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0. INTRODUCTION

A ternary space is a ternary structure common to metric spaces (metric between-
ness), to partially ordered sets (order betweenness), to modular lattices (lattice
betweenness), to vector spaces over a partially ordered field or over a ternary field
(algebraic betweenness), to media (these are ternary algebras given by five of the
identities satisfied in modular lattices by the operation (abc) = (a A (b v ¢)) v
vibac)=(@av(bac)a(bvec), and to other algebraic and geometric
structures.

A Chebyshev set in a ternary space is a subset C of it containing for every point x
a point between x and all points of C. In Section 1, after discussing some examples
of ternary spaces, we prove basic properties of Chebyshev sets in ternary spaces.
J. R. Isbell has developed the theory of Chebyshev sets in I-media (these are media
satisfying a stronger convexity condition than media).

Media are investigated in Section 2 via their interval and betweenness structure
and similar results to Isbell’s ones for I-media are obtained. The Jordan-Holder
theorem for chains is a consequence of the fact that a medium is ““locally” a modular
lattice. The ternary space of a medium does not determine it; but the structure
of the medium can be described by its intervals.

Section 3 is devoted to a study of Chebyshev sets in spzcial ternary spaces. The
Chebyshev sets are characterized in discrete media (using this modular lattices can
be distinguished in the class of discrete lattices via Chebyshev sets), in modular lattices,
and in partially ordered sets; in general media, the Chebyshev ideals are characterized.
With any discrete medium one can associate a medium on the same points and with
the same ternary space, the Chebyshev sets of which are ideals. Further results:
the Chebyshev sets in a discrete ternary space form a complete lattice; only a one-
dimensional vector space can have a nontrivial Chebyshev set.

1. TERNARY SPACES

Let T be a set together with a ternary relation abc. If a, b, c € T and abec, b is said
to be between a and c. A segment (ab) is defined as the set of all xe T between a and b,
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i.e. (ab) = {x € T: axb}. A subset A of T'is called a chain if A = {a;};e; where (I, <)
is an ordered set and a;a;a, for all i,j, kel, i £ j < k. An element a; (i eI) is an
endelement of the chain A if i is a least or a greatest element in (I, <). The notation
XoXy -.- X, (Xo, Xy, ..., X,€ Tand n > 1) means that x,x,x, for all i, j, ke {0, 1, ..., n},
i<j<k (we also use such a notation with an infinite number of members, e.g.
XX1X2 +. X, XoX1X -.. Y2V1Vo, and so on). If a, b, ¢,d € T are distinct and abe,
bced, cda, dab, then a, b, ¢, d are said to form a rectangle. The length of a chain
aoay ... a, (ag, ay, ..., a, are distinct) is n.

A ternary space is a set T together with a ternary relation abc satisfying
(T,) abc = cba,
(T,) abc, acb <= b = c,
(Ts) abe, acd = bcd,
(T4) abe, acd = abd.
Tis called trivial if there are no distinct elements a, b, ¢ € T such that abc.

First, some basic results about chains.

1.1. Lemma. In a ternary space
(1) XoXq o.v Xy XX, X = XXy ... X,X,
(2) 0%y +.. X, X;— 1 Xx; for some i€ {1,2, ..., n} = XXy .. Xjm 1 XX;+.e Xy

Proof. Let xoX; ... X,, XoX,X, and i, j € {0, 1, ..., n}, i < j. Then (1) follows from
the following two implications

X0XiXps XoXpX = XXX 5 XXX, X;X,X = XXX .

(2) for n = 2 is obvious. If n > 2, then (one can assume i = 1) using induction we
get XX, ... X;_;XX; ... X, which with xox,x, gives the required result by (1).

Characterizations of chains in more general spaces than ternary spaces can be
derived e.g. from [18] and [12] (cf. [1]). Results from these papers can be sum-
marized in the following assertion.

1.2. Theorem. Let T be a space given by conditions (T,), (T5), and
(T,o) aba = a = b.
Consider the following conditions (A is.a nonempty subset of T):
(3) at least one of the relations abc, acb, bac holds,
(4) A does not contain a rectangle,
(5) abe, bed, b *+ ¢ = abcd.
Then A is a chain if and only if it satisfies (3) and (4) or (3) and (5). If A has not
exactly four elements, then it is a chain if and only if it satisfies (3).
The concept of a ternary space is sufficiently general to allow many various
examples. We list some of them.
Every metric space (M, d) with metric betweenness abc <> d(a, b) + d(b, ¢) =
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= d(a, c) is a ternary space (cf. [11] and [13], Part II). Clearly, this example also
includes a connected graph with its natural metric.

E. Pitcher and M. F. Smiley ([13], Part II) proved that lattice betweenness abc <>
<(anb)v(bac)y=b=(av b)a (bv c)satisfies (T,)—(T;) in every lattice
(L, A, Vv), and that a lattice is modular if and only if its betweenness satisfies (T,).
Thus a modular lattice with lattice betweenness is a ternary space. L.M. Kelly [7]
characterized those ternary spaces which are modular lattices such that space between-
ness and lattice betweenness coincide. A comparison of algebraic (see below), metric,
and lattice betweenness can be found in [17].

Further examples of ternary spaces are provided by ternary algebras called media
which are considered in Section 2. These algebras include modular lattices.

One can obtain a ternary space also from a partially ordered set (P, <) using
order betweenness abc<>a =borb=cora<b<corc<b<a.

W. Prenowitz and J. Jantosciak [16] introduced the concept of a join space which
covers the theories of many geometries. We shall consider two examples of vector
spaces which are special join spaces and which include vector spaces over an ordered
field.

