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1. INTRODUCTION

Moser’s method was developed as a tool for investigating problems in which the
usual iterative procedures fail. This is due to a phenomenon which may be described
as “loss of derivatives”. This phenomenon occurs e.g. in the case of operators
Ly = uy + (—1)" ug2p + au,, which map the spaces Hy  (functions with k gener-
alized derivatives with respect to t and pk with respect to X) into Hy_, - 2), but the
inverse operators map Hy_, ,q-2) into Hy_; ,4—y). This is an inherent difficulty
in treating the nonlinear equation L,u = F(u), where F(u) includes the derivatives
of u up to the same order as L,.

The problem Lyu = &f (£, X, u, t;, Uy, Uy, Uy Usy)s

(1) u(t + 2m,x) = u(t,x), u(z,0)=u(t,n) =0

has been investigated by P. H. Rabinowitz [2]. The problem L,u = ¢ F(u), (1)
where F(u) = f(t, x, u, u,, uy, u,) or F(u) = f(t, x, u, u, u,, u) is studied in the
thesis of M. St&dry [5].

In this paper a condition is found under which the main assumption of Moser’s
theorem (see [1]) is fulfilled. Then it is applied to the problem (L, — I) u = ¢ F(u),
where, moreover, the bifurcation equation must be solved, because the operators
L, — I have a nontrivial kernel.

2. APPROXIMATE SOLUTIONS OF THE LINEARIZED EQUATION

Let Hy> A, > H, > A, ... H, > A, ... be Hilbert spaces with norms satisfying
[ulo < Julo < |u|s = - < Jule £ Jufx-.. (|*]»|-]; denote the norms in H,, A;
respectively), and

(2 |ulk+i+l = c]u|,:;}' I"Ilrc+i+z ,» 0<t<1,

lulls < clufd= Julg, 0<1<k, 0<o<1.
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(All constants will be denoted by c). Denote by L a linear operator continuously
mapping H,,; = H,, A,,;, » H, for 0 £ I'< k and some i > 0 and by F a non-
linear differentiable operator with the same properties.

If we are to prove the existence of a solution in H, to the equation

(3) Lu = ¢ F(u)
with the help of Moser’s theorem, it is necessary to verify the following assumptions:
Let uge Ay, D= {ueH,y, |4 — uo|; £ R}, T(u) = Lu — ¢ F(u). Then there is
a constant M > 0 such that
(i) |F(u)|x < MK for ue Hypi 0 D, |ufis; £ K,
(ii) | T(u) — T(uo)|o < M for ue D,
(iii) |F(u + v) — F(u) — F'(u)v|o < M|o||57" [v|fs; for ue D, ve Ay,
O0<p<l
(iv) If geH,, ueH,,, satisfy |g[o <K% . lglls £ K, |Jufe+: £ K, K being

sufficiently large, then there exists an approximate solution to the equation
T'(u)v = g, i.e. for every Q > 1 thereis a vy € A, . such that

[T'(w) v = gfo < MKQ™,
“UQ”k+i < MKQ,

lvollo = ¢|T'(w) vglo »
(v)v+1<min<2—/3'1+('1+1)(v+1),)~1_G>.
v—A v+ B) I

If these assumptions are fulfilled and ¢ is sufficiently small, (3) has a solution in the
space H,.

The most difficult task is to verify the assumption (iv). We intend to find conditions
for the operators L, F and the spaces, under which (iv) is fulfilled.

Theorem 1. Let the spaces Hj, H;, 0 < j < k + i + 2, satisfy (2) and let {e,}
be an orthogonal basis in each H;, e, being the eigenvectors of the operator L.
Suppose that there exists a continuous operator A : H,,; — H, such that Ae, = b,e,
n=1,2,... and

“) (Lo, Av), 2 ol
(5) (F'(u) v, Av)y £ cloffsi
(6) (g, Av)k C”g”k |”|k+i >

where u,ve Hyy, ullisi <K, 0S 1Sk + 2.
Then the equation T'(u) v = g admits an approximate solution.

n

IIA

IIA

Proof. We shall prove this theorem in several steps.
A. There is an operator A’ such that for all ve Hy4;4+, and u > 0
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) 4]y < el

(8) IA,ka = CIU|k+i+2 s
9) (Lv, A'v), 2 0, (A'v, Av), 2 0,
(10) (4 + pA’)"! exists and is continuous from H; to Hy, ;. , .

