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I. INTRODUCTION

In a recent paper [6] the notion of pseudo-similarity was introduced. This notion
is defined in the following way. Let R,,«, denote the m x n matrices over a ring R
with unity. If 4 € R,,«,, and B € R, «,, we say that A4 is pseudo-similar to B, A = B,
if there exist X € R,,«, and two possibly distinct X, X~ € R, «,, such that

(1 X AX =B, XBX" =4, XX X=X, XX X=X.

It was proved in [6] that for R = F, a field, and A4, Be F,,, pseudosimilarity
implies similarity, and hence pseudo-similarity is equivalent to similarity in this case.
Subsequently, it was proved in [7] that pseudosimilarity implies similarity in a unit
regular ring. In another paper [2] on pseudo-similarity, the possible ranks of X, X 7,
X~ were determined in the field case, and the class of pairs of matrices 4 and B,
for which A = B, was characterized for fixed matrices X, X ~, and X ~. Other articles
which use the idea of pseudo-similarity are [4] and [8].

Let Z denote the ring of integers. For 4, B€ Z, ., it follows from the result proved
in [6] that A = B over the integers implies A4 is similar to B over the rationals.
Generally, however, similarity of integral matrices over the rationals does not imply
similarity over the integers, see [10, p. 55]. But we shall establish here that 4 ~ B
over the integers does imply that A4 is similar to B over the integers, and thus pseudo-
similarity is equivalent to similarity for integral matrices. In fact we will prove this
same result for matrices over a much more general type of ring. We do this by
introducing a new kind of regularity, partial unit regularity, and show that a ring R
with unity is partially unit regular if and only if pseudo-similarity implies similarity
in R. As a result, in rings R where regular matrices 4 € R, ,, have a certain normal
form, pseudo-similarity coincides with similarity in R, ,,. We will as well obtain
equivalent conditions for the regular matrices A € R, », to have this normal form.
Examples and related resuits are also given.

We first recall some definitions for elements in a ring R. The element a € R is regular
if there is a solution to the equation axa = a. These solutions are usually called inner-
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or I-inverses of a and will be denoted by a~. The element a € R (with unity) is unit
regular if there is a unit u € R such that aua = a, where the unit elements are the
elements which have a two-sided inverse. The ring R (with unity) is [unit] regular if
every a € R is [unit] regular. We will assume that all rings have a unity 1. If R is
a ring with unity, then R,, is a ring with unity and the above definitions apply to
R, «, as well.

II. PSEUDO-SIMILARITY AND PARTIAL UNIT REGULARITY

We now introduce a new kind of regularity.

Definition. A ring R is called partially unit regular if every regular element is unit
regular.

Examples of partially unit regular (p.u.r. for short) rings are numerous. A trivial
example of a p.u.r. ring is a unit regular ring. So every division ring is p.u.r. The ring
of integers is a p.u.r. ring. Inded, any ring R where the only regular elements
are 0 and the units is p.u.r. In particular, integral domains are p.u.r. rings, for in
these rings,

al —a"a)=0, a+0=1—-—a"a=0.

Also, the ring Z/p™ (the integers modulo p™, p a prime) is p.u.r. since every element
in Z/p™is a unit or is divisible by p.

Of more interest are the rings R, for which R,, for all n, and hence R, are p.u.r.
What is somewhat surprising, are the many examples of this which we can find. We
remark that these matrix rings will furnish us with examples of p.u.r. rings, other
than unit regular rings, where not every regular element is O or a unit. But first we
characterize p.u.r. rings.

Theorem 1. The ring R is p.u.r. if and only if pseudo-similarity implies similarity
in R.

Proof. To prove this theorem we use the equivalence of (1) and (8) in Theorem 2B

in [7].

(=) Suppose that
) xTax=b, xbx™ =a, xx x=x, XX X=X.
Since R is p.u.r., xux = x for some unit u in R. Now, let
g=(1—xx~+xu)u ' (1 —x"x + ux).

Then, from [7], g is a unit and ¢~ 'aq = b, so that a is similar to b.