A join space is a set J with a join operation o : J* — P(J) such that
() aob =*0,

() acb="boa,

(I5) (@aob)oc=ao(boc),

(Jg)albnc|d+0=>acdnboc#0,

(Js) alb * 0,

where a|b ={xeJ:aebox}and AcB=J(acb:aec A, beB) for A,B < J.
Its betweenness is given by abc <> bea o c. ‘

1.3. Lemma. A join space (J, o) is a ternary space if and only if a-a = a and
aeaobforalla,bel.

Proof. (T,): This is obvious from (J,). (T,): By (J,), abb. If abc and acb, then by
(J;), becoa and ceboa; this means aeb|cnc|b, hence by (Jg), bobnco
oc % 0, thatis b = c. (T3), (Ty): If abc and acd, then b e a o (a o d); hence by (Js),
beaod. From aeb|cncld by(Jo)weget bodncoc =% 0, whence cebod. g

There are generalizations of the concept of an ordered field in two different direc-
tions — a partially ordered field and a ternary field. The only fields which are both
partially ordered and ternary fields are just the ordered fields.

A partially ordered field is a field (F, +, ) containing a nonempty subset P (the
set of positive elements) closed under addition and division (see [4]). The correspon-
ding partial order is given by a < b<>a = bor b — a € P. F is ordered if for every
x € F either xe P, —x € P or x = 0. An equivalent definition: (F, §) is a partially
ordered set such that a < b implies a + ¢ < b + ¢ for all ce F.and afc < b/c for
all ¢ > 0. »

375



A field (F, +, -) is called a ternary field if it is a nontrivial ternary space and for
alla,b,¢,xe F
(F)) abc=>a+x b+x c+x,
(F2) abc=>a.x b.x c.x
These properties can be immediately extended to chains, i.e. for all n > 1 and
ag, Ay, ..., a,, x€F,apa, ... a,impliesay, + xa, + x...a, + xanday.xa; . x ...
... a, . x. Orderability is equivalent to the condition (3); this is clear e.g. from the
following lemma.

1.4. Lemma. The condition (5) is satisfied in any ternary field (F, +, *).

Proof. Subtracting ¢ from the terms in the relation abc (or bed) and dividing
by b — ¢ one has x10 (or 10y) where x = (a — ¢)/(b — ¢) (or y = (d — ¢)/(b — ¢)).
Multiplying the terms in 01x by y/x we obtain 0 y/x y which with 10y gives 10 y/x.
This multiplied by x implies x0y which with x10 gives x10y. Finally, from the last
relation (multiply by b — ¢ and then add c) one has abcd. g

In view of 1.4 one can see that the concept of a ternary field is essentially the same
as the concept of a “‘partially ordered field” in the sense of [14] (W. Prenowitz [14]
used the name partially ordered field because he presumed (erroneously) that his
concept coincides with that of D. W. Dubois [4]). The only difference between these
two concepts is that W. Prenowitz [14] used strict betweenness (abc implies that
a, b, c are distinct). By 1.4, it is also clear that in his definition of a ““partially ordered
field” (which is given by strict betweenness, (T;), (T), (Ty), (F;), (F,) for x # 0,
nontriviality and the property abc, bed imply abd, acd) the last condition can be
omitted.

We will use only the following three properties of a ternary field proved in [14]
(those wanting to know more about ternary fields are referred to the cited paper):
(6) 0al=0 1 —a 1,

(7) Oal, 01 =0 a.b 1,
(8) Oal, 0b1 =0 a a + b.

If (F , +, ) is simultaneously a ternary field and a partially ordered field such that
the corresponding ternary spaces coincide, then F is an ordered field. For, subtracting
1 from the terms in the relation 012 and then multiplying by any xe F, we have — x0x,
hence either x > 0, x < 0 or x = 0.

1.5. Theorem. A vector space V over a ternary field F is a join space satisfying
a.a=a and a€ao.b under the join operation aob = {ceV: c=X.a+
(1 = x). b for some x € F such that 0x1}.

Proof. By (6), one has another expression for aob, a0 b={ceVic=x.a +
+ y . b for some x, y € (01) such that x + y = 1}. Now, the only nontrivial condi-
tions are (J3) and (J,).

To prove (J;) assume d e (a o b) o c; this means that there is e € a o b such that
deeoc.One can writtee=x.a + y.bandd=1z.e + t.c for some x, y, z,t €
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€(01) such that x + y=z+t=1 Hence d=x.z.a+y.z.b+t.c For
s=1—x.z=1+y.zonehasOts by (7) and (8). If s = 0, then t = 0; this means
d=-ehencedeaoc(boc) Ifs=*0,thend =(1 —s).a+s.fwheref=u.b+
+v.c,u=y.z|[s,and v = tfs. Clearly, u + v = 1, and by (7), 0 x . z 1. Ots after
dividing by s gives Ovl. Thus de a o (b o ¢).

To prove (J,) assume there is e a I bnec | d; this means aeboeand cedoe,
hence a=x.b+y.eand c=z.d +t.e for some x,y,z,te(Ol) such that
x4+ y=z+t=1 The cases y =0 and ¢t = 0 are trivial. Otherwise, one can
eliminate e:e =(a —x.b)[y=(c—z.d)[t, hence t.a+y.z.d=y.c+ x.
.t.b. Since t+y.z=y+x.t, f=(t.a+y.z.dt+y.z)=(.c+
+ x.t.b)(y + x.t). Now, it is not difficult to show that feaod N boc. g

Thus in view of 1.3 a vector space V over a ternary field F with algebraic be-
tweenness abc <> b = x.a + (1 — x) . ¢ for some x € F such that Ox1 is a ternary
space. The same is valid for a vector space V over a partially ordered field F (namely,
1.5 can be proved in an essentially similar way (cf. [16], Section 3 and [15], Ap-
pendix) for this vector space). The following lemma is true also for a partially
ordered field F. '

1.6. Lemma. In a vector spaceV over a ternary field F the condition (5) is satisfied.

Proof. If abc and bed, then b =x.a + (1 —x).candc=y.b + (1 — y).d
where x, y € (01). Substituting b in the second expression we get s.c =x.y.a +
+ (1 —y).dwheres=1—y+x.y Since 01 —y1and Ox.y 1 (by (6) and
(7)), 0 x . y s by (8); hence if s = 0, then x = 0 which means that b = c. Otherwise,
c=z.a+t.dwherez=x.y[sand t = (1 — y)s. Clearly, z + t = 1. Dividing
by sin O x . y s one has oz1. Thus acd, hence abd. g

A join space J which is also a ternary space need not satisfy the condition (5)
(e.g. a four-element Boolean lattice with lattice betweenness).

