J’n )’z}]'

Proof. Obviously (1) = (2), and the relation (2) = (1) follows from 1.1 for ele-
ments y; and y, (we get a contradiction in each case except when {y,, y,} is a cycle).

6.4. Corollary. The sets Al and A% can be determined by means of the system
Con (4, f). If x € A} U A, then f(x) can be described by means of Con (4, f).
Proof. The assertion follows from Lemmas 6.1, 6.2, 6.3, 1.2 (c) and 1.3 (d).

6.5. Lemma. Let xe C, ne Ny = N U {0}. The set Ci[x] can be determined by
means of Con (4, f).

Proof. We shall prove the assertion of the lemma by induction. In 3.1 it was
proved that Cj[x] = Ccan bedetermined by means of Con (4, f).Let n € N. Assume
that for each m € Ny, m < n the assertion is valid. We shall show that for y € 4 the
following conditions are equivalent:

(1) ye Ci[x]. ‘
(2) The condition (2) from 6.1 does not hold, CJ_,[x] # 0, y ¢ Um<n C4[x] and
if ze CJ_,[x] and u e 4 with {u} ¢ O(z, y), then u e {y} U U, <, Calx].

Obviously (1) = (2). Let (2) hold and assume that y ¢ C/[x]. Suppose that z e
€ C/_,[x]. From (2) and 6.1 it follows that f(y) # y. Further we have y ¢ U<, Ca[x]
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hence f(y) ¢ {y} U Un<n C4[x]. From this, from the fact that f(y) O(z, y)f(z)
and in view of (2) we obtain that f(y) = f(z), which is a contradiction.

6.6. Corollary. Each connected component K of (A, ) can be determined by means
of the system Con (A4, f).

Proof. Let x € A.If xis an element belonging to a large cycle C’, then C’ can be
found by means of Con (4, f) (in view of 3.1). From 6.5 it follows that CJ[x] can
be determined by means of Con (4, f) for each n e Ny, hence K (x) = ,en, Ca[x]
can be determined by means of Con (4, f). In the case when x € A{ U A7 the asser-
tion follows from 6.4.

6.7. Lemma. Let xe€ C, ne N, ye CJ, [x], ze C][x]. The following conditions
are equivalent:

(1) /(y) = =

(2) 6(y, 2) = [y 6(», 2)]-

Proof. It is obvious that (1) implies (2). Suppose that f(y) # z. Then the parti-
tion of A4 corresponding to the congruence relation @(y, z) has at least two nontrivial

classes, namely y O(y, z) # {}, /(¥) ©(», z) + {f(»)}, hence (2) does not hold.
6.7.1. Corollary. Let xe C, neN, y e CJ, [x]. If g € R(f), then g(y) = f(»).

6.8. Lemma. Let x, v € C, u € C{[x]. The following conditions are equivalent:

(1) f() = f(v).
(2) O, v) = [{u, v}]

Proof. The assertion follows from Lemma 1.1.

6.9. Lemma. Let x,v,z€C, card C = k, neN, ye Cl,,[x]. If n'eN,, n' =
=n + 1(mod k), 0 £ n' < k, then the following conditions are equivalent:

(1) z 2fn+1+k—n’(y), v =f(2').
(2) If yO(y, z)t for te A, then te |,y C[x] L {z}, and if f(y) ©(y,2)s for
s€A, then se Uy CI[x] U {v}.

Proof. Let m be an integer such that n + 1 = mk + n'. First assume that (1) is
valid. e obtain 0(y, 2) = [{1 /(DS 0), - /™), S04 04y) = 2}, (£(y).
f i fiyzi -i\-;f(z)}, {fkhl({)ifz"_l(J’)a <+ /" 7"(9)}], hence the condition (2) is
satistied. Now suppose that (2) holds. Since z € C, we obtain yO(y,z) 2 {y, f*

m " ., b - 2 y 2

S s f™3): 71457 ()) From the fact that f"“”‘""(y)(ec Zmd {from((2))
it follows that f"“*"*"’(y) = z. Further we get 7(

N y) @ y, z) =2 > k+t ')

SHEY), ... f(2)} and (2) yields that f(z) = v. (.2) 2 {/0). /10)
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Let x, z, ve C. We shall say that the ordered pair [z, u] is determined by the sur-
roundings of the cycle C, if there are ne N and y € C{H[x] such that the condition
(2) from 6.9 is valid. By M (x) we denote the system of all pairs which are determined
by the surroundings of the cycle C = C{[x]. (From 6.9 it follows that the set M /(x)
is determined by means of Con (4, f).)