(«=) We assume that pseudo-similarity implies similarity. Let x be any regular
element in R and suppose that (2) holds for some a, b, x~, x~ € R (for example,
a = xx", b =x"x,x~ = x7). Then, from our assumption and the theorem in [7],
we have that x is unit regular. Thus, R is p.u.r.
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As a consequence of Theorem 1, in each of the rings mentioned above, pseudo-
similarity coincides with similarity.

We remark that in the proof of Theorem 1 the element g is independent of a and b.
Thus, assuming x is unit regular, if a = b, via x, x~, x~, for any number of pairs of
elements a and b, then a is similar to b for all those pairs.

Now let us turn to matrices.

Corollary 1. Suppose R, ., is such that for each regular matrix A€ R, ,,

ria-[3 ]

for some units P, Q € R, . Then, R, «, is p.u.r. and thus pseudo-similarity coincides
with similarity in R, «,,.

Proof. Suppose 4 is regular and

10
PAQ = [o 0],
where P and Q are units in R, «,. It is then immediate that QP is a unit inner inverse
of A. The result then follows from Theorem 1.

Examples. (1) Let R be any elementary divisor ring, so that for each 4 € R,«,
there exist units P and Q in R, «, where PAQ = D, a diagonal matrix, [9]. Examples
of such rings are division rings, principal ideal domains, and Z/p™ [1], [5]. We
further assume that the only regular elements of R are 0 and the units, as is the case
with these examples. Then, R, «, is a p.u.r. ring. To see this note that if A4 is regular
then D is regular. Letting (without loss of generality)

S1

0

where each s; & 0, it then follows that each s; is regular. Hence each s; is a unit. Thus
“new” units P and Q may be constructed such that

1,0
PAQ = [0 O] .
(2) Let R = &[zy, ..., z,], the ring of polynomials in n variables with complex
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coefficients. In [11] it is shown that 4 € R,x, has a 1-inverse if and only if there exist

units P, Q € R, «, such that
1, 0
PAQ = [o 0]

where r = rank A. Thus, R,,, is p.u.r.

(3) We give an example where R, is p.u.r. but where the condition of the above
corollary is not necessarily met. Let R be a unit regular ring. It was shown in [9]
that R is then an elementary divisor ring, from which it follows that R,., also is
unit regular and thus p.u.r. Since in general unit regular elements do not have to be
units, the condition of the corollary does not hold in general here, that is, every
regular matrix 4 in R, «, may not be unit equivalent to

[v]

We shall take up this question shortly in Section 1V.

If A and B are square matrices over R, but of different sizes, then we can augment
zeros to the matrices X, X, X~, A4 (or B), of (1) to obtain some generalizations. The

case where m > n is given below.

Theorem 2. Let A€ R, «,., B€ R, «,, where R, ,, is pu.r. and m > n. Then,
A = Bover R if and only if A is similar to

[vo]

Proof. The proof is straightforward and is omitted.

over R.

III. MATRICES OVER PRINCIPAL IDEAL DOMAINS

In this section R will denote a principal ideal domain,.examples of which are the
ring of integers, any field, and the ring of polynomials in a single variable with coef-
ficients from a field. In the previous section we saw that R, ., is a p.u.r. ring so that
pseudo-similarity is equivalent to similarity in R, ,,. Here we look at the situation
using the block form of the matrices. To do so we note that the results of [2] and [3]
which we use are valid for matrices over any principal ideal domain.

Suppose A = B as in (1), where 4, B, X, X, X~ € R, «,. Let rank X = r. Then,
from Theorem 6 in [3], we have units P and Q and a matrix Lsuch that

PXQ =[(])' 0], X" = Q[é’g]P.
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We next use Theorem 1 in [3] to write
- I, Z,
= _ r P
ool
Now set QP = U. Then, using matrices, the expression for g in the proof of Theo-

rem 1 becomes
1 —-Z
-1 2 -1
o 7o

which we shall denote by T. Now, as in Theorem 4 in [2], we can write

L [wwz, _[wol,. -,
A=P [oo ]P’ B‘Q[o O:IQ

for some r x r matrix W. It can then be verified by direct multiplication that
T 'AT = B, so that A is similar to B over R (as was shown in Theorem 1).