The next two examples are suitable modifications of examples II and III in [16],
Section 3 (cf. Section 12) given here to show join spaces satisfying a - a = a and
acaob.

Let V be a vector space over a partially ordered field F. The ray a determined by
an element a€V is defined as {x.a:xeF, x > 0}. Define on R = {a: aeV}
a join operation *: @ * b is the set of all rays determined by the elements of a o b.
Then (R, ) is a join space satisfying @ + @ = @ and ae a - b. It is called the ray
space of V.

Let V be a left module over a division ring D. The linear manifold a* determined
by an element a € Vis the set {x . a: xe D, x #+ 0}. Define on the set S of all linear
manifolds a join operation *: a* « a* = a* and a* + b* for a* =+ b* is the set of all
linear manifolds determined by the elements of a* + b* = {c + d: c € a*, d € b*}
together with a* and b*. Then (S, -) is a join space satisfying a* * a* = a* and a* €
€ a* + b*. It is called the linear manifold space of V.

J. R. Isbell [6] has introduced the concept of a Chebyshev set (in a quite strong
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sense) in ternary algebras which we call here I-media (the name media is used here for
the somewhat more general concept of ternary algebras). This concept, in a natural
way, can be introduced in a ternary space such that in the case of an I-medium it
coincides with Isbell’s one (see Section 3). We list some basic properties of Chebyshev
sets with very simple proofs (cf. [6], 1.6, 1.7, 1.8).

A subset C of a ternary space T'is called convex if (ab) = C for all a, b e C.

A subset C of a ternary space T'is called a Chebyshev set if for each x € T there is
X¢ € C such that xxcc for all ce C (note the obvious fact that such x is unique). The
map x — X is then called projection upon C. A Chebyshev set is trivial if it is a sin-
gleton or the whole space.

Every Chebyshev set is convex, for if a, be C and x € (ab), then axcxxchb, hence
x = xc€C.

1.7. Lemma. If C is a Chebyshev set and x,ye T, then (xy) n C = (xcyc)
provided (xy) 0 C is nonempty. In particular, (xc) n C = (xcc) for all c € C.

Proof. Forall ae (xy) N C we have xay, xxca, and yyca, hence xxcaycy. The
assertion is now obvious. g

1.8. Lemma, A relative Chebyshev set D in a Chebyshev set C is Chebyshev,
and x;, = Xcp, for all xe T.

Proof. If xe T and d € D, then from x, d € C it follows that xx.d and x¢xcpd,
which imply xXcp,d. m

1.9. Theorem. A nonempty intersection of two Chebyshev sets is a Chebyshev set,
the projections commute, and the composite is the projection upon the intersection.

Proof. Let C, D be Chebyshev sets with C n D + 0. With respect to 1.8 it suffices
to show that x, € C n D forall x e C. Take a € C n D. Then xxpa and since x, a € C,
xXxp€C. m

For investigations in Sections 2 and 3 some further notions are necessary.

In a ternary space T, a chain 4 (with endelements a, b) is a maximal chain (with
endelements a, b) if there is no chain B + A, B 2 A4 (with endelements a, b). A chain
Ais called a saturated chainifa, be A,xe€ T, axb,and 4 U {x} isa chain imply x € A.
These two concepts are connected in the following sense: a chain 4 with end-
elements a, b is a maximal chain with endelements a, b if and only if it is saturated.
A simple induction yields the following assertion. A chain a4a,... a, is a maxi-
mal chain with endelements a, b if and only if (a;,_a;) = {a;_, a;} for all ie
e{l,...,n}. A segment (ab) is an edge if a % b and (ab) = {a, b}. A ternary space
is called discrete if all chains with endelements are finite.

Two segments (ab) and (cd) are called transposed (e-transposed) segments if a, c €
e (bd) b, d € (ac) (and (ad) = {a, d}, (bc) = {b, c}) or a,de(bc) b, ce(ad) (and (ac) =
= {a, ¢}, (bd) = {b, d}). They are called projective (e-projective) if there are seg-
ments (XoYo), --- (X,Vu)s Xo = @, Yo = b, X, = ¢, y, = d such that the segments
(xi=1¥i-1), (x;y;) are transposed (e-transposed) for i = 1, ..., n.
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Now, some graph-theoretic remarks. By a graph G we mean a pair (¥, E) where V
is a nonempty set (the vertex set of G) and E < {{a, b} : a, b e V are distinct} (the
edge set of G). A path (of length n) from aeV to be V is a sequence of edges
{a = ao, a1}, {ay,a,},....{ay-1, a, = b} (n 2 1). It is called a simple path fi
ag, ay, -.-, a,are distinct. The distance d(a, b) between two distinct vertices a, b is
defined as the length of a shortest path from a to b (if there is a path from a to
b), d(a, a) = 0. A graph G is connected if two distinct vertices a, b are connected
by a path. In this case, (V, d) is a metric space. Observe that a simple path
{ag, as}, {ay, az}, ... ,{a,-1,a,} (n > 1)in a graph G is a shortest path from
ao to a, if and only if aea; ... a, (in the sense of metric betweenness).

The graph of a ternary space T is the graph (T, E) where E = {(ab): a, b € T and
(ab) is an edge}. Clearly, the graph of a discrete ternary space is connected. By the
graph of a lattice L we mean the graph (L, E) where {a, b} € E <> a covers b or b
covers a.