Let x € C. The system of all ordered pairs [u, v] such that ve C, u e C{[x] and
that the condition (2) from 6.8 holds will be denoted by the symbol P(x). (Ac-
cording to 6.5 and 6.8, P,(x) is determined by Con (4, f).)

Let us remark that in the following theorem 6.10 the condition (2) can be expressed
merely by means of congruence relations of (4, f) ((a) in view of 3.1 and 5.4, (b), (¢)
and (d) in view of 6.9, 6.7 and 6.8 respectively). Further, also the condition that
(A, f) is connected and possesses a large cycle C can be expressed by means of
the system Con (4, f) (cf. Corollary 6.6 and Lemma 3.1).

6.10. Theorem. Suppose that (A,f) is connected and possesses a large cycle C =
= C{[x], x € A. Let g € F(A). The following conditions are equivalent:

(1) g € R(Y).

(2) (a) Cis a cycle of (4, g) and g ~ f on C;
(6) M,(x) = M, (x);
(c) g(u) = f(u) for each ue s, Chlx]:;
(d) P(x) = Py(x).

Proof. First assume that the condition (1) is satisfied. Then the assertion (a)
follows from 3.1, (b) follows from 6.9, (c) from 6.7 and (d) from 6.8. Now suppose
that (2) holds. In this proof we shall write M, P, C} instead of M (x), P/(x) and
CJ[x]- Put k = card C. Assume that a, b € A. Let us prove that ©/(a, b) = ©%(a, b).
We shall proceed in six steps: 1) a,be C;2) be C,aeC{;3)beC,aeCl, n > 1;
4)a,beCf;5) beCf,aeCl,n>1;6)beC}, acCl, 1 <m = n. (In the steps
3), 5) and 6) we shall proceed by induction.)

1) If a, b € C, then from (a) it follows that ©/(a, b) = ©@%(a, b).

2) Suppose that b e C, a e C{. There is a uniquely determined ¢ € C with f(a) =
= f(c), i.e., with [a, ¢] € P,. From (d) it follows that [a, c] € P,, i.e., g(a) = g(c).
The nontrivial classes corresponding to ©/(a, b) are: {a} U b ©/(f(a), (b)) and all
nontrivial classes corresponding to ©7(f(a). f(b)) except b ©’(f(a), f(b)), and the
situation for the operation g is analogous. Since b, c € C, we have @/(f(a), f(b)) =
= 0'(f(c), f(b)) = O©'(c, b); similarly, ©%(g(a), g(b)) = ©%(c, b), and from (1) we
have @(c, b) = @%c, b), hence ©’(f(a),f(b)) = ©%g(a), g(b)). From this and
according to the classes corresponding to @/(a, b) and to ©%(a, b) we obtain that the
relation ©/(a, b) = ©%(a, b) is valid.

3) Now suppose that be C, ae CJ, n > 1 and assume that ©/(x, y) = 0%(x, y)
for each xe CJ, ye C, m < n. Let n’ = n(mod k), 0 < n’ < k. From (b) and from
6.9 it follows that if we denote b’ = f"**""(a), then
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(3) b =" (a) = g"* " (a), f(b') = g(b).

Consider the congruence relation @ (a, b) reduced to the cycle C (it coincides with
©7(f(a), f(b)) reduced to C); we obtain the congruence relation @/(f"(a), f"(b)) and
further

(4) ©/(s"(a). /"(b)) = ©'(f"(a), /(b)) = O7(S/"**""(a),
JrHEB) = O1(77 T (a), £A(8) = O(b' b).
For the operation g we obtain
(4) ©°(g"(a). g"(b)) = ©%(b', b),
and since b, b’ € C, we have ©/(b’, b) = @%b, b), hence
(5) ©/(f(a).f"(b)) = ©%(g"(a). g"(b)) = ©/(b, b') = ©%(b, b")

and these are the congruence relations ©/(a, b) and ©%(a, b) considered on C. The
nontrivial classes corresponding to @7/(a, b) are: {a} U b @/(f(a),f(b)) and all
nontrivial classes corresponding to @/(f(a), (b)) except b ©’(f(a), f(b)) (analo-
gously for g). Using the induction hypothesis we obtain that