B. The operator (ud’ + T'(u))™' : H, = Hyy;4, exists and the following ine-
quality holds:

(11) Ivlk+i + u]v]k”” < cf(pa” + T'(w)) v|

C. The assertion of Theorem 1 follows from relation (11).

k> [l.>0.

Proof of A. As e, is an orthogonal basis in H; and Le, = a,e,, we get according
to (4):

2
I+i»

@ @
(Lv, Av), = Zla,, bu|va|? |es]i = ¢ lev,,lz e,
n= n=

where v, = (v, ,)o, if We take |e,|o = 1. This implies that

(12) a,b, > cle,

friledi? > 0.

We define the operator A’ in the following way: A’e, = c,e,, Where c, are determined
to fulfil

(13) &by 20, a8 20,
(14) - const lenlisi e 7" < |ea| < const [eis leat? -

This choice is possible because of (12). It follows from the continuity of the operators

L, A that

2

T 2
a,,b,,!e,,lj = (Le,, Ae,); < cle,|jri+1

e'l

for each j < k + 2. This inequality together with (12) yields
Iean-i Ienl_;+1i+1 é ‘en‘l [en|;1

for arbitrary I, j < k + 2 and consequently we obtain

ivi S e feli? for k= max(6, i+ 3).

!en[k+i+2 €n

0
This ensures that for each g e Hy, g = Y. g,e, there is a v € Hy+i+25
n=1

<

-2 2
k+it+2 =

© ©
v= Zgncn_len > lv"f*‘”’Z = Z !g"|2 lc" €n
n=1 n=1

0 @
_S_ czllgnlz Ienll%+i+2 |en I:+21 |en f é 4 legulz |enllf = clgll%'
n= n=
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This and (13,) imply that (8) and (10) hold, (7) immediately follows from (14) and (9)
from (13).
Proof of B. According to (4), (5) and (9) we obtain for an ¢ sufficiently small
(15) ((u" + T'(@)) v, (pA" + A) o) Z 12| A'0]¢ + eloliss — el A0 [olurs,
e+ @) el (Al + clolhr) 2 clula)+ [ele )7
With the help of (8) we get
(0 + TG ol el 2 e sl

and finally
l(uA’ + T'(u)) v],, > cuzlA’vlk > c;tzlvl,d_i+2 .

So the range of the operator uA’ + T'(u) is closed in H, and if u € Hy, (u, (uA" +
+ T'(u)) v), = O for each v € Hyy 42, We get by setting v = (ud’ + A4)™ ' u

0 = ((uA' + T'(u)) v, (uA’ + A) v} Z c|pfty; .
It follows that v = 0, hence also u = 0 and the proof of invertibility of the operator

uA’ + T'(u) is complete.
With the help of (6) we get
((uA” + T'(w)) v, (A" + A) v)e < p|A'0]y [(uA" + T'(u)) o]y +
+ e (ua” + T'@)) o [oless < ef(wa” + T'(w)) vl (1 A'0]s + [o]es )
and this inequality together with (15) and (8) yields (11).
Proof of C. For v satisfying (u4’ + T'(u)) v = g, (11) and (7) imply
760 — allo = el = ulaly < culoher < calalh.
”U”k+i = IU|k+i+1 = IUI;;: lvli+,~+z = c”g”k O

Now for Q > 1 we take u = Q2 and (iv) follows with v = 1/z. The last inequality
in (iv) immediately follows from (4), (5), (6) for I = 0 and ¢ sufficiently small.