A lattice is called discrete if all chains with endelements are finite; let us observe
that by [9], Lemma 3.1, we have an alternative definition: a lattice is discrete if and
only if all chains with comparable endelements are finite (here, a chain in a lattice is
considered in the sense of lattice betweenness). Let us also observe that for the

definition of discreteness of a lattice we can as well use chains in the sense of order
betweenness.

2. MEDIA

Here, an interesting case of ternary spaces which includes modular lattices is pre-
sented. A study of media introduced here is mainly inspired by Isbell’s work [6]
using a somewhat different approach.

A medium is a set M with a ternary operation (abc) satisfying
(M,) (aab) = a,

(M,) (abc) = (acb),

(M) ((abe) ab) = (abe),

(M) ((dbc) (abe) a) = (abe),

(Ms) ((ab(dbc)) be) = (ab(dbc)).

An I-medium is a set M with a ternary operation (abc) satifying (M,)—(M,) and
(1) ((a(bde) (cde)) de) = (a(bde) (cde)).

Clearly, each I-medium is a medium, in fact, (M,) and (I) imply (M;). The work
[6] is devoted to a study of I-media and the reader is referred to this paper to find
a motivation and a geometric explanation of the study. The identities (M,)—(M,)
and (I) are equivalent to embeddability in a lattice (see [6], (viii), 1.4), this means
that an I-medium is isomorphic to a subset M of a lattice such that (a A (b v ¢)) v

vibAc)=(av(bac)a(bvc)eM forall a, b,ce M and conversely, every
such subset is an I-medium.
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In a medium, an interval [ab] is the set of all x such that (xab) = x. It is the same
asthe set of allelements of the form (yab). Forif xisin [ab], thenitis (xab). Conversely,
by (M,) and (M,), (yab) = (ya(bab)) which is in [ab] by (Ms). Axiom (Ms) can be
read: b € [ac] implies [ab] < [ac].

A segment (ab) is the set of all x such that (axb) = x. Its elements will be said
to be between a and b; in symbols, axb means x € (ab). Clearly, (ab) < [ab] by
(M,) and (M;), and for x e (ab) we get by (M,), (M,) and (M,), (bxa) = ((bxb)
(axb) a) = (axb) = x. Hence (ab) is the set of all elements of the form (ayb).
(M,) can be read: (dbc) (abc) a.

Note that in the case of an I-medium, x € [ab] is equivalent to a A b < x £
<avb, and xe(ab) is equivalent to (a Ax)Vv(x Ab)=x=(avVvx)A
A (x v b) (here, the lattice from [6], 1.4, in which the I-medium is embedded, is
considered).

2.1. Theorem. Every medium is a ternary space.

Proof. Its betweenness is given by abc <> (abc) = b. (T,) and (T,) are obvious.
(T3): If abe and acd, then (bed) = ((bea) (dea) d) = (dca) = c. (T,): If abe and acd,
then x = (dab) € [ab] < [ac], hence (dcx) = (d(dca) (xca)) = (dca) = ¢ and
(cbx) = (c(cab) (dab)) = (cab) = b. The relations dex and dxb imply, by (Ti),
cxb which with cbx gives x = b. o

2.2. Lemma. In a medium,

(9) x = (abc) if and only if [ax] o [bc] = {x}.

Proof. By (M,), each interval [bc] is a Chebyshev set. Clearly, x = (abc)e
€ [ax] n [bc]. For y € [ax] n [bc] one has axy, hence y = x. Conversely, if [ax] n
N [be] = {x} and y = (abc), then ayx, hence y = x. m

In particular, abc is equivalent to [ab] n [bc] = {b},i.e. b splits a and ¢ by Isbell’s
definition.

2.3. Corollary. In a medium,

(10) d € [a(abc)] implies (dbc) = (abc),
(11) b e[ac] implies (xab) = ((xac) ab).

Proof. If de[a(abc)], then [d(abc)] N [be] < [a(abe)] n [be] = {(abc)}. If
be[ac], then (xab)e [ac], hence (xac)e [x(xab)]. Thus [(xac)(xab)] n [ab] =
c [x(xab)] n [ab] = {(xab)}. m

In other words, the following identities are true:

(12) ((da(abc)) be) = (abe),
(13) (xa(bac)) = ((xac) a(bac)).
Using 1.9 one can easily prove in media the identity

(14) ((ab(cde)) d(cbe)) = ((ad(cbe)) b(cde)),
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which S. A. Kiss proved in modular lattices (see [8], Theorem 2). Indeed, e € [be] N
N [de] implies ((cbe) de) = ((cde) be) € [b(cde)] n [d(cbe)], hence (14).

Also, in a medum, ((abc) de) = ((ade) be) provided [bc] n [de] is nonempty.
Thus the identity ((abc) dc) = ((adc) be) is always satisfied.

In any I-medium one has the identity

(15) (a(bde) (cde)) = ((ade) (bde) (cde)).
The left side of (15) is ((a(bde) (cde)) de) by (I), which is the right side since [(bde)
(cde)] n [de] is nonempty.

2.4. Theorem. Every segment (ab) in a medium M is a modular lattice under
the operations x A y = (xay) and x v y = (xby).

Proof. Clearly, (ab) is partially ordered by x < y < axy with universal bounds
a,b. For x,ye(a,b) we have (xay) = ((bax)ay) = ((bay) ax) = (yax) € (ab).
(xay) is a common lower bound of x and y and if ze(ab) and z < x, y, then
((xay) az) = (xaz) = z, hence z < x A y. So (ab) is a semilatitce and, interchanging
a and b, a lattice. As for the modularity, assume x, y, z € (ab), VEZL,XAYy=XA
Az, and x v y =x v z. Obviously, a(x A y) yz(x v z) b. Since ye[az], y =
=((x A ¥)yz) = ((x A 2) yz) = ((xza) zy) = (xzy)and, symmetrically, z = (xyz),
hence y =z. =m

A somewhat stronger form of Theorem 2.4 was proved by J. R. Isbell [6], 1.16,
for I-media. The author does not know whether (ab) is a submedium of a medium M.
If M is an I-medium, then x A y = (xay) = (yax) = (axy). Indeed x, y € [b(x A y)]
implies (axy) € [xy] = [b(x A y)] which with a(axy) (x A y) b gives (axy) = x A y
(cf. [6]. 1.17).