(6) 67(/(a). /(b)) = ©°(f(a). /() ©7(g(a), 9(b)) = ©%(g(a), 9(b)),
and (c) implies that f(a) = g(a), thus

(7) ©7(g(a). 9(b)) = ©(f(a), 9(b)-
From (3) and from the relations

(8) g(b) ©°(b, &) g(b"), S (b) 6/(b, 1) (V')

it follows that g(b) @/(b, b’) f(b), therefore in view of (5) we have g(b) @/(f(a),
f(b)) f(b) and hence

(9) ©7(f(a). /(b)) = ©'(f(a), 9(b)).
Analogously we obtain
(9 ©%9(a). 9(b)) = ©(g(a). /(b))-
Using (6), (7), (9) and (9’) the following relation is obtained:
(10) ©/(f(a), /(b)) = ©/(f(a), 9(b)) = ©’(9(a), 9(b)) = ©(g(a), 9(b)) =
0°(g(a), /(b)) = 6(f(a). f(b)) = 6/(f(a),/(b)).
We have
(x) ©/(f(a). £(b)) = ©/(f(a), 9(b)).
Further ©/(f(a), f(b)) = ©%(g(a), g(b)) and according to the classes of @/(a, b) and
of ©%(a, b) we obtain that @/(a, b) = ©%a, b).
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4) Now let b e C4, ae C{. The nontrivial classes corresponding to ©/(a, b) are
{a, b} and all nontrivial classes corresponding to ©7(f(a), f(b)) (analogously for g).
There are uniquely determined ¢, de C with f(a) = f(c) and f(b) = f(d), i..,
[a,c]e P, [b,d]eP, From (d) it follows that g(a) = g(c) and g(b) = g(d). If
¢ = d, then obviously ©(a, b) = @%(a, b) (the only nontrivial class is {a, b}). Let
¢ £ d. Then we have

0’(/(a), f(b)) = ©/(f(c). /(d)) = ©(c, d) = ©°(c, d) =
= 0%(¢(c), 9(d)) = ©%(g(a), (b)),
and therefore ©/(a, b) = ©%(a, b).

5) Suppose that be C{, ae CJ, n > 1. Then with respect to (d) there is ce C
with [b, c] € P,, i.e., f(b) = f(c), g(b) = g(c). If we suppose that /"~ *(a) + b, then
the nontrivial classes corresponding to ©@/(a, b) are {a, b} and all nontrivial classes
corresponding to ©7(f(a), f(b)) (analogously for g).

If we assume that f""l(a) = b, then the nontrivial classes corresponding to
©(a, b) are {a} u b ©’(f(a),f(b)), and all nontrivial classes corresponding to
O07(f(a), /(b)) except of b @'(f(a), f(b)) (analogously for g). From the induction
hypothesis we have

(1) ©/(f(a). /(b)) = ©%(f(a). /(b)) ©/(g(a), 9(b)) = ©*(g(a), 9(b))

From (c) it follows that g(a) = f(a). We have to prove that

(12) 67(f(a). /(b)) = ©’(f(a), 9(b)).
i.e., that

(12) 0’(f(a), f(c) = ©/(f(a), 9(c)).
To prove the relation (12) it suffices to proceed analogously as in 3) (with ¢ instead
of b), where () shows us that (12') is valid.

6) Now suppose that be C4, ae C}, 1 < n < m. Then (c) implies that f(a) =
= g(a), f(b) = g(b) and by the induction hypothesis we obtain

(13) ©/(f(a), /(b)) = ©(f(a), /(b)) = ©(g(a), 9(b))-

If f"~"(a) # b. then the nontrivial classes corresponding to ©/(a, b) are {a, b} and
all nontrivial classes corresponding to ©7(f(a), f(b)); if f™ "(a) = b, then the non-
trivial classes corresponding to @/(a, b) are {a} U b @/(f(a), f(b)) and nontrivial
classes corresponding to ©/(f(a), f(b)) except b ©/(f(a),f(b)) (analogously for
the operation g). Therefore (13) implies that @/(a, b)'= ©%(a, b) and the proof is
complete.
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7. RELATIONS BETWEEN DISTINCT COMPONENTS

From 6.6 and 3.1 it follows that each set 4], where ke N (the set of all elements
x € A such that K (x) contains a cycle with the cardinality k) can be determined by
means of Con (A4, f). Therefore we shall write A4, instead of A{. In this paragraph
there are studied the algebras (4,, g), (4,., g) (k, m being distinct positive integers,
ge R(f)) and relations between them. In particular, it will be proved that if 4 =
= Ui 4; and g.cd. (i,j) = 1 for each i,jel, i # j, then for g e F(A) we have
g ~fonAifandonlyif g ~ fon A, foreach iel.