Remark. In some particular cases the assumptions (4), (5) and (6) are needed
only for k = 0 and the relation similar to (11) can be derived by the regularisation
process, see [2] and [5] Also the assumption that e, form a basis is needed only in H,,.

3. PERIODIC SOLUTIONS OF THE EQUATIONS
0’u
Uy + (—1)"@ + au, —u = ¢ F(u).

First we shall deal with the equation
(16)  Lu = u, — uy, + ou, — u = &f (%, *, 4, Uy, Uy, Uy, Ugys ) = & Fu)

for (t,x)€ G = R x <0, m), o > 0, and look for a solution satisfying (1).
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In this case it is not possible to use Moser’s theorem directly because of the kernel
of the linear operator being nontrivial.

Denote Hy = {u € I*(G), u(t + 2m, x) = u(t, x)}. H, can be written as a direct
sum of two orthogonal subspaces, Hy, = R(L) @ N(L), where R(L) is the range of
the operator L and N(L) = {2 sin x} is the null space of L.Denote by P the projector
of H, onto R(L). Then the equation (16) is equivalent to the system

Lu = ¢PF(u), (I — P)F(u)=0.

We shall look for the solution in the form u = v + w, where v = Pu, w = (I — P)u.
It will be proved that for weN(L), |wlk < R and ¢ sufficiently small there exists
ve R(L) such that

(17) Lv = ¢PF(v + w),
and then w will be determined from the equation
(18) (I = P)F(o(w) + w) =0

or, equivalently, (F(v(w) + w), w) = 0. This is equivalent to finding a root of the
function g(%) = [57 {5 F(v(Z sin x) + Asin x) (#, x) . sin x dx dz. The function g is
continuous on {—R, R) if f is continuous in all its arguments and v satisfying (17)
continuously depends on w in the C? norm.

The existence of a solution to the equation (17) and its continuous dependence
on w can be proved with the help of Theorem 1.

Let H; be the completion of the space

621 aZl
{(PGCOO, ;21 ([)(1,0) = KZI (D(t, TC) = 0, | = 0, 1, 2, .:.}

2n
k= ¥ j j
ki+kask Jo Jo

and let H, ='{q>eH0, peH, o, e Hy, |0 = |<p|,, + I‘Prlk' The system {e,,} =
= {sinmx.e™}_, __, is an orthogonal basis in H, and e,, are eigenvectors
of the operator L.

Now the spaces PH; and the operators L, F and 4,

in the norm
ak1+kzq) 2
W (t, x) dx dt

Au = —uy,, — Ay — P, + Aqu, + pqu with suitable A, g, A4, uyq

satisfy the assumptions of Theorem 1. Indeed, using the boundary and periodicity
conditions and integrating by parts we get

(Lu, Au), = (0 = A) |uee]f + slusds + (2 — p) juals +
+(aky = 2= ) fufd + (= )l = il 2 efufiss -
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The last inequality follows if we sete.g. 4 = a/z, u= oz/lO, Uy = oc/4, 4, = 1 and use
the relation |u[,f < %(lu,l,f + qul,f), which holds for u € PH, ., as u = Y Uy SIN M1
.e™and u,, = 0.

To prove (5), we write F'(u)v = Ya, v, i 20, j 20, i+ j<2, where
ay; = 0" f|ou,y € Hy for u e Hy,; and |a;;], < MK if ||ull,,, < K. This is a con-
sequence of the composition of functions inequality, see [2].

We have to estimate (F'(u) v, Av),. The most difficult term is (dgyDue Urrc)ic
Writing a in place of a,, we obtain

(avxxa Uut)k = —(atvxm Utt)k - (avxxn vlt)k .