Fix an element a of a medium M and define on M a relation x < ,y <> axy.
Then as in 2.4, (M, g,,) is a partially ordered set with the least element a, in which
every set 1 b = {xe M :x <, b} (be M) is a modular lattice.

From [6], 1.16 we immediately have that transposed segments in an I-medium
are isomorphic (as media). In media the author only knows (as follows from 2.4)
that the map x> (xcd) is a bijection of transposed segments (ab) and (cd). An
important corollary of 2.4 is

2.5. Theorem. (Jordan-Hélder theorem for chains in media.) If A, B are maximal
chains with endelements a, b in a medium and A is finite, then B is finite and there
is a bijection between the sets of all edges of A and B such that the corresponding
edges are e-projective and for the members (xy) of the e-projectivities x, y € (ab)
holds. ,

Proof. The assertion immediately follows (by Theorem 2.4) from the Jordan-
Hélder theorem for chains with comparable endelements in modular lattices (chains
are considered in the sense of lattice betweenness) formulated in [9], 44.1. =

Theorem 2.5 was proved for modular lattices (chains are considered in the sense
of lattice betweenness) by M. Kolibiar ([9], 4.5) (cf. [6], 1.19).
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Let us observe the following implication (it occurs in the proof of 2.4) which is
valid in media: axb, ayb imply (xay) = (yax).

In order to compare our results with Isbell’s ones we present the following two
lemmas which give alternative definitions of an edge and a chain (in that manner
J. R. Isbell defined his concepts).

2.6. Lemma. The segment (ab) in a medium is an edge if and only if the interval
[ab] is not a singleton but all its proper subintervals are.

Proof. Let a # b, (ab) = {a, b}, [xy] < [ab], and x # y. One can assume that
a € [bx], hence [ab] = [bx]. If aby, then b =y, this means [ab] = [xy]. Other-
wise, if a € [by], then [ab] = [by]. In this case, if a € [b(bxy)], then x € [ab] =
< [b(bxy)]; hence bxy which gives x = y, a contradiction. The other possibility
ab(bxy) gives b e [xy] since (bxy) € [ab]. Thus [bx] < [xy], and hence [ab] =
S [»y]. Conversely, let a % b and let all proper subintervals of [ab] be singletons.
If xe(ab) and a * x, then [ax] = [ab]; hence b = (bax) = x. Thus (ab) is an
edge. w

If (ab) is an edge, then [ab] = [xy] for all distinct x, y € [ab]. Thus (xy) is an
edge. Obviously, (xyz) = x, (yxz) = y, (zxy) = z for all distinct points x, y, z €

e [ab].

2.7. Lemma. A subset {ay, ay, ..., a,} (n > 1) of a medium is the chain aga, ... a,
if and only if aga;a, for all i, a; € [aga;] for j < i, and aj € [a;a,] for j Z i.

Proof. Clearly, the chain aqa, ... a, satisfies the condition. Conversely, let the
above condition be satisfied. Then from a, € [aga,] one has a, = (a,a0a,) =
= (a,(a,a0a,) (ayaea,)) = (a,a,a,). The relations aga,a, and a,a,a, imply aza;a,a,.
A simple induction leads to aga, ... a, =

2.8. Theorem (cf. [6], 1.15 and Corollary to 1.20). A simple path (aa,), (a,a,), ...
.., (ay-1a,) (n > 1) in the graph of a medium is a shortest path from a, to a,
if and only if aga, ... a,.

Proof. The “only if” part for n = 2 follows from the remark after 2.6. If n > 2
and the assertion is true for all 1 < k < n, then a,a, ... a,. Consider the element
a = (a,a0a,). If a = ay, then apa, ... a,. If a = a,, then d(ay, a,) < n — 2, and if
a =% aq, a,, then (aa,), (aa,) are edges, and hence d(ay, a,) < n — 1, both giving
a contradiction. To prove the “if” part assume (bob;), (b1b,), ..., (by-1bn) to be
a shortest path from a, to a,. Then byb; ... b,, hence m = n. g

2.9. Corollary. A medium is discrete if and only if its graph is connected.

2.10. Corollary. (cf. [6], 1.20). In a discrete medium,
(16) abc < d(a, b) + d(b, c) = d(a, c).
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2.11. Theorem. In a medium the identities

(17) (ab(cda)) = (a(bda) (cda)),
(18) (ab(cda)) = (ac(bda)),
(19) ((abc) b(c(abe) b)) = (abe),
(20) (ab(cab)) = (abc),

(21) ((abe)de) = (ac(dcb)),

(22) ((abc) bd) = (ab(cbd))

are equivalent.

Proof. The implications (17) = (18) = (19) and (21) = (22) = (20) are obvious.
(19) = (20): Denote x = (abc) and y = (cab). Since x € [ab], (cbx) = (ybx) € [by].
Using (19) one has x e [b(cbx)] < [by] < [bc], hence (aby) = x. (20) = (21):
If x = (abc) and y = (dbc), then (xcd) = (xc(dxc)) = (xc(yxc)) = (xcy) = (acy).
(20) = (17): Denote x = (cad) and y = (bad). Since x € [ad], (bax) = (yax), and
hence (axb) = (ax(bax)) = (ax(yax)) = (axy). m

A medium is taut if one of the identites (17)—(22) is satisfied. Another equivalent
condition: (abc) € [b(cab)].

2.12. Theorem. In an I-medium tautness is equivalent to each of the identities
(23) ((ade) b(cde)) = ((ade) (bde) (cde)),

(24) (a(bde) (cde)) = ((aed) b(ced)).