For k € N denote by B, the set of all x € 4, such that x belongs to a cycle.

7.1.1. Lemma. Let ke N, k > 2 and let x, x' € By, Co[x] # C{[x']. If CJ[x] + 0
and u' € C{[x'], then f(u") can be described by means of Con (4, f).

Proof. Let ye CJ[x] and u’, v’ e C{[x']. It is obvious that f(u') = v’ implies
v ©'(u’, y) f(). (Let us remark that according to 6.7, f(») can be described by means
of Con (4, f).) Now suppose that v’ @/(u’, y) (). Since

0/(u', y) = [{u', v SO () SOOI AL 20 o
U @), )}

and since f(y) ¢ CJ[x'], /***(v) ¢ C§[x'], we obtain that v' = f(u’). Hence f(u’) is
described by means of Con (4, f).

7.1.2. Lemma. Let ke N, k > 2 and let x,x" € B,, Cj[x] + C{[x"]. Further
suppose that C5[x] # 0. If ue C{[x], then f(u) can be described by means of
Con (4, ).

Proof. Let y € CJ[x], u, ve C{[x]. From 7.1.1 it follows that f(x') can be des-
cribed by means of Con (4, f). If f(u) = v, then obviously {v, f(x')} € ©/(u, x").
Assume that {v, f(x")} € ©/(u, x'). We have O(u, x") = [{u,x'}, {f(u),/(x")}....
cu U (), 57 Y(x)) ], hence f(u) = v.

7.1.3. Lemma. Let ke N, k > 2 and let x,x'€B,, Ci[x] + Ci[x"]. Further
suppose that C5[x]+0. If ze C{[x], then f(z) can be described by means of Con (A4, f).

Proof. Let the assumption of the lemma hold. According to 6.8, by means of
Con (A4, f) we can find an element t € C{[x] such that f(#) = f(z). Since f(f) can be
described by means of Con (4, f) in view of 7.1.2, the element f(z) can be described
by means of Con (4, f) as well.

7.2. Corollary. Let ke N, k > 2 and let x,x'€ B, Ci[x] + C{[x']. Further
suppose that Ci[x] # 0.If a € A,, then f(a) can be described by means of Con (4, f).

Proof. Let ae Ay. If ae Cj[y], neN, n > 1, y € B,, then 6.7 implies that f(a)
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can be described by means of Con (4, f). In the case when a € C{[x] U C{[x], the
assertion follows from 7.1.1 and 7.1.3. If a € C{[x"], x + x" € B;, we obtain that
f(a) can be described by means of Con (4, f) in view of 7.1.2 (putting x” instead
of x’). Now let a € C{[x"], x # x” € B,. According to 6.8, by means of Con (4, f)
we can find an element v € Cj[x] such that f(a) = f(v). Since f(v) can be described
by means of Con (4, f) in view of 7.1.2, we obtain that f(a) can be described by means
of Con (4, f) as well.

7.3. Lemma. Let ke N, k> 2 and let x,, x5 € B, Ci[xo] + Cl[xo]- Further
suppose that Ci[x,] = {xg, ..., Xe—1}, Ci[xo] = {x6,.... x;i—1} and that f(x,) =
= X1, .. f(Xk=2) = X415 f(Xk=1) = Xo. Then the following conditions are equi-
valent:

(1) f(x0) = x7s oo f(x4—1) = X0
(2) ©/(xq, x0) = [{x0. X0} {x15 X1}, ooy {Xum 1o Xk} ]-

Proof. The assertion is obvious.

7.3.1. Corollary. Let ke N, k > 2 and let xo, x)€ B,, Cl[x,] #+ C§[x0]. Let
g € R(f). Then the operation g reduced to the set Ci[x{] is uniquely determined
by the operation g reduced to Cj[x].