We note in the case that X~ = X~ we can take Z, = 0 in the above. In general
the matrix 7”1 which we obtained turns out to be a unit inner inverse of X.

In [2] the possible ranks of X, X, X~ were determined in the field case in terms
of the core-nilpotent decomposition of 4 and B. With 4, Be F,«,, A = B as in (1),
and  denoting the number of 1 x 1 Jordan Blocks [0] in the Jordan form of 4 and B,
it was shown that

for some matrices Z,, Z3, Z,.

rank X = n — t.

Conversely, for each positive integer r,n — t < r < n, and for all positive integers
p.qg,r = p=n,r=gq = n, there exist X of rank r, X~ of rank p, X~ of rank g,
such that (1) holds. For matrices over a principal ideal domain R it is an open
question as to whether for each r, n — t < r < n, there exist X of rank r such that
(1) holds. However, in this case, for a fixed X satisfying (1) there do exist X~ and X~
of the various possible ranks satisfying (1).

Theorem 3. Suppose A = B as in (1) where A,B,X,X ,X~ €R,, and let

rank X = r. Then, with this fixed X, for all positive integers p,q, r < p < n,
r = g < n, there exist X~ of rank p, and X~ of rank g, such that (1) holds.

Proof. Let A = Bvia X, X, X~. As in the above we can write

1.0 1.0 - 1. Z
=P—1 r -1 - r = _ r 2
x=rfgofer xmefyle xo-efg 2

e DR

for some units P, Q and some matrices L, Z,, Z5, Z, and W. But then with any
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choices for L, Z;, and Z,, it is easy to check that the equations in (1) still hold. Hence,
setting Z; = 0 and choosing matrices L and Z, with appropriate ranks, our result
then follows.

1IV. REDUCTION OF A TO NORMAL FORM

We shall now investigate when a regular matrix A has the normal form

[o2]

under unit equivalence as in Corollary 1. There of couse all matrices were square.
However, to arrive at conditions which hold for matrices over arbitrary rings we
must initially consider possibly non-square units. We start with some more definitions
and notation.

Let R be a ring. By R™ we denote the m x 1 column vectors over R, considered as
a right R-module. Similarly, "R denotes the 1 x n row vectors over R, considered as
a left R-module. We recall that a basis for any module, if one exists, is a linearly
independent subset which spans the module.

Now let B € B,,«,. By R(B) we mean the submodule of R™ of all right linear com-
binations of the columns of B and by RS(B) the submodule of "R of all left linear
combinations of the rows of B. As usual N(B) = {xe R"| Bx = 0} a submodule
of R". We say that B is invertible if and only if there exists X € R, «,, such that

BX =1, and XB=1,.
The inverse of B, if one exists, is unique and is denoted as usual by B~ 1.

Lemma 1. The following are equivalent for B € R,, .
(i) B is invertible.

(ii) The columns of B form a basis for R™.

(iii) The rows of B form a basis for "R.

Proof. (ii) = (i) By the spanning property there exists X € R, x,, such that BX =
=1,. Then B(I, — XB) = 0 and so by the linear independence I, — XB = 0,
or XB =1I,. Thus, X = B~

The rest of the proof should be clear.

Definition. Let W, be a submodule of the R-module W. To say that the basis B,
of W, has a complementary basis B, will mean that B; U B, is a basis of W.

Theorem 4. The following are equivalent for A€ R, «,.

(OR— b
A=U 00 |4
for some invertible matrices U € R, x,», V€ R, xn and some r.
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(i) R(A4) and\RS(A) have finite bases and these bases have finite complementary
bases.

(iii) R(A) and N(A) have finite bases and these bases have finite complementary
bases.
Proof. (i) = (ii) Let
I, 0
A= [0 0] v
U= [U1 Uz] , V

as given in (i) and let

Il

Vi
]
where U, € R,«,, Vi € R,«,. Then A = UV, and since V is invertible there exists
Vi € R,«, such that V, V| =1,.

Now clearly R(4) = R(U,), and since AV{ = U,V,Vy = U,, R(4) = R(U,).
Hence, the columns of U, form a basis of R(A), with complementary basis the
columns of U,. Similarly, RS(4) = RS(V;), and the rows of ¥, form a basis of
RS(A), with complementary basis the rows of V.