Proof. Clearly, each of (23) and (24) implies (20). Conversely, by (15), (ayz) =
= (xyz) and (bxz) = (yxz), where x = (ade), y = (bde), and z = (cde). Then
(ayz) = (xz(yxz)) = (xz(bxz)) = (xzb). m

Some remarks about the above mentioned identities. A ternary operation (a A
Abve)v(bacy=(av(bac)a(bv c)in modular lattices was observed
already by S. A. Kiss [8] and J. Hashimoto [5]. In [8], (14) and the associative law
(22) are proved for it. In [5], (24) is used to characterize bounded modular lattices by
means of a ternary operation (see Theorem 2). In [3], this characterization is done
for modular lattices only with a zero (see Satz 6). Finally, M. Kolibiar and T. Marci-
sova ([10], Theorem 1) showed that for the result the identity (21) suffices. Thus a taut
medium with a suitable element O (this means for any a, b there is x with (0ax) = a
and (0bx) = b) is a modular lattice with zero 0. (19) is the identity which Isbell used
to define tautness in I-media (see [6], 2.1). The simplest identity characterizing
tautness is (20).

An immediate corollary of 2.12 is the following assertion: For a taut medium the
property of being an I-medium is equivalent to each of (15), (23), and (24).

Using the Lemma in [10], one obtains a characterization of taut media by identities
(abb) = b and (21). Just observe that the two identities imply (22) (and so (Ms)).
Denote x = (dbc), u = ((abc) bd), and v = (ab(chbd)). Then v = (ab(cbx)) =
= ((axb)cb) = (ucb) and so u = ((ach) ub) = (ab(ubc)) = v which proves (22).
Hence ((abx) be) = (ab(xbc)) = (abx) which is (Ms).
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Taut I-media can be characterized by two identities: (abb) = b and (24) (use the
beginning of the proof of [5], Theorem 2 and then the above characterization).
However, the author has no example of a taut medium which is not an I-medium.

A free taut medium on three generators a, b, ¢ can be easily determined using (20).
It has six elements and can be embedded in a free modular lattice on three generators
(cf. [6], Corollary to 2.2). Denote 4 = (abc) and similarly B, C (all symmetric rela-
tions will be omitted). Then (aBc) = A, hence (aBC) = (aB(caB)) = (aBc) = A.
Clearly, aBb and aAB, hence aABb.

2.11 has the following consequence. A medium M is a Boolean algebra if and only
if for each a € M there is a’ € M such that M = (aa’). Clearly, the complementation
in a Boolean algebra satisfies the above condition. Conversely, if a, b, c € M, then
bab’, beb’ imply (abc) = (cba). Hence (20) (and so (21)) is satisfied and thus (using
[10], Corollary 2) M = (aa’) is a Boolean algebra for any a € M.

We close this section with three interval characterizations of media.

2.13. Theorem. The structure of a medium is determined by its intervals which
satisfy the following conditions
(H,) be[ab],

(H,) x € [ab] implies [xa] < [ab],
(Hj) for each a, b, c there is x € [bc] such that for all y € [be], [ax] n [xy] = {x},
(Hy) [ab] n [bc] = {b} implies b e [ac].

Proof. Clearly, (H,)—(H4) are satisfied in a medium. Conversely, assume the
four conditions. Then [ab] = [ba] by (H,) and (H,). By (H,), the element x in (H;)
is uniquely determined; denote it by (abc). (M,) and (M,) are obviously satisfied;
alike [aa] = {a}, hence [ab] is the set of all x for which x = (xab), it is the same as
the set of all elements of the form (yab). Thus (abc) e [ab] and (ab(dbc)) € [be];
hence (M;) and (M) are true. It remains to prove (M,). Denote x = (abc) and y =

= (dbc). For all te[xa], [xf] = [xa] and hence [yx]n [xf] = [yx] n [xa].
Since y € [be], the last expression is {x} and thus (yxa) = x. m

A subset J of a medium is an ideal if [ab] = J for all a, be J. J. R. Isbell [6],
1.3 showed that the structure of an I-medium is determined by its ideals. His result is
rephrased in the following theorem.

2.14. Theorem. The structure of an I-medium is determined by its intervals which
satisfy the following conditions
(I;) a, be[ab],
(I,) [xy] = [ab] for all x, y € [ab],
(I3) for each a, b, ¢ there is a unique x € [bc] such that for all y € [bc], x € [ay].
Axiom (I,) is an interval form of Isbell’s identity (I). Similarly, (H,) is an interval
form of the identity (Ms).

2.15. Theorem. The structure of a taut medium is determined by its intervals
which satisfy the following conditions
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(K1) ae[aal,
(K2) for each a, b, ¢ there is x such that [ax] N [be] = {x},
(K3) [ax] A [be] = {x} implies [ab] ~ [bc] = [bx]-

Proof. (K,) and (K,) are satisfied in any medium (cf. 2.2). If [ax] n [bc] = {x},
then by 2.2, x = (abc). Since xe[ab]n[bc], [bx] = [ab] n[bc]. Take ye
e [ab] [bc]; then using (22) (yb(abe)) = ((yba) be) = (ybc) = y, hence (K;).