If we assume that ke N, k > 2, A = A,, then we have three possibilities: (oc) A is
connected, (B) there are x, x” € B, such that C{[x] # Cj[x'] and C§[x] * 0, (y) there
are x, X' € B, such that C§[x] + C}[x'] and C{[y] = 0 for each y € B,. The case ()
was investigated in Theorem 6.10, the case () in Corollary 7.2; the remaining case
will be studied in Lemma 7.4.

7.4. Lemma. Let ke N, k > 2, A = A, and suppose that the above condition (y)
is satisfied. Let g € F(A). Then the following conditions are equivalent:

(1) geR(f). -
(2) () g ~ 1 on K (x);
(b) if x' € C{[x], ye B, — Ci[x] and z e Ci[y] then g(y) = z if and only
if {9(x'), z} € O/(x', y);
(¢) P,(y) = P/(y) for each y € B,.

Proof. First assume that the condition (1) is satisfied. Then (a) obviously holds,
(b) follows from 7.3, and (c) from 6.8. Conversely, suppose that (2) is valid. Let
a, b e A. We shall prove that ©/(a, b) = ©@%(a, b).

Let y € B, — Cj[x], x' € C{[x]. From (b) it follows that {g(x"), g(»)} € @’(x', y),
hence @/(x’, y) = ©/(g(x’), g(y)). Since both the partitions corresponding to
O07(x’, y) and to ©/(g(x"), g(»)) have k nontrivial classes (having two elements), we
obtain that ©/(x’,y) = @/(g(x’), g(y))- Similarly, {g(g(x"), 9(9(»))} € ©/(9(x),
g(), i.e., {g*(x"), *(»)} € ©/(x", ), ..., {g* " '(x), ¢ *(¥)} € @/(x’, y). These rela-
tions together with

459



() 0/(x, ) = [{x", y}. (/) SN - S* 1) S0,
@°(x', y) = [{x", v}, {9(x), ()}, -, {" 1 (x), 9" 1(¥)}]

imply

(4) ©/(x',y) = ©*(x', y)
since x', g(x'), ..., g*"!(x’) are distinct elements and therefore {x’,y}, {g(x'),
a)}, . {g" M (x"), g7 '(»)} are distinct sets.

Now consider ©/(a, b) and ©%(a, b). At first assume that a, b € B,. If a, b € C[x],
then from (a) it follows that ©’(a, b) = ©%(a, b). The cases when a e Cj[x] or
b e C{[x] have been investigated in (4). (In what follows in the proof we shall use
this fact without mentioning it.) Hence assume that a ¢ C§[x], b ¢ Cf[x]. At first let
b ¢ C}[a]. Then the following relations are valid:

() [{a, x}, {f(a). f(x)} ... {7 (@), f* 71 (0)}] = ©(a, x) = ©%(a, x) =

= [{a, x}. {9(a). g(x)}. ... {¢" " (a). 6" "' (x)} ],

(6) L6, 5} LA SN o L 0) S ()}] = O(5, ) = 0¥(b, x) =

= [{b x},{9(b). 9(x)}, ... {g" (). ¢ "' (X)}].

(7) ©’(a, b) = [{a, b}, {/(a). /(B)} ... {/*" (@), /" (B)}];

(8) ©%(a, b) = [{a, b}, {g(a), 9(b)}, .., {¢" "(a), ¢ *(B)}]-

Let ie Ny, 0 < i < k. According to (5) and (6) there are j,j’€ Ny, 0 < j < k,0 <
<Jj' <k such that {g%(a), g'(x)} = {f/(a)./(x)}, {g'(b), g'(x)} = {f7(b).£7 (x)}.
From the fact that a and x or b and x are from distinct components it follows
that f/(x) = g'(x) = f7'(x), hence j = j’. We obtain

(9) 9'(a) = f/(a), g(b) = f/(b)
and the correspondence i — j is one-to-one, therefore (7)—(9) imply

(10) ©/(a, b) = 6%(a, b).