(ii) = (iii) Let a basis for RS(A) be arranged as rows in a matrix V;, a complemen-
tary basis be arranged as rows in a matrix V,, and let

Vi
v (]
where Vis say p x n. Then Vis invertible and we partition ¥ ~! conformably with V as
V_l = [Ql Qz]«
Hence, Q,V, + Q,V, =1, and V;Q, =0.

We now claim that the columns of Q, form a basis for N(A) (with complementary
basis the columns of Q,). Indeed, since RS(4) = RS(V;), there exist Y, Z such that
Vi = YAand A = ZV,. Hence, AQ, = ZV,Q, = 0, so that R(Q,) = N(A4).

Conversely, let Ax = 0. Then Q;V;x = Q;YAx = 0, and so (I, — Q,V,)x =0,

so that x = Q,V,x. Hence, x € R(Q,) and R(Q,) = N(A). The above claim is thus
true and our implication holds.

(iii) = (i) Let a basis for N(A4) be arranged as columns in a matrix Q,, a comple-
mentary basis be arranged as columns in a matrix Q,, and let

Q = [Q1 Qz]

where Q is say n x g. Then Q is invertible and we partition Q™! conformably

with Q as
- P,
o= [7]

We first claim that the columns of AQ, form a basis for R(4).
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Clearly R(4Q,) € R(4). Also, A = A(Q,P; + Q,P,) = AQ,P,, so that
R(AQ,) = R(A). Now let AQ;x = 0. Then Q;x € N(4) n R(Q,) = R(Q;) " R(Q,) =
= {0}, or Q,x = 0. Since P;Q; = I we then have x = 0. Hence the columns of 40,
form a linearly independent set, and the above claim is valid.

Next, we are given some basis for R(A), say the columns of U,, with a complemen-
tary basis, say the columns of U,. Then there exist T, S such that AQ, = U;T and

U, = AQ,S. Hence AQ; = AQ,STand U, = U,TS. It then follows that S = T~ 1.
Lastly, we have

40 =[40, 0] =[U,T 0] = [U,T Uz][f) 8]

A=[U,T U,] ‘}) ?)] 0!

(where the sizes of the three matrices on the right-hand side are n x g, g x q,
g X n, respectively). Now,

[U,T U,] = [U, U] [T 0]

01

a product of two invertible matrices, so that [U,T U,] is invertible. The proof of
the theorem is now complete.

We recall that R, is said to be finite if AB = I, = BA = I,, for example see [7].

Lemma 2. If R,«, is finite, then R, is finite for all k, k < n, and all invertible
matrices with row or column dimension equal to n are square.

Proof. That R, ., is finite for all k, k < n, is easy to show. Next, suppose that
AX =1, and XA =1,
where 4 € R,,«,,, X € R, x,,- Assume that m < n and set
A=[GH], Xz[lg]

where G, We R,,x,,. Then XA = I, yields WG =1,, and ZH = I,_,,. Since R,,x,, is
finite we have GW = I,,. Then, AX = I,, says that GW + HZ = I,,, so that HZ = 0

and hence HZH = 0. But ZH =1,_,, implies HZH = H, and so H = 0. Hence,
I,_,, = 0, a contradiction.

In a similar manner, if we assume n < m we also arrive at a contradiction. Thus
m = n and the proof of the lemma is complete.

Recall that if E € R, , and E*> = E, then E is called an idempotent matrix.

Theorem 5. The following are equivalent:
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(i) For each regular matrix A€ R,x,,

1,0
=Ulr
aofs ]y
for some invertible matrices U € R, x,,, V€ Ryyxn» and some r.

(ii) If E € R,x, and E is idempotent, then

1.0
E=N| ' -1
for some invertible matrix N € R, «,, and some r.

(iii) If E € R,x, and E is idempotent, then R(E) has a finite basis.
In which case R,x, is finite p.u.r. and all invertible matrices with row or column
dimension equal to n are square.