Conversely, let (K;)—(K3) be satisfied. The aim is to prove the identities (abb) = b
and (21). First, some helpful facts. By (K,), for each a there is x such that [ax] N
0 [aa] = {x}, hence by (K3), [aa] = [ax], and thus, using (K,), [aa] = {a}. For
each a, b there is x such that [bx] n [aa] = {x}, hence x = a and a € [ba]. By (K3),
from [aa] N [ba] = {a} one has [ab] A [ba] = [ba], thus [ba] < [ab] and,
interchanging a and b, we get [ab] = [ba].If ¢ € [ab], this means [cc] N [ab] = {c},
then by (K3), [ca] n [ab] = [ac], hence [ac] < [ab]. The relation [ab] N [bc] =
= {b} implies b € [ac], for there is x with [bx] N [ac] = {x} and, since x € [ab] N
A [be], x = b. For given a, b, ¢, the x determined by (K,) is unique. For, let y be
another such element, then by (K3), [bx] = [by] < [be], hence [ay] n [xb] = {y},
then by (K;), [xy] = [ax] n [xb] = {x}, thus y = x; denote x = (abc). Clearly,
(abb) = b. Let (ab) denote the set {x: [ax] n [bx] = {x}}. We need the implication:
ce(ab) = (ac) < (ab). To prove it assume ¢ € (ab) and d € (ac). By (K,) there is x
with [bx] N [ad] = {x}. Since x € [ad] < [ac], [xc] n [bc] < [ac] n [be] = {c},
hence ce[bx]. Similarly, [xd] N [ed] < [ad] N [cd] = {d}, hence de[cx] =
< [bx], and thus x = d, this means d € (ab). To prove (21), let us denote x = (abc),
y = (dcb), p = (xdc), and g = (acy). First observe that pe(xc) < (ac). By (K;),
[eq] = [ac] n [ey] = [ac] n [be] A [ed] = [ex] n [ed] = [cp], hence [aq] n
N [ep] = {q} which with [ap] n [cp] = {p} gives p = g, this proves (21). Clearly,
[ab] = {x: x = (xab)}. m

3. CHEBYSHEV SETS

Basic properties of Chebyshev sets in abstract ternary spaces are already proved
in Section 1 (see 1.7, 1.8, 1.9). We proceed with a study of Chebyshev sets in special
ternary spaces.

3.1. Proposition. Every projection upon a Chebyshev set C in a ternary space with
a metric d satisfying the condition

(25) abc implies d(a, b) + d(b, ¢) = d(a, c),
is distance-decreasing, i.e. d(xc, yc) < d(x, y) for all x, y.
Proof. One may assume that d(x, xc) < d(y, yc). Since yycxc, by (25), d(y, yc) +

+ d(ye, xc) = d(y, xc) = d(y, x) + d(x, xc) = d(y, x) + d(», yc), hence d(ac, yc) <
=< d(x, y). -
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By 3.1, for every Chebyshev set C in a ternary space with a metric satisfying (25),
x is the (unique) nearest point in C to a point x. However, the property of being
a Chebyshev set is much stronger than the one of having the unique nearest point to
every point.

Every discrete ternary space satisfying (25) satisfies the Jordan-Dedekind chain
condition (all maximal chains with the same endelements have the same length).

3.2. Theorem. A nonempty intersection D of any set A of Chebyshev sets in a dis-
crete ternary space is a Chebyshev set.

Proof. Let x be any point not in D, hence there is C; € 4 not containing x. Denote
X; = X¢,. Since xxd for all d € D, we are ready if x; € D. Otherwise, there is C, € A
not containing x,. Denote x, = x, . Since x,x,d for all d € D, xx,x,d, hence we are
ready if x, € D. Continuing in such a way, we must be ready after a finite number of
steps, since otherwise we get an infinite chain xx;x, ... d for any de D, which is
impossible. m

By 3.2, in a discrete ternary space 7T, the smallest Chebyshev set containing a given
nonempty set S always exists, it is the Chebyshev set generated by S. Let |abi denote
the Chebyshev set generated by {a, b} = T. Clearly, a, b€ |ab| = |ba| and |xy| =
< |ab| for all x, y € |ab|. One can define on T'a ternary operation by

(26) [abc] = ap-

Obviously, |ab] is the set of all x € T'such that x = [xab]. Thus (M,)—(M,) and (I)
are satisfied.

3.3. Proposition. The operation (26) is an I-medium operation if and only if
|ab| N [bc| = {b} whenever [abc] = b.

Proof. It remains to prove (M,). Denote x = [abc] and y

[dbc]. Since lxy| c
< |be|, [axy] = x, hence |ax| M |xy| = {x}, and thus [yxa]

X m

The following fact shows that our definition of a Chebyshev set (in the case of an
I-medium) coincides with that of Isbell.

3.4. Proposition. A subset C of a medium is a Chebyshev set if and only if for
each x there is a unique x¢ € C such that x¢ € [xc] for all ce C.

Proof. A Chebyshev set C satisfies the condition. Conversely, if the condition is
satisfied, then y = (cxxc) € C for all ¢ € C and any point x. For all d € C, x¢ € [xd],
hence y € [xd]. Since X is a unique such element, y = x¢, which means xxcc. u

We can produce a new medium M. from a given medium M and a Chebyshev
set C (this is Isbell’s construction — see the proof of [6], 1.7). New intervals: |ab] is
[ab] N Cif a, be C, [ab] otherwise. Hence |ab|is a Chebyshev set contained in
[ab]. A new operation is defined by (26). Then (M,)—(M;) and (M) are obvious.
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Observe the equivalence
(27) abc <> [ab| N |be| = {b},

(abc implies {b} = [ab] N [bc] 2 |ab| A |bc]; the other implication is obvious).
To prove (M) denote x = [abc] and y = [dbc]. Then axy implies |ax| N |xy| =
= {x}, hence [yxa] = x. We get a new medium M with the same ternary space
(by (27)), hence with the same Chebyshev sets (cf. [6], 1.10). Clearly, C is an ideal
in M¢ and if M is an I-medium, M is an I-medium as well.

This process immediately applies to any set A of Chebyshev sets for which all |ab|
are Chebyshev sets (e.g. this is satisfied for any A if M is discrete — cf. 3.2); Iabl is
the intersection of [ab] and all C € A containing a, b if there is such C, [ab] other-
wise. Thus the new medium M 4 has the same ternary space (hence the same Chebyshev
sets), each C € 4 is an ideal in M 4, and if M is an I-medium, M, is an I-medium as
well. Moreover, if M is a discrete medium, one can continue the process to completion
(4 is the set of all Chebyshev sets) (cf. [6], Remark after 1.22); in this case, the new
medium is always an I-medium, all its Chebyshev sets are ideals.