If a¢Cli[x], b =f"(a)=g™(a) for some n,meNy, 0 <n<k, 0<m<k,
then (5) and (6) are valid as well and, analogously as above, we obtain that f*(x) =
= g"(x). Further let © be the join of the congruence relations &/(x, a) and 6/(a, b),
ie, @ = ©(x,a) v ©/(a, f"(a)). From the definition of © it follows that
O = 0'(x,a) v @/(x, f'(x)). Similarly, ©%(x, a) v 6%a, g"(a)) = O%(x, a) v
v 0%(x, g"(x)). Then

(11) ©'(x,a) v ©/(a, b) = O/(x, a) v &/(x, f"(x)) = ©%x, a) v

v 0%x, f'(x)) = ©@%x, a) v @%x, g"(x)) = @%x, a) v ©%a, b).
(We have used (4) and (a).) The classes of the partition corresponding to the left hand
side of (11) reduced to the set C[a] must coincide with classes corresponding to the
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partition of the right hand side of (11) reduced to the set C{[ a]. The congruence relation
©/(x, a) joins into the same classes only elements from distinct components (and
similarly does ©%(x, a)), hence we get

(11.1) ©/(a, b) = 6%(a, b).

Now suppose that a ¢ B,. Denote v = f*(a); then f(a) = f(v) and from (c) we have
g(a) = g(v). If b € By, then

(12) ©/(a, b) = ©’(a,v) v ©’(v, b), O%a, b) = @%a, v) v O%v, b).
Since ©/(a, v) = [{a,v}] = @“(a, v) and according to (a) or (10) or (11.1) we have
©/(v, b) = ©%(v, b), thus we get ©/(a, b) = ©%(a, b). If b¢ B,, then denote v’ =
= fX(b). Since f(b) = f(v'), (c) implies that g(b) = g(v'), hence @7(b,v') =
= [{b,v'}] = @%b, v'). We obtain

(13) ©/(a, b) = @’(a,v) v O/(b,v') v O/ (v,v) =

= 0%a,v) v 0%b,v") v ©%v,v") = @%a, b).

The proof is complete.

7.4.1. Let us remark that the conditions (a), (b) and (c) can be expressed by means

of congruence relations ((a) in view of 6.10, (b) in view of (a) and 7.3, (c) in view
of 6.8).

7.5. Theorem. Let A = |J,.; A; and assume that g.c.d. (i, j) = 1 for each i,jel,
i + j. Let g € F(A). Then g € R(f) if and only if (A;, g) is a subalgebra of (A, g)
and g ~ fon A; for eachi€el.

Proof.Ifge R(f), then obviously g ~ f on A; for each i € I. Conversely, suppose
that g ~ f on each A;, iel. Let a, b € A; we shall prove that ®/(a, b) = ©%a, b).
There are i,jel such that ae A; and be A;. If i = j, then ©'(a, b) = ©%a, b),
since g ~ f on A;. Suppose that i + j. Let x € K/ (a) n B;, x' € K/(b) n B;. There
exist n, m € Ny such that a € CJ[x] = Ci[x], be CJ[x"] = Ci[x"] (cf. 6.5), and we
can assume that n = m. From 6.7.1 it follows that

(1) f(a) = g(a), .../ *(a) = ¢""*(a),
() f(b) = g(b), ... /" }(b) = g"~'(b).

Since card C{[x] = i, card C{[x'] = j and g.c.d. (i, j) = 1, we obtain that if m = 0
then

(3) 0/(a, b) = [{a, f(a), ... /" (a)} U CI[x] L CI[xT],
and if m > 0, then
(4) ©/(a, b) = [{a, b}, {f(a), f()}, - /" (@) f" (D)}
{f™(a), ... /"~ (a)} v C4[x] v Ci[x'T]
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(analogously for g). According to (1) and (2) we get that the relation ©/(a, b) =
= ©%(a, b) holds.

The following Proposition 7.6 will not be applied for proving the estimate of the
cardinality of the set R(f) (cf. 7.8 and 7.9 below). Nevertheless, it could be used in
individual cases to verify whether a mapping g € F(A4) belongs to R(f).

7.6. Proposition. Let A = |J;c; A;, where A; &= 0 for each iel. For each i€l
let a; be a fixed element belonging to B;. If g € F(A), then the following conditions
are equivalent:

(1) g e R(f).
(2) (a) (A g) is a subalgebra of (A, g) and g ~ f on A, for each i€l
(b) ©/(b;, b;) = ©%(b,, b;) for each b,e Cl[a;], bje Cl[a;], i,jel, i*].
Proof. If g € R(f), then (2) is obviously valid. Suppose that the condition (2) is
satisfied. Let x, y € A. We shall prove that @/(x, y) = ©%(x, y). There are i,j €l
such that x € 4; and y € 4;. In view of (a) it suffices to investigate the case When

i + j only. Further, there are n, me N, such that f"(x)e B; and x e C/[f"(x)],
f"(v) e B; and y e CJ[ f"(y)]. We can assume that n = m.