As H, are Banach algebras for k = 2, we have all the terms on the right-hand side
except for (aD*v,,,, D*v,,) (D* denotes the derivative of the order k) estimated by
|all [o[z+2- Nevertheless,

(aDkaxra Dkvn) = ~((1ka0,‘,, Dkv{t) - (a’ (‘ZL(Dkat)Z)t) =
= (av (Dkvxl)z) - (akavxn Dkvtt) >

which can be estimated in the same way. The other terms in (F'(u) v, Av), can be
handled analogously.

Integrating by parts and using the periodicity conditions we obtain the estimate (6)

It remains to verify the assumptions (i), (ii), (iii) and (v) of Moser’s theorem to get
a solution of the equation (17) for each w = 4 sin x, |)] < R. We take D =
= {u€PH,,,, ||u|s £ 2R}. The assumptions (i), (ii) are now satisfied because of the
composition of functions inequality. The left-hand side of (iii) is the norm of a qua-
dratic form in v and its derivatives up to the second order, which can be estimated
by the Nirenberg inequality by c|o]|§~¥**? |v|7l4*? (see [3] and [2]). The
Nirenberg inequality gives also in (2) = 4 and ¢ = }k. In (v) v = 2 and it can be
easily seen that this inequality can be fulfilled if k is large enough.

The assumptions of Moser’s theorem are fulfilled and the equation (17) has a solu-
tion v(w) € D for all w(t, x) = Asin x, Iil <R.

We shall now prove continuous dependence of v on 1 in H, with the help of the
operator A satisfying (4), (5), (6). Let w, = 4, sinx, w, = 4, sinx, |4 < Rand let v,
be the corresponding solutions of the equation Lv; = ¢PF(v; + w;). Then

L(v, — vy) = eP(F(vy + wy) — F(v, + w,))

and for v = v; — vy, w=w; — w, and u, = t(v; + w;) + (L — 1) (v, + w,) we
get
clvli < (Lv, Av), = &(P(F(vy + wy) — F(v, + wy)), 4v), =

= (J; F'(u,) (v + w)dt, Av)z =g .[ : L(F'(u,) v, Av), + (F'(u,) w, Av),] dt <

< eclolf + ec sup [F/(ug) w2 [o]a -
0sts1
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This implies [v]s < ec|w]s < ec|d;, — 4.

It follows from this relation that the function g defined by (19) is continuous and
moreover, if there are A;, 4, such that |4,] £ R and (F(4, sin x), sin x) > 0,
(F(4, sin x), sin x) < 0, then g(4;) > 0 > g(4,) if ¢ is small enough. In this case
there exists 4o such that g(1o) = 0 and u = v(4g) + Ao sin x is the solution of the
problem (16), (1). Thus, we have proved

Theorem 2. Let F map H,. , into H, and let 1., A, be such that
2n (rn 2n Mn ’
(20) J J F(2; sinx)sinxdxdt > 0, J. j F(4,sinx)sinxdxdt < 0.
0 V] 0 0

Then, if f is sufficiently smooth and ¢ is sufficiently small, the problem (16), (1)
possesses a classical solution.
The same procedure can be used if we treat the equations

(21) Lu=c¢F(u), p=23,...,

where

0**u
Lu =u, + (—-1) pweT +oau, —u

and

(22) F(u) = f(*, 03ty Uy, Uy Uy Unes - Uneps Upy)
or

(23) F(u) = f(*, "5ty Uy Uy, Upgy Upy + .oy Unp, Uzp) -

The spaces H, now consist of functions with k derivatives with respect to t and pk
derivatives with respect to x. The operator A is given by

Au = —u, — Juy + p(—1) up2p + 2u, + pyu if F has the form (22),
Au = (=10 uyp — 2ty + p(—1) u,2p + Ayu, + pyu  if F has the form (23).
Theorem 3. Let F map H, ., into Hy and let A, 1, be such that (20) is satisfied.

Then if f given by (22) or (23) is sufficiently smooth and ¢ sufficiently small, the
problem (21), (1) possesses a classical solution.

The author gladly acknowledges many helpful discussions on the problem with
Prof. O. Vejvoda.
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