3.5. Proposition. A discrete ternary space T is the ternary space of a medium M
if and only if

(28) abc implies [abc] = b.

Proof. If T is the ternary space of a medium M, then M is discrete. The new
medium has the same ternary space, hence (28). Conversely, let T satisfy (28). If
[abc] = b and x € |ab| M |be|, then [xab] = x and abx, hence [xba] = b. Thus
|ab| A |be| = {b} and the condition of 3.3 is satisfied, hence the ternary operation
is an I-medium operation. By (28), its ternary space is 7. g

3.6. Proposition (cf. [6], 1.22). 4 nonempty convex set C in a discrete medium
is Chebyshev if and only if [ab] = C for any edge (ab) = C.

Proof. Let a be the nearest point in C to a point x and let ce C. If d(a, ¢) = 1,
then b = (xac) e (xa) N [ac] < C, hence b = a. If d(a, ¢) > 1, then (using induc-
tion) dax for all d € (ac) = C, d + c. Hence, if e = (cax) # c, then e = (eax) = a.
Otherwise, d € [ac] < [ax], hence d = a, a contradiction. g

By 3.6, every nonempty ideal in a discrete medium is a Chebyshev set.

Obviously, in a modular lattice L(considered as a medium) a convex set is the same
as an ideal. This is equivalent to the property of being empty or a convex sublattice
of Lin the usual sense (this means order convex). Thus the following result also
characterizes the Chebyshev sets in L. The result (for median algebras) occurs in 5.2
of [2]. Note that a median algebra is a medium satisfying the identity (cf. [2], 1.2)

(29) (abc) = (bac).
Chebyshev sets in median algebras are fully studied in [2] and the reader is referred

to the cited paper for an acquaintance with median algebras.
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3.7. Theorem. For a nonempty ideal C of a medium the following conditions
are equivalent:

(i) C is a Chebyshev set,

(ii) (xy) N C is either empty, or a segment for all x, y,

(iii) there is c € C such that (xc) n C is a segment for all x.

Proof. (i) = (ii) = (iii) is obvious by 1.7. (iii) = (i): If x is any point, d € C, and
(x¢) N C = (uv), then y = (xuv)e[uv] = C, hence z = (xyd)e C and from xuc,
xyu, xzy one has xzyuc. Thus z € (uv) and hence y = (x(xuv) (zuv)) = (xyz) which
with xzy gives y = z. »

The following result shows that modular lattices can be characterized in the class
of discrete lattices via Chebyshev sets. A characterization (of another kind) of distri-
butive lattices in the class of discrete lattices is done in [2], 4.5.

3.8. Theorem. If Lis a discrete lattice and G is the graph of L, then the following
conditions are equivalent:

(i) Lis modular,

(ii) every convex sublattice of Lis a Chebyshev set in G,

(iii) every interval[a, b] = {xeL:a A b £ x < a v b}, isa Chebyshev set in G.

Proof. If Lis modular, then by 2.10, G has the same ternary space, hence the same
Chebyshev sets. Then (i) = (ii) = (iii) follows from 2.9 and 3.6. (iii) = (i): Suppose
that a, be Lcover ¢ = a A b and let e e Lbe an upper bound of a, b. Since ¢ ¢ [a,
e], Cra,e) = @, hence cae. One has d = ay, ) + b, since otherwise abe and cae would
give cab which is impossible. Thus d(a, d) = d(b,d) = 1 by adb and d #* a, b,
hence d covers a, b, this means d = a v b. Thus a v b covers a, b. From this and
the dual argument we infer that Lis modular. g

In a partially ordered set (P, <), let [a,b] = {xeP: a < x < b}, |c = {xeP:
x < ¢}, and fc = {xe P: x 2 ¢} for any a, b,ce P, a < b.One can easily charac-
terize the Chebyshev sets in (P, <).

3.9. Theorem. A subset C of a partially ordered set (P, <) is a Chebyshev set it
and only if either C = P or C is a singleton or there are a, be P, a £ b, such thaf
P = lau[a, b]uth and Ce{la,1b, [a, b]}.

Proof. If C has any of the above forms, then obviously C is a Chebyshev set.
Conversely, let C be a nontrivial Chebyshev set, xe P — C, and ce C, ¢ + xc = y.
Since xyc and x, y, c are distinct, x < y < corx > y > ¢. Thus yistheleastelement 0
or the greatestelement 1of C. Puta =b=0ora=b=10ora=0and b =1 in
cases C has not 1 or C has not 0 or C has 0 and 1, respectively. Then C = tbor C =
= la or C = [a, b], respectively. Clearly, P = |a U [a, b] U 1b in all three cases. g

3.10. Corollary. If a partially ordered field F possesses a nontrivial Chebyshev
set, then F is ordered.

Proof. By 3.9, there are a, be F, a < b, such that F = |a U [a, b] v 1b. Thus
forany xe F,a—x<aora—x=a,hencex=200rx=<0. u
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3.11. Theorem. If a vector space V over a ternary field F possesses a nontrivial
Chebyshev set C, then dim V = 1.

Proof. Fora,beC, a + b, and de V — C from ddca and ddcb one has de =
=x.d+y.a=z.d+t.b for some x,y,z teF n(01) such that x + y =
=z+t=1 Hence (z—x).d=y.a—t.bandsincex+z,d=u.a+v.b
where u = y/(z — x) and v = t(x — z). Clearly, u + v = 1. If a, b are linearly
independent, then using the above argument ford = a + bandford = 5. a(se F),
we obtain a + b =u.a + v.b, a contradiction, and s.a = u.a + v. b, hence
v = 0, and so d¢ = d which is impossible. Thusa + b,s.aeC. Sinceu.a,v.beC
are linearly independent, their sum d € C, a contradiction.

Thus every a, be C, a % b, are linearly dependent and since every vector d e

€ V — C is a linear combination of a, b, we conclude that dm V= 1. g

3.11 is valid also for a vector space V over a partially ordered field F, the proof is
substantially the same.
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