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I. INTRODUCTION
We shall consider a non-orientable finite graph G = [V(G), E(G)] without loops,
multiple edges or isolated vertices. If there exists a mapping f from the set of edges
E(G) into positive real numbers such that

(1) f(e;) * f(e;) for all e; * e;; e;, e; € E(G),
(i) Y n(v, e)f(e) = r for all ve V(G),
ecE(G)

where (0 e) __ |1 when vertex v and edge e are incident
P €) =0 in the opposite case,

then the graph G is called magic. The mapping f is called a labelling of G and the
value r is the index of the label f. We say that a graph G is semimagic if there exists
a mapping f into positive real number which satisfies only the condition (ii). If the
semimagic graph G has a label with the index r we shall say that G has index r.

To study magic graphs was suggested by J. Sedldcek [3] Some sufficient condi-
tions for the existence of magic graphs are established in [2], [4] and [5]. A charac-
terization of regular magic graphs in terms of circuits is given by M. Doob [1] J.
Miihlbacher [2] used matrix theory to prove two necessary conditions for the exis-
tence of magic graph. These conditions are weaker than that of theorem 2 of this
paper.

First we shall formulate several necessary definitions.

A subgraph F = [V(F), E(F)] of the graph G = [V(G), E(G)] is called a factor
of G if the sets ¥(G) and V(F) are the same. A factor F is a (1—2)-factor of G if each
of its components is a regular graph of degree one or two. By the symbol F*, resp. F?
we denote the subgraph of F which consists of all isolated edges, or of all circuits of F
and the necessary vertices, respectively. We say that a (1—2)-factor separates the
edge e, and e,, if at least one of them belongs to F and neither F! nor F? contains
both of them.

The aim of this paper is to characterize all magic graph using the notion of separa-
ting edges by a (1—2)-factor.
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II. SEMIMAGIC GRAPHS

In this part we state some results about semimagic graphs which we shall use to
prove the main result.

Lemma 1. If G is a semimagic graph with the index r, then
a) each isolated edge of G has the label r,
b) a connected part of G having more than one edge contains no vertex of degree
one.
The proofs of these statements follow from the definition of a semimagic
graph.

Lemma 2. Let a semimagic graph G contain an even circuit C, then there exists
a semimagic factor H of G which does not contain all edges of C.

Proof. Let f be a semimagic labelling of G and let m = min {f(e): e € E(C)}. We
denote the edges of C by ey, e,, ..., e,, and suppose that f(e;) = m. We define a new
labelling h of G:

h(eZi—l) =f(e2i—1) - m,

h(ey;) = f(ey;) + m for i =1,2,...,n,

h(e;) = f(e;) for all e; ¢ E(C).

Obviously h(e;) = 0. By omitting all edges with h(e) = 0 from G we obtain a factor
which does not contain alledges of the circuit C and has the sameindex as the graph G.

The graph D is called a dumbbell if it consists of two odd circuits C; and C,
without common vertices joined by a path P or if it consits only of two odd circuits C,
and C, with only one common vertex.

Lemma 3. Let a semimagic graph G contain as a subgraph a dumbbell D, then
there exists a semimagic factor H of G which does not contain all edges of the
subgraph D.

Proof. Let f be a semimagic labelling of G with a dumbbell D which consists
of two circuits C,, C, and a path P or only of two circuits C;, C,. We denote m =
= min {m,, m,} where m; = min {f(e): e € E(C,) U E(C,)} and m, = 1/2 min {f(e):

e € E(P)}. Let ¢’ be an edge of D such that f(e) = m. We define an auxiliary label-
ling p. The edges of C; have alternating values 1 and — 1 and the edges of P the values
2and —2suchthat the sum at each vertex is zero,and the value of the edge ¢’ is negative.
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All the other edges of G have value 0. We consider the labelling
h(e) = f(e) + m p(e) forall eeE(G).

All edges having h(e) > 0 form a semimagic factor H of G which has the same
index as G.

From the lemmas 2 and 3 it follows:

Lemma 4. If G is a semimagic graph, then there exists a semimagic (1—2)—
factor F of G with the same index.

Lemma 5. If G is a semimagic graph, then every edge e' of G is contained in
a (1-2)-factor.

Proof. Let ¢’ be an arbitrary edge of G and F some (1—2)-factor of G. There are
two possible cases: either e’ € E(F) or e’ ¢ E(F). We must consider only the second
case.

Let g be an auxiliary labelling such that

q(e) = 2 forall eeE(F'),
g(e) =1 forall eeE(F?),
g(e) = 0 forall e¢E(F),
and
m = min {f(e)/q(e): e € E(F)} .
We consider a new labelling
h(e) = f(e) — mq(e) forall eeE(G).

Omitting from the graph G all edges for which h(e) = 0 we obtain a semimagic
factor H which contains the edge e’. Let F’ be a (1—2)-factor of H. (Note that F’
is also a (1—2)-factor of G.) If e’ ¢ E(F') we repeat the construction described after.
By a finite number of repetitions we obtain a (1—2)-factor of G which contains the
edge e'.

Lemma 6. If every edge of G belongs to a (1—2)-factor, then G is semimagic.

Proof. A semimagic labelling of G is obtained by a finite number of repetitions
of the following construction.

Let f be a labelling with nonnegative numbers such that the sum of the labels of
edges incident with each vertex is the same. (Note that every graph has such a labelling.)
Let e be an edge with f(e) = 0 and F one (1 —2)-factor such that e € E(F). We define
a new labelling

h(e) = f(e) + 2m for all ee E(F'),

h(e) = f(e) + m forall eeE(F?),

h(e) = f(e) for all e¢ E(F),
where m = max {f(e): e€ E(G)} + 1.
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From the previous lemmas it follows:

Theorem 1. The graph G is semimagic if and only if every edge is contained in a
(1=2)-factor.

III. CHARACTERIZATION OF MAGIC GRAPH

Lemma 7. If every couple of edges e, e, of a semimagic graph G is separated
by a (1—2)-factor, then G is magic.

Proof. Let f be a semimagic labelling of G.If f(e,) # f(e,) for all couples of edges
ey, e,, then G is magic. In the opposite case we choose a (1 —2)-factor F which sepa-
rates e; and e, and define a new labelling h as in the proof of lemma 6. After a finite
number of repetitions of the previous step we obtain a magic graph.

The previous lemmas yield the proof of our main result.

Theorem 2. A graph G is magic if and only if (i) every edge of G belongs to
a (1—=2)-factor, and (ii) every couple of edges e,, e, is separated by a (1—2)-factor.

Consequence. If G is magic graph then there exists a magic labelling of G with
positive integers.
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