Firstlet n = m = 0. If x e K (a;) and y € K ;(a;), then (b) implies that ©/(x, y) =
= 0%(x, y). Assume that x ¢ K(a;), y € K (a;). According to (a) and (b) we have

0’(x,y) v ©/(a;, x) = ©'(a; y) v 0/(a;, x) =
= 0%a, y) v 0%a, x) = 0%x, y) v ©%a; x).

Since each nontrivial class corresponding to the partition ©’(a;, x) or ©%(a;, x) has
two elements and no such class is a subset of K (x), we obtain that @/(x, y) =
= @“(x, y). Now assume that x ¢ K (a;), y ¢ K (a;). Analogously as above, we have

O’(x,y) v @/(a;, x) v @/(a;, y) = ©'(a;, x) v ©'(a; y) v 0’(a; a)) =

= 0%a;, x) v @(a;, y) v O%a; a;) = 0%x,y) v @%a, x) v 6%a,, y)-
All nontrivial classes corresponding to the partitions ©/(a;, x), @(a;, x), @/(4;; y)
or @%a;, y) have two elements and no such class is a subset of K (x) or of K(y)
therefore ©/(x, y) = 0%(x, y).

Nowlet n = 1, m = 0. Since g ~ f on A;, there is z € K (x) n B; with f(x) = f(2),
g(x) = g(2). Using what we have proved above we obtain
O/(x,y) =[{x,z}]] v 0'(z,y) = [{x, z}] v 0%(z, y) = 6(x, ).

Suppose that n > 1, m = 0. From (a) and 6.7.1 it follows that
(3) f(x) = g(x)s ... /"7 H(x) = ¢" ().

Let n'e Ny, n’ = n(mod i), 0 £ n’ < i. Denote u = f"*7"(x). According t0 (a)
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and 6.9 we have
(@) w = () = (R S) = o).
Further,
(5) 0%(x,3) = O/(x, " (x) v O/(F* (), ),
(6) 0%(x, 3) = 6¥(x, " (3)) v ©(g" (). ).
Applying the facts proved above and (4)—(6), we obtain
O’(x,y) = 0/(x,u) v O'(u, y) = 0%x,u) v O%u, y) = 0%x, y).
Now let n = 1, m = 1. Then (a) and 6.8 imply that there are t € B;, u € B; with
f(x) = f(1), g(x) = 9(2), f(u) = f(»), 9(u) = g(y). Hence
0’(x, y) = [{x. »}] v 0/(f(x). S/(») = [{x. y}] v @(f(1). /() =
=[xy} v 0/t u) = [{x, y}] v 01, u) = [{x, y}] v ©%(g(1). 9(u)) =
= [{x.»}] v 0%(g(x). 9(»)) = ©(x, y) .

Suppose that n = m > 1. We proceed by induction; we assume that ©’(f(x),
f(»)) = ©(f(x), f(¥)). According to (a) and 6.7.1 we have (3) and

) 1) = g(»)s s ") = 9" (1)
Therefore
0/(x,y) = [{x, y}] v ©/(f(x). /(»)) = [{x. »}] v ©%(g(x). f(¥)) =
=[{x, »}] v 0%g(x), 9(v)) = ©%(x,y),

completing the proof.

Now we shall establish an estimate of card R(f) for the case of an algebra (4, 1)
with a large cycle.

Let us recall that in this Part II we assume that there is a subset C = A such that C
is a large cycle.

Assume that A = (J;; A;, A; + 0 for each iel. If iel and g € R(f), then g ~ f
on A;. Further, according to 7.2, 7.4 and 6.10 for each i €I, i > 2 we have

card {g e F(A4,): g ~ f on A;} <¥N,.
If i =1n{1,2}, then in view of 6.4
card {ge F(A)): g ~ f on A;} =1.
Therefore we obtain the estimate
(A) card R(f) < ¢

(¢ being the cardinality of the continuum).
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7.7. Example. Let I be the set of all prime numbers greater than 2. Further let
(A4, f) be a monounary algebra such that 4 = (J,; A;, where 4; is a cycle with i
elements for each i € I. According to 5.4 we have

(1) card {ge F(A,): g ~ f on A;} =

= card {g € F(A,): A, is a cycle with respect to g}
and in view of 7.5 the following is valid:

(2) card R(f) = M card {ge F(4,): g ~ f on A;}.

iel

Hence (1) and (2) i;nply that
(3) card R(f) = c.