Proof. (i) = (ii) Since E* = E, E is regular. So,

1,0
E—U[O O:IV

for some invertible matrices U € R, x,,, V€ R,,x,» and some r. Now set

1,0
Pelve)

Y=UFU™!', and W=1—E + Y. Hence, YE = UFU 'UFV = UFV = E and
Y=UFU ' = UF(VV~")U™! = EV-'U"", so that EY = Y. It can then be verified
directly that W' =1 + E — Y.

Now, since EUF = UF, we have WUF = (I — E + Y)UF = UF — UF +
+ YUF = UF. Also,

EWU = E(I — E + Y)U =(E— E+ Y)U = YU = UF. Hence, EWU = WUF,
and thus E = NFN~ ', where N = WU.

(ii) = (iii) This follows from Theorem 4.

(iii) = (i) Since A is regular, A has an inner inverse, say A~. Hence, E = A4~ is
idempotent and so R(E) has a finite basis. Now R(E) = R(4). Moreover,

R" = R(E) + R(I — E)
where 4 denotes a direct sum. But I — E is also idempotent and so R(I — E) has
a finite basis. Hence, R(A) has a finite basis with a finite complementary basis.
Likewise, N(A) = R(I — A~ A), where A~ A4 and I — A~ A are idempotent. Now
R" = R(A™A) + R(I — A" A).

Hence, N(A) has a finite basis with a finite complementary basis. The result in (i)
then follows from Theorem 4.
To finish the proof of the theorem, suppose that AB = I,, where A, BE R, .
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Hence, ABA = A, so that A is regular. Then from (i),

1,0
A—U[O O]V

for some invertible matrices U € R, x,», V€ R, x,, and some r. So,

1
-1 _ r
U AB—I:O 0] VB
1,0
-1 __ r
U —I:O O:| VB

1, 0
I, = [0 0] VBU .
It then follows that r = m, so that A = UV. Thus 4 is invertible and R, is finite.
It now follows from Lemma 2 that all invertible matrices with row or column dimen-

sion equal to n are square. Hence, U and V are square, and from Corollary I, R,
is p.u.r.

or

or

Corollary 2. Suppose that R,x, satisfies the conditions of the above theorem.
Then, for all k, k < n, R, also satisfies those conditions. Thus, for all k, k < n,
Ry« is finite p.u.r.

Proof. Let F> = F € Ry, k < n, and let E be the n x n idempotent matrix
FO].
00
Then R(E)=R(l:g]), and since we are assuming R, satisfies (i—iii) of Theorem 5,
we have that R([g]) has a finite basis. To prove our corollary we show that R(F)

then has a finite basis.

. F . .
Let a basis for R([O ]) be arranged as columns in an n X g matrix

where By is k x g. Then, by the spanning property, there exists Te R, such that

[1]-ar
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. . F
Also, since the columns of B are in R([O:D, there exists S € R, ,, such that

o-[1]s.

So, B = BTS, and by the linear independence of the columns of B, we obtain TS = I,.
But then 0 = B,Timplies B, = 0. Hence, the columns of B, are linearly independent,
and since F = B, T, the columns of B; form a basis for R(F).
From Theorem 5 we then have equivalent conditions for each regular matrix
A€R,,, to be unit equivajent to
10
[oo]

Under these conditions pseudo-similarity thus coincides with similarity in R, x,.
Moreover, with these conditions, the only regular elements of R are 0 and the units.
For suppose a € R is regular and a # 0. Then

a0 ...0
0
0

is regular in R, «,. Hence, we have

10
“14y-1 _
U AV _I:OOJ

for some units U, Ve R, «,. So, equating (1, l)—entries, we see that ras = 1 for some
r, s € R. From the above corollary R is finite so that asr = 1 and sra = 1. Thus,
a is a unit.

V. OTHER OPEN QUESTIONS

(1) All of our examples where R, , is p.u.r. have been where R is p.u.r. Does R
being p.u.r. always imply that R, is p.u.r.?

(2) In [8] the notion of semi-similarity is defined for two matrices 4 and B over
a ring. Conditions are given for two matrices over a division ring to be semi-similar.
Are there similar conditions for matrices over more general types of rings, such
as Z,x,! ,

(3) Can one characterize canonical forms under the pseudo- and semi-similarity
relations?
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