Thus we have proved the following assertion:

v
»

7.8. Theorem. Let (A, f) be a monounary algebra with a large cycle. Then

card R(f) £ ¢
and this estimate is the best possible.

Let us recall that E(A) denotes the system of all equivalence relations on 4. From
7.8 and 4.12 we obtain

7.9. Corollary. Let (4, ) be a monounary algebra such that Con (4, f) # E(A).
Then
(7.9) card R(f) £ ¢

and this estimate is the best possible.

8. ENDOMORPHISMS AND CONGRUENCE RELATIONS

For a monounary algebra we denote by End (A,f) the set of all endomorphisms of
(A, ). Further we put

Eq(f) = {g € F(4): End (4, f) = End (4, g)} .

In [5] it was proved that for each monounary algebra (4, f) we have

(8.1) card Eq (f) < c.
In view of the estimates (7.9) of 7.9 and (8.1) the natural question arises whether one
of the following assertions is valid:

(a;) For each monounary algebra (4, f) we have card R(f) < card Eq (f).
(a,) For each monounary algebra (4, f) we have card Eq (f) < card R(f).

Now we shall give two examples showing that neither (a;) nor (a,) holds.

8.1. Example. Let A4 be the set of all integers and let f(i) = i + 1, g(i) =i — 1
for each i € A. Then
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(a) g €Eq(/),

(b) g ¢ R(f),

(@) Eqa(f) = {/. 9},
(b)) R(f) = {f}-

The assertions follow from Theorem 1 in [5] and from Theorem 2.6.

8.2. Example. Let A be the set of all integers modulo 8 and let f(i) = i +1 (mod 8),
9(0)=1, g(1) =2, g(2) =7, g(7) =4, g(4) =5, g(5) =6, g(6) = 3, g(3) = 0.
Then

(2) 9 ¢ Eq (/)

(b) g € R(/),

(a’) card Eq (f) = card {f, f3,f°,f7} = 4,

(b) card R(f) = 16.

The assertions follow from Theorem 2 in [5] and from Theorem 5.4 (there are 16
possibilities to get an operation belonging to R(f) by means of the construction 5.1).

9. PARTIAL AND COMPLETE MONOUNARY ALGEBRAS

Let A + 0 be a set. We denote by F,(A4) and F(4) the system of all partial and
of all complete unary operations on A respectively. An equivalence © on a partial
monounary algebra (4, f) is said to be a congruence, if the following is valid (cf. also

[8], p- 177):
(Vx, ye A — Dy) (xOy = f(x) © f()),
where D, is the set of all z € A such that f(z) does not exist.

Let us recall some notations and results from [6]. For a partial monounary
algebra (4, f) we put

R,(f) = {g e F,(A): Con(A,r) = Con (4, g)}.
Let (4, f) be a partial monounary algebra. Consider the following condition for
(4.1):
(«) Con (4, f) + E(A) and f~ (D) + 0.

In [6] it was proved that the condition (o) can be expressed by means of Con (4, f).
Also, D, can be found by means of Con (4, f). Put B= 4 — D,.

9.1. Theorem. If (A, f) is a partial monounary algebra satisfying the condition
(ct), then card R,(f) = 4.

A partial monounary algebra (A, f1) is said to be a d-extension of a monounary
algebra (By, g,), if By = Ay, Dy, = A; — B, and g¢,(x) = f,(x) for each x € B;.
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Denote f; = g}. In [6] it was proved that

R,(f) = {9 € F,(4): Con(4,f) = Con(4,g)} =
= {g € F(A): Con (B, f|B) = Con (B, g/B) and D, = D,} =
= {g1 € F(B): Con (B, g;) = Con (B, f|B)} .

Hence in the case f~!(D) = 0 the investigation of R(f) reduces to the investiga-
tion of R(f/B), i.e. to the case of complete unary algebra. Therefore 7.9 and 9.1
imply the following result:

9.2. Corollary. Let (A, f) be a partial monounary algebra such that Con (4, f) +
# E(A). Then

card R(f) S ¢

and this estimate is the best possible